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Abstract—Designing optimal controllers continues to be 

challenging as systems are becoming complex and are inherently 

nonlinear. The principal advantage of reinforcement learning 

(RL) is its ability to learn from the interaction with the 

environment and provide optimal control strategy. In this paper, 

RL is explored in the context of control of the benchmark cart-

pole dynamical system with no prior knowledge of the dynamics. 

RL algorithms such as temporal-difference, policy gradient 

actor-critic, and value function approximation are compared in 

this context with the standard LQR solution. Further, we propose 

a novel approach to integrate RL and swing-up controllers.  
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I.    INTRODUCTION  

      Reinforcement learning (RL) is a branch of machine 

learning which is inspired by human and animal behaviorist 

psychology. When RL is applied to a system, the agents of the 

system learn to take actions in an environment so as to 

maximize some notion of cumulative reward. Learning can be 

based on several forms of evaluative feedback [1], [2]. In 

contrast to supervised learning methods, RL is used when the 

target outputs are not known. Here, the performance is 

evaluated indirectly by considering the effect of the output on 

the environment with which the system interacts; this effect is 

quantified in terms of an evaluation or reinforcement signal.  

RL algorithms focus on online performance, which involves 

finding a balance between exploration (of uncharted territory) 

and exploitation (of current knowledge). To obtain maximum 

reward, the agent has to exploit what it already knows, but it 

also has to explore in order to make better action selections in 

the future. Neither exploration nor exploitation can be pursued 

exclusively without failing at the task. 

      The cart-pole problem is a classical benchmark problem 

for control purposes. It is an inherently unstable and under-

actuated mechanical system. The dynamics of this system is 

used to understand tasks involving the maintenance of 

balance, such as walking, control of rocket thrusters and self-

balancing mechanical systems. A number of control design 

techniques for swing-up and stabilization of an inverted 

pendulum have been investigated. Examples include energy-

based controllers, PID controllers, Linear Quadratic 

Regulators (LQR), and Fuzzy logic controllers; e.g. [3], [4]. 

      An increase in the complexity of systems requires the need 

for sophisticated controllers especially in the presence of 

nonlinearities, uncertainty and time-variations. By its inherent 

nature, RL has the capability to use knowledge from the 

environment to provide optimal controllers without the 

knowledge of the environment. Moreover, such controllers 

have the capability to adapt to a changing environment.   

The goal of this paper is two-fold. First, we compare 

several RL algorithms in the context of the cart-pole problem. 

We further assess which of these algorithms provide a control 

that resembles closer to the LQR solution. Secondly, we 

propose a method to integrate RL algorithm with a swing-up 

controller.  

The rest of the paper is organized as follows: The cart-

pole problem is described in Section II. The different RL 

algorithms that are of interest in this paper are presented in 

Section III. The classical swing-up control together with LQR 

stabilization is dealt with in Section IV. The manner in which 

RL algorithm is integrated with a swing-up controller is given 

in Section V. The performances of these controllers are 

compared in Section VI.  

II.   CART-POLE PROBLEM 

     The cart-pole balancing problem is a benchmark for RL 

algorithms; e.g., [5]-[8].  The fundamental problem statement 

has been derived from an adaptive control technique known as 

the BOXES [8]. The problem is challenging as the 

reinforcement learning agent has to select and take actions in a 

very limited and discrete action space. 

 

 

 
 

Fig 1. Cart-Pole system 

A. Cart-Pole Dynamics 

      A pendulum is pivoted to a cart, which has one degree of 

freedom along the horizontal axis. The goal of the problem is 
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to balance the pendulum in the upright position by using bi-

directional forces that is imparted on the cart by an 

electromechanical system. The state of the system at any time 

is defined by the angular position    and velocity    of the 

pendulum, and the linear position   and velocity    of the cart.  

The nonlinear system is described by the following 

equations:  

   
                            

 
 

 
               

                                               (1) 

   
                      

     
                                                         (2) 

Here, M is the mass of the cart (0.711 kg), m is the mass of 

pendulum (0.209 kg), g is the acceleration due to gravity (9.8 

m   ), F is the force applied on the cart (    Newtons), and   
is the length from the centre of mass to the pivot (0.326 m). 

For purposes of simulation we assume a sampling interval 

       seconds.  

B. Formulation of RL model for the Cart-pole Problem 

      The objective of the RL agent is to control the plant (1)-(2) 

using an appropriate sequence of control signals (actions) in 

order to balance the pendulum so that (i) the angular position 

of the pendulum remains within      from the upright 

position, and (ii) the linear position of the cart is within 

     meters from the centre of the track. 

The state variables             are quantized and separated 

into multiple bins. A box is defined as an n-tuple comprising 

of one bin from each of the four state variables. Two functions 

getBox and getBox2 have been defined with different 

quantization levels: The first referred to as getBox comprises 

of 162 boxes when quantized into 15 bins in the following 

manner:                                              ;      

                           ;                
                    , and                          
          The second referred to as getBox2 comprises of 324 

boxes when  quantized into 21 bins: 

                                                     
                                     ;             
               ;                                     
                                  . If at any time the state 

does not belong to these discrete bins, then a failure is said to 

have occurred and a reinforcement signal of value -1 is 

generated, which marks the end of an episode. Each time a 

failure occurs, the pendulum is reset to the upright unstable 

equilibrium position, which is the initial position for the next 

episode. (As seen later, with the integration of swing-up with 

RL, such manual resetting is not required.) 

Markov decision processes (MDP) play an important role 

in RL. They provide a mathematical framework and enables 

decision making in situations where outcomes are partly 

random and partly under the control of the agent. The core 

problem of MDPs is to find a policy for the agent based on its 

current state. The cart-pole problem can also be described 

using an MDP: It consists of (i) S, a finite set of states:  

         ; (ii) A, a finite set of actions: Moving the cart LEFT 

or RIGHT by applying a force [-F, F]; (iii) P, a state transition 

probability matrix,                             

         . Since the environment is deterministic, taking an 

action   from state   would always result in the next state s’. 

Thus, the state transition probability matrix (STPM) simplifies 

to the state transition matrix (STM). STM can be defined 

based on the dynamics of the system, given by  (1) and (2); 

(iv) R, a reward function                      
         . A reward of -1 is given to the system whenever 

the state cross the restrictions defined earlier, and a reward of 

zero is awarded otherwise; and (v)  , a discount factor in the 

range [0,1] which defines the dependency of future rewards on 

the current action and current state. The discount factor is 

varied according to the algorithm used.  

In the cart-pole problem, like many other complex control 

problems, complete knowledge of the MDP cannot be 

obtained, as the state transition probabilities cannot be 

determined before achieving optimal control. This is because, 

the RL agent learns by taking random actions, with no 

knowledge of correct actions, until the optimal policy has been 

obtained.  Hence, model-free RL algorithms such as Temporal 

Difference, Policy-gradient actor-critic and Value function 

approximation have been used to solve the problem. These are 

discussed in the next Section.  

III.   MODEL-FREE LEARNING 

The class of algorithms that are used to solve MDPs 

without the knowledge of the reward function,   
  or the 

STPM,     
  are termed as model-free methods [9]. They rely 

on MDPs to sample various sizes of experiences from the 

environment depending on the algorithm used. These 

experiences are then used by an agent to directly make 

decisions and take actions in the environment. Algorithms for 

model-free learning can be categorized into various types 

based on the length of backups, which is the number of steps 

for which the RL Agent interacts with the environment before 

updating its estimate for the quality of a state. These types are: 

one-step backup or temporal difference or TD(0) learning, 

infinite-step or full-length backup or Monte Carlo learning, N-

step backup, and multi-step backup or TD(λ). Model-free 

methods largely use the generalized policy iteration (GPI), 

initially developed for dynamic programming [10] to evaluate 

the environment and select actions.   

When using model-free learning for control, policy 

evaluation and policy improvement can follow either the same 

or different approaches in GPI. This deals with the 

exploration-exploitation trade-off that exists in most MDPs. 

This trade-off is handled by two methods: (1) On-policy 

control where the agent uses the same policy algorithm to 

select actions from the action value estimates as well as 

generate action value estimates, and (2) Off-policy control 

where the agent uses one policy algorithm, usually a greedy 

policy, to select actions from action value estimates, and 

another policy algorithm, usually an exploratory policy, to 

generate action value estimates.  

  



A. Off-Policy TD Control Algorithm (Q-Learning) 

Temporal difference (TD) learning is a class of RL algorithms 

which involves one-step updates of the value function and 

bootstrapping to estimate the quality of a state. In TD 

methods, the quality of the state at every step is updated using 

reward obtained at that step and an old estimate of quality of 

the next state [9]. Q-Learning is a TD algorithm applied to 

control problems using off-policy method since two different 

policies are utilized by the agent. The policy used to select 

actions using the state-action values is the greedy policy, 

given by                . On the other hand, usually an 

exploratory policy is used to generate the action-value 

estimates. The Q-learning update equation is given by: 

                                        
                                                                                        (4) 

where        corresponds to the current state and action, 

       
   corresponds to the next state and action, 

         is the quality of the agent being in state    and 

taking action   , and     is the reward obtained by taking an 

action    from state   . Each step of Q-Learning updates a 

state-action pair: (1) The current state,    or the internal state 

of the cart-pole dynamics represented in a form that the RL 

agent can interpret. (2) The action    to be taken at state    . In 

the case of cart-pole balancing, action can be either a constant 

acceleration of the cart towards LEFT or RIGHT in the track. 

The RL Agent is punished with a reinforcement signal    

of -1 if either the pole or the cart exceeds its limitations 

defined in the objective and    of 0 otherwise. Using the 

update equation, Q-learning can be used to solve the cart-pole 

balancing problem with the following algorithm: 

 Initialize all                   

 For each episode: 

o For each step in an episode: 

 Given current state   , choose    using    
                

 Take the action    

 Observe    and      from the environment 

 Update the Action value function,          to 

the Q-target                     using the 

update equation 

 Until the terminal state, where the state    

exceeds the limits set by the objective. 

Since the state space of the cart-pole MDP is explored even 

with a greedy policy, the two policy algorithms followed by 

off-policy control are chosen as greedy policies. As a result of 

this selection, this special case of off-policy method converges 

to an on-policy approach. 

B. Actor-critic policy gradient method 

1) Policy Gradient 

The RL algorithms considered so far involve a value function 

which quantifies the significance of the system being the 

current state and taking the specified action. Action selection 

using these value function based methods can be performed 

either deterministically or with some stochasticity that can be 

reduced to a deterministic form based on the overall 

performance of the agent [9].  

In Policy gradient methods, the process of action selection 

at every step is stochastic. It is based on the probability of 

selection of a particular action in each state, given by:  

                                                                              (5) 

This can be useful in many applications where determining the 

accurate value function is complex. In case of cart-pole 

balancing problem, one such example is the upright state, 

where the pole is in the upright position but the agent must 

take either action defined by the objective. In this context, the 

agent may not prefer a deterministic action as it may limit the 

exploration across the state space. 

The cost function to find the policy         is: 

                         
 

                                   (6) 

where        is the distribution of the MDP for   . Using 

stochastic gradient descent to minimize this cost function with 

respect to  , and manipulating the equation:  

                   
         

       
  

                                                                         (7) 

The expression                 is known as the score 

function. To represent action selection as a probability over 

the state, Softmax policy is chosen as the score function:  

                                                           (8) 

where        is the feature vector. 

2) Actor-critic method 

The high variance observed in policy gradient methods is a 

drawback. To overcome this drawback, Actor-critic method 

was proposed in [6], [11].  Two networks are proposed in [6]  

- action network and critic network. The action network learns 

to select actions as a function of the cart-pole system states. It 

consists of a single neuron having two possible outputs, 

+Force or –Force. The probability of generating each action 

depends on the box in which the system is in. Initial values of 

weights are zero, making the two actions equally probable. 

Weights are incrementally updated, and thus, the action 

probabilities, after receiving non-zero reinforcements which 

are obtained as a feedback upon failure. 

 

 

Fig. 2. Actor Critic Neuron Like elements 

The critic network provides an association between the state 

vectors and the failure signal. The evaluation network also 

consists of a single neuron. This network learns the expected 

value of a discounted sum of future failure signals by means of 

TD learning [6]. Through learning, the output of the 



evaluation network will predict how soon a failure can be 

expected to occur from the current state. This prediction acts 

like a feedback for the action network, which enables it to 

learn to select a correct action when it is in a particular state. 

By estimating the action value function using a critic, the 

high variance of the policy gradient method can be reduced. 

Thus, policy-gradient actor-critic methods are considered with 

the following parts [12]: The critic which updates action-value 

function          or their parameters, and the actor which 

updates the policy parameters   in the direction of the action-

value function as estimated by the critic. 

The update equations for the actor network parameters are 

given by: 

                                 

                                                                                       (9) 

where             
 

 
                             

      , with                   , and       

 
                  

           
 ,       is a random variable chosen 

from a normal distribution with zero mean and standard 

deviation 0.1,                   
 
     and       

             
 
   ,          . 

The update equation for the critic network parameters are 

given by: 

                                 

                                                                                       (10) 

where,                            , with       
           ,                    

 
   ,          . 

By varying the parameters,          , implementing the 

update equation in the GPI, and testing on the cart-pole 

balancing problem, different results are obtained and 

compared in this paper.  

C. TD  with Value Function Approximation 

The results obtained by using the above RL methods on the 

cart-pole problem have a major drawback. The assumption of 

a discretized state space increases the effect of the value of 

constant force action on the performance of the system. Also, 

the constant force must be chosen to ensure that the system 

changes its state at the end of every time step. In other words, 

the constant force should cause    
   . A continuous state 

space is considered in order to overcome these drawbacks, and 

thus, a continuous-state MDP is considered [9]. Here, the four 

state variables are treated as continuous-time variables, 

        . 

1) Value function approximation 

With continuous-state MDP, it is not possible to update the 

value of every state individually, as each state         . 

Also, storing a separate value to represent the quality of each 

state result in a very large MDP, which cannot be stored in the 

memory efficiently. An approximate value function is 

considered to generalize the values from the states visited by 

the agent to unvisited states in the neighbourhood. This 

function uses a set of parameters      , which can represent 

the quality of all states without taking up large memory space, 

and is defined as                  where           is the 

approximate form of the state-action value function        

used in the control problem, with parameter  . 

2) Stochastic gradient descent  

The goal of the RL agent defined in terms of value function 

approximation is to update the approximate value function 

towards the Q-target in case of the control problem. The 

parameters are updated by using a cost function      which 

represents the error between the Q-target and the approximate 

value and is minimized using Stochastic Gradient Descent: 

                                          
 
     (11) 

     
 

 
         

                                                    

                                                                                              (12) 

Linear combination of features can be easily applied to this 

problem to derive at a near-perfect RL controller: 

                                   
 
                  (13) 

The gradient of (13) is                       . Thus, the 

parameter update, in order to minimize the error between the 

Q-target and the linear value function approximate, is reduced 

to: 

     
 

 
        

                              
            

                                          

                                                                                              (15) 

The algorithm applied to the cart-pole problem is: 

 Initialize all                        

 For each episode: 

o For each step in an episode: 

 Given current state   , choose    using    
                 

 Take the action    

 Observe      and      from the environment 

 Update the action value function,           to the 

TD target using the update equation    

                         

                     

 Until the terminal state, where the state    exceeds 

the limitations defined by the objective. 

 

IV.   SWING-UP AND STABILIZATION BY CLASSICAL CONTROL 

This section considers a solution to perform the entire control 

of an inverted pendulum, from rest position at the stable 

equilibrium of the pendulum to a balanced upright position at 

the unstable equilibrium. The energy method is utilized to 

achieve this transfer. The control is switched to one based on 

LQR in order to stabilize the pendulum near the upright 

unstable equilibrium position. The swing-up and stabilization 

strategies are integrated to perform the full control of the 

inverted pendulum. This is done by switching the controllers 

from swing-up to stabilization when the pendulum angle is 

within      and back to swing-up when the angle exceeds 

    , as suggested in the cart-pole MDP. 

 



A. Swing-up using Energy Control Method 

Equation (1) is considered to derive the swing-up strategy with 

the following modification [13]:            ;    

 
 

 
        . The total energy of the pendulum at any state 

is: 

  
 

 
     

                                                          (16) 

With change in energy depending on         and using the 

Lyapunov function defined by        
    , the control 

law required to reach the target energy    is given by: 

                                                                         (17) 

The above method does not consider the restrictions of the 

finite cart track length. Introducing the restrictions [14], the 

Lyapunov function is modified to   
 

 
       

          

and thus, the new control law is: 

                                                                 (18) 

where   is a parameter to restrict the linear motion of the cart. 

B. Stabilization using Linear Quadratic Regulator 

When the pendulum reaches a position of      from the 

upright position using swing-up the control is switched from 

swing-up controller to the stabilization controller. The state 

space near the upright position of the pendulum ensures small 

values of  . Thus, the model can be linearized and a robust 

linear controller such as the LQR can be utilized to stabilize 

the pendulum near this position. The linearized state space 

model is given by           , where                

        

 
 
 
 
 
 
 
 
 
    

 
  

          

        

     
    

  
 

 

    

 
 

 
       

  
    

      

 
       

  
    

 

 
 
 
 
 
 
 
 
 

 

   

 
 
 
 
 
 

 
  

          

 
  

 
       

  
     

 
 
 
 
 

  

 

The state-feedback stabilizing control is       . Thus, 

          , where the LQR gain          is 

obtained from the solution of the corresponding Algebraic 

Riccatti Equation (ARE)                     

for specified Q and R. Here,       and    , where, 

   
    
    

 . For the example system considered here, 

                                          . 
 

V.   INTEGRATION OF SWING-UP WITH STABILIZATION USING RL 

To compare the performance of the RL algorithms with the 

LQR strategy, a novel approach has been proposed to integrate 

the swing-up strategy with RL algorithms. The reasons for this 

are as follows: (i) The existing research on application of RL 

to the cart-pole problem specifies that the pendulum must be 

reset to the unstable equilibrium position after each failure.  

However, this approach when applied to a physical system 

seems redundant and cumbersome. Instead, the pendulum is 

reset to the stable equilibrium position each time failure 

occurs, and then swung up to a pre-defined value of angular 

position from where the control is switched to the RL 

controller. (ii) Once the failure occurs, the pendulum reaches 

the stable equilibrium due to natural damping, from where 

swing-up is initialized. So, the whole process can be 

automated. (iii) When the pendulum is swung up to a window 

of pre-defined range of angular position values, the pendulum 

can end up in a different state each time. Hence, the scope for 

exploration increases. In this paper, the stabilization controller 

from the previous section is replaced with the RL agent, and 

the switching occurs at      angle. 

 

 

Fig. 3. Swing-up using energy method and stabilization using reinforcement 

learning.  

 

VI.   RESULTS 

The controller for the cart-pole system is assumed to have 

reached its objective when   and   remains within the bounds 

specified earlier for more than 100,000 steps, where each step 

is 0.02 seconds. 

A. Off-Policy TD Control Algorithm (Q-Learning) 

Q-Learning is a basic TD control algorithm. The results 

with a force of {+10, -10} and parameters α=0.5 and γ=0.99, 

are shown in Fig. 4. Evidently, Q-Learning achieves optimal 

policy. However, it does so after 420 trials. The cart almost 

hits one end of the track during the experiment and the 

pendulum angle also reaches the edge of its restriction limits. 

Specifically, the range of the angles covered by the pendulum 

measured from the upright position during the experiment is 

[11°,+10°], and the range of the cart  position is [-1.5m, 

+2.4m]. The performance can be improved with different 

choice of parameters; the results are summarised in Table I.  



  

  

Fig. 4. Q-Learning on cart-pole problem. Force = {+10, -10}, learning rate = 

0.5, discount factor = 0.99.  

B. Actor-critic policy gradient method 

The policy gradient actor-critic method involves the 

calculation of a value function by the critic network as well as 

the selection of the best action for the given state, and the state 

value function, through a probabilistic approach. The chosen 

parameters are as follows: The force is {+10, -10}N, α=1000, 

γ=0.95, λw=0.9, and λv=0.8. These parameters have been 

adjusted to achieve optimal policy. However, as seen from 

Fig. 5, this method performs rather poorly although the 

specifications on the cart and the pole are met.  

With a large learning rate,       , it would be expected 

that the agent would never learn the optimal policy. However, 

as can be observed from the results the optimal policy is 

achieved albeit with large oscillations in the steady-state 

implying a large expenditure of control energy. Further, the 

range of deviations in   is rather high and covers nearly all of 

the allowable state space. Even the cart position varies widely 

from -1.7m to 0.2m. This again implies a rather large control 

effort. Furthermore, the variations in these state variables are 

nearly periodic which is perhaps characteristic of actor-critic 

methods. 

C. Temporal Difference with Value Function Approximation 

The results with a linear value function approximation are 

shown in Fig. 6 with the parameters FORCE = {+10, -10}N, 

α=0.07, γ=0.992. Evidently, this approach provides rather 

satisfactory results. Observe that the RL agent achieves the 

optimal policy in merely 19 episodes, a remarkable 

improvement over the earlier approaches. Further, the 

amplitude of oscillations is quite minimal. The angle   lies 

between -0.4° and 0.3°, and the cart position in the range [-

0.062, +0.054]m.  The oscillations in the beginning of the 

episode are also minimal. Observe that when balanced, the 

cart has deviated from the centre.  

 

 

  

  
 

Fig. 5. Actor-critic method on cart-pole problem: Force = {+10, -10}, learning 
rate = 1000, discount factor = 0.95, Eligibiility trace for: actor = 0.9, critic = 

0.8. 

   

  

Fig. 6. Temporal Difference with Value Function Approximation on cart-pole 
problem Force = {+10, -10}, learning rate = 0.07, discount factor = 0.992. 

D. Classical Swing-up and LQR Stabilization  

The results of this experiment are shown in Fig. 7. The swing-

up controller ensures that the pole is moved from its stable 

position (     to the desired position. This is carried out in 

a manner such that the cart never hits the boundaries of the 

rails, and it requires several oscillations about the stable 

position. The parameter   in the design determines the cart 

length limitations. Once   reaches the specified cone, the LQR 

controller ensures the pole is stabilized at the desired position.  

E. Classical Swing-up and RL Stabilization  

The results of the integration of the classical swing-up with 

the RL algorithm are shown in Fig. 8. Evidently,  stabilization 

is independent of the swing-up, and the scope for exploration 



of the RL controller has been increased. Further, the system is 

now fully automated in that whenever the RL policy fails, the 

swing-up controller kicks in automatically.  

 

  

Fig. 7. Swing-up and stabilization of inverted pendulum using energy method 
and linear quadratic regulator 

  

Fig. 8. Swing-up and stabilization of inverted pendulum using energy method 

and Value Function Approximation Force = {+10, -10}, learning rate = 0.07, 
discount factor = 0.992 

TABLE I.  COMPARISON OF ALGORITHMS 

 
 

CONCLUSIONS 

The performances of several reinforcement learning 

algorithms are compared when applied to the cart-pole 

problem. In discrete state space, actor-critic policy gradient 

method has converged faster and performed better 

stabilization than Q-Learning. The range of angular positions 

of the pendulum and linear positions of the cart for the optimal 

policy decreases with the transition from discrete to 

continuous state space. Value function approximation, has 

shown the best performance among the three algorithms. 

Further, the integration of swing-up using the energy method 

has not affected the performance of the individual algorithms. 

In contrast, this integration has achieved automation.  
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