

Xu, X.-X., Hu, X.-M., Chen, W.-N., and Li, Y. (2016) Set-based particle swarm
optimization for mapping and scheduling tasks on heterogeneous embedded
systems. In: 2016 Eighth International Conference on Advanced Computational
Intelligence (ICACI), Chiang Mai, Thailand, 14-16 Feb 2016, pp. 318-325.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/118965/

Deposited on: 05 May 2016

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/118965/
http://eprints.gla.ac.uk/118965/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Set-based Particle Swarm Optimization for Mapping
and Scheduling Tasks on Heterogeneous Embedded

Systems
Xiao-Xiao Xu, Xiao-Min Hu*, and Wei-Neng Chen

Sun Yat-Sen University, Guangzhou, China
Key Lab. of Machine Intelligence and Advanced Computing

Ministry of Education, Guangzhou, China
Email: xiaominh6@mail.sysu.edu.cn

Yun Li
School of Engineering
University of Glasgow

Glasgow G12 8LT, U.K.

Abstract—Modern heterogeneous multiprocessor embedded

platforms is important for the high volume markets that have

strict performance. However, it presents many challenges that

need to be addressed in order to be efficiently utilized for

multitask applications. Since mapping and scheduling problems

for multi processors belong to the classic of NP-Complete

problems, common methods used to solve this kind of problem

usually fail. In this paper, we present an algorithm based on the

meta-heuristic optimization technique, set-based discrete particle

swarm optimization (S-PSO), which efficiently solves scheduling

and mapping problems on the target platform. This algorithm

can simultaneously addressed the mapping and scheduling

problems on a complex and heterogeneous MPSoC and it has

better performance than other algorithms in dealing with large

scale problems. This algorithm also reduces the execution time of

the application by exploring various solutions for mapping and

scheduling of tasks and communications. We compare our

approach with other heuristics, Ant Colony Optimization (ACO),

on the performance to reach the optimum value and on the

potential to explore the target platform. The results show that

our approach performs better than other heuristics.

Keywords—set-based discrete particle swarm optimization

(DPSO); mapping; scheduling; communications.

I. INTRODUCTION

The multiprocessor System-on-Chip (MPSoC) is a system-
on-a-chip (SoC) which is made of multiple processors, usually
designed for embedded applications [1]. All these components
are connected into a whole through the on-chip interconnect. In
order to address different kind of applications, the processors
are usually designed to be heterogeneous. We use different
processors to accelerate the different parts of the application to
optimize the performance of the multitask applications.

In order to optimize the program performance, e.g., the
program execution time, we need to find out a set of
appropriate assignments for the execution tasks and the data
transfers of the application to the components. However
mapping and scheduling problems for multi-processors are NP-
Complete [2]. General methods cannot deal with this kind of

problems efficiently, especially for the large-scale problems.

Many heuristic methods to deal this kind of problems have
been proposed, for example, the tabu search [3],[4], genetic
algorithms [5], the Kernighan-Lin method [6], and ant colony
optimization (ACO) [7],[8],[9]. Nevertheless, a majority of
these approaches above usually concentrate on one aspect of
the problem and when the design space is heavily constrained
the optimization solutions are always not satisfactory. When
they simultaneously deal with the mapping and scheduling
problems, it is very suitable when the size of the problem is
small. However, when they faced with large-scale problems
due to the complex of the calculation and the increase of
solutions these methods will lose its effectiveness. General
approaches that able to efficiently generate high-quality
solutions for complex application on the heterogeneous
embedded architectures are definitely required.

In this paper, we present an algorithm, based on set-based
discrete particle swarm optimization (S-PSO) [10], which has
been proved to have good performance in TSP and 0-1
knapsack problem. Additionally, this algorithm introduces the
heuristic information to accelerate the speed of convergence.
For the problem to be solved, we can choose effective heuristic
information to improve the performance of the algorithm. For
large scale problems due to the effective heuristic information
the improvement of the performance will be more noticeable
than general methods. Because the scheduling and mapping
problems on the target platform is a combinatorial optimization
problem so the S-PSO method is also suitable for dealing with
this problem. In this paper, we use the S-PSO solves
scheduling and mapping problems on the target platform, with
the aim of minimizing overall application execution time. The
major contributions of this paper can be summarized as follows.

• The S-PSO method has been invented for solving the
combinatorial optimization problem and has more
simple computation procedure than Ant Colony
Optimization. The S-PSO algorithm can reduce the
execution time of the application by exploring various
solutions for mapping and scheduling of tasks and
communications.

• We compare our algorithm with the ACO [9] which can
also simultaneously address the mapping and
scheduling problems on a complex and heterogeneous
MPSoC, and our algorithm has better performance than
ACO in dealing with large scale problems.

* Corresponding Author.
 This work was supported in part by the NSFC projects Nos. 61379061,

61332002, 61511130078, 61202130, in part by Natural Science Foundation of
Gungdong for Distinguished Young Scholars No. 2015A030306024, in part
by the “Guangdong Special Support Program” No. 2014TQ01X550, and in
part by the Guangzhou Pearl River New Star of Science and Technology No.
201506010002.

In Proc 8th IEEE International Conference on Advanced Computational
Intelligence Chiang Mai, Thailand; February 14-16, 2016

The rest of this paper is organized as follows. In section II,
we define and formalize the problem that we address in this
paper. Section III introduces some background work,
presenting the S-PSO heuristic. Section IV details the
formulation proposed in this paper, then we evaluate and
compare with previous heuristics dealing with the same
problem in Section V. Finally, section VI includes the
discussion and conclusion.

II. PRELIMINARIES

In this section, we provide a brief description of what we
address in this paper. First, we abstract the model of multitask
applications and the target architecture. Then we present the
abstraction and definition of the mapping and scheduling
problem on the target architecture.

A. Target Architecture

In this work, we consider a typical architectural model H
for a heterogeneous multiprocessor system-on-chip (MPSoC),
formal description is as follows:

H = PE∪CC (1)

where PE represents a set of processing elements and CC
represents a set of communication components. A simple
example of such an MPSoC is shown in Figure 1 and it is an
abstract description of the target architecture. It is composed of
three processing elements and a single system bus as the
communication components.

Fig. 1. The abstract model of the target architecture.

There are more details about the target architecture we
should take care.

• As a formal description of the multimode resource
constrained scheduling problem [11], there are a set of
associated resources on the component of the target
architecture (e.g., the local memory). These resources
can be divided into two parts: 1) renewable resources
RR, which can be re-used when the task assigned in
the resource has been completed; and 2) nonrenewable
resources NR, which the quantity of the resource will
be consumed by the task assigned in the resource.

• No more than one task can be executed on a processor
at the same time.

• When a data transfer happens, if the data dependent
tasks executed on the same processor the transfer time
will be zero, otherwise, the transfer time only depends
on the quantity of data and the bandwidth of the
system bus. We assume that the communication model
is the same for all the data transfers.

B. Application Model

A multitask application is composed of a set of N tasks and
each task to be executed on a single unit. We abstract the
application as a directed acyclic graph (DAG). A DAG is
formally defined as a graph G = (V, T) without feedback edges,
where V represents a set of operations (tasks), T represents the
data transfer (communications) and the data dependences
among the tasks.

There is a constraint on the application executed order. If
the graph G exists an edge tt(v’, v)∈T, this indicates that the
task v can be executed only after the task v’ and all the data
transfers point to v have been completed. Each edge tt(v’, v)∈T
is also annotated with a weight which means the amount of
data exchanged from the parent task v’ to the child task v. A
simple example of an application graph is shown as follow.

Fig. 2. An application graph. Edges are annotated with the amount of data to
be transferred between source and target tasks.

C. Problem Abstraction and Definition

The problem is defined as follows:

P = (H, G) composed of the target architecture H and
multitask application G which we defined above. Under the
given condition P, we try to find out the minimum over all
execution time of the application G on the target platform H.

A job j: A job j is defined as an event to be executed on a
component of the architecture. Thus, all the tasks and the
communications in the application G can be abstracted as a set
of jobs J.

The implementation points I: We abstract all the
components of the target platform H as a set of implementation
points I. An implementation point i is defined as a structure of
resources and time, formally like (r, t), we describe the job j
executed not in the real hardware but the implementation point
i we have been abstracted.

There are some facts as follows. First, some of these jobs
can execute on various processing unions with different
performances. Second, due to the different consumption of
resources, the task will take different time in the same
component.

According to the facts above, we can abstract two functions
as follows.

• The function δ: J→I, it’s the mapping from J to I, δ is
one-to-many mapping function, in order to find out the
minimum over all execution time of the application,

TABLE I. THE MAPPIGN RELATIONSHIP OF Δ AND Γ FOR THE EXAMPLE TASK GRAPH

job

pe0 pe1 pe2 pe3 Cc

i0 i1 i2 i3 i4 i5

t rr t rr t rr t nr t nr t Rr

A 3 6 7 4 3 8 6 3 2 9 null Null

B 5 6 2 2 7 9 2 3 1 12 null Null

C 6 8 2 9 2 10 10 9 12 2 null Null

D 9 12 4 8 19 5 7 13 7 9 null Null

E 3 6 7 4 3 8 6 3 2 9 null Null

F 8 2 7 12 1 12 2 9 11 7 null Null

G 12 3 12 7 1 9 11 12 9 10 null Null

(A,B) null null null null null null null null null null 2 8

(A,C) null null null null null null null null null null 4 8

(B,E) null null null null null null null null null null 5 8

(C,E) null null null null null null null null null null 7 8

(C,F) null null null null null null null null null null 3 8

(D,F) null null null null null null null null null null 1 8

(E,G) null null null null null null null null null null 2 8

(F,G) null null null null null null null null null null 2 8

the proposed algorithm should select an appropriate
implementation point i for each job j.

• The function γ: I→H, it’s the mapping from I to H.
Where H represents the components in the target
platform. γ is many-for-one mapping function, from
this function we can get the components h (h∈H)
connected with the implement point i.

Under the given condition G, in order to simplify the
optimization algorithm we assume the functions of δ and Ȗ are
already known. A mapping relationship of δ and Ȗ are show in
Table I. For a given job and implementation point we can get a
pair (r, t), if the number of resources over the number of the
implementation point contains or the job and the implement
point are not the same type, we think the job can’t be executed
in this implement point.

For each job in the application includes the following
properties: start time, end time and execution time, we use
StartTime(j), EndTime(j), and ExecutionTime(j) to represent
them. We can easily find out the fact:

EndTime(j) = StartTime(j) + ExecutionTime(j), (2)

when we chose an implementation point to execute the job j,
we can get a correct number of execution time from the table
like TABLE I.

The job’s start time is decided by its direct predecessors
and component of the implementation point. The job can be
executed only when its direct predecessors have been
completed and the component is free. The formal expression as
follows:

max[parent(j),free(Ȗ(δ(j)))]≤ StartTime(j), (3)

parent(j) returns the maximum end time of all the direct
predecessors of job j, aj is a component, we can get it from the
implementation point of job j, free(Ȗ(δ(j)) return the end time
when the component Ȗ(δ(j)) is available. We assume that all the
components’ end time is initialized to zero.

In this paper, our aim is to optimize the overall execution
time of the multitask application; the make-span can be defined
as:

CostFuncton = max(EndTime(j)), ∀j∈J (4)

The CostFunction depends on the maximum of all the jobs’
end time, in order to get the minimum CostFunction, we need
to efficiently map and schedule all the tasks and the
communications of the application.

III. RELATED WORK

Many previous works have been addressed on mapping and
scheduling tasks and communications on heterogeneous
embedded systems. The methods can be classified as online
and off-line algorithms.

Niemann and Marwedel [12] proposed an integer linear
programming (ILP) to find the optimal solution for the
mapping and scheduling problem, however, the ILP only
consider the multiple implementations on executed union (e.g.
the processor) but the different kind of communication models
are not supported. In this paper, our algorithm can solve more
complex and general problems. The resources (i.e., the local

memory) are divided into renewable and nonrenewable and we
also consider multiple implementations for each task on
different components. Moreover, several methods often
separate solving the mapping and scheduling problems, like
simulated annealing (SA), Tabu search (TS) [13] and genetic
algorithms(GAs) [14], in our method we abstract the
calculating operations and data transfer operations as tasks, so
we can optimal the mapping and scheduling problem as whole
and it will get more optimization results. Some works also
consider the communications independently from the
components [15], our method make the communication as a
general components, this make mapping and scheduling more
efficient. However, when expand the scale of the tasks, the
execution time of the algorithm is not acceptable and the
optimized result is not satisfactory, like ant colony
optimization (ACO) [9]. Our approach is more effective in
dealing with large scale problems.

In conclusion, we define a method that is able to efficiently
explore and exploit all the dimensions of the problems to
obtain efficient implementations for the applications on a large
class of target platforms with complex constraints.

A. S-PSO

Piratical Swarm Optimization is a heuristic search
methodology proposed by Kennedy and Eberhart in 1995 [16].
Later, various improved PSO variants have been developed,
making PSO one of the most popular optimization techniques
in recent years. PSO is simple and efficient, but its original
form is mainly used to solve continuous space problems. Since
mapping and scheduling tasks is a discrete problem, traditional
PSO is not suitable to solve this kind of problem. However,
there are many discrete PSO methods have been proposed,
such as binary Discrete PSO by Kennedy and Eberhart [18],
Discrete multi-phase PSO by B.Al-Kazemi and C. K. Mohan
[19], angle modulation PSO to solve binary problems by G.
Pampara and N. Franken [20] and discrete PSO with genetic
manipulation for the workflow scheduling problem by Pan [21],
they are the advancement of using PSO to solve the problems
in a discrete space. In this paper we use a set-based PSO (S-
PSO) proposed by Chen et al. [10] to solve the optimization
problem.

In the standard PSO, PSO is initialized with a population of
particles with random positions and velocities in the search
space of the problem. It can be described as follows. Consider
a population of particles. The position of a particle is denoted
by xk = (xkd : d = 1,…, D)T which is a D-dimensional vector in
the search space of the problem. The index k (k = 1,…,S) labels
the kth particle in the swarm. The velocity of a particle is
denoted by vk = (vkd : d = 1,…,D)T, PSO explores the search
space by modifying the velocity of each particle.

Each particle's location is a potential solution of the
problem. In order to optimize the solution, the particles are
exploring and exploiting the search space obeying the rules to
update their positions and velocities as follows: ݆݇ݒ = ߱ ∗ ݆݇ݒ + ܿͳ ∗ ͳ݆ݎ ∗ ൫݆݇ݐݏܾ݁݌ − ൯݆݇ݔ + ܿʹ ∗ ݆ʹݎ ∗ ሺܾ݆݃݁ݐݏ − ሻ݆݇ݔ

௞௝ݔ (5) = 	 ௞௝ݔ + 	 ௞௝ݒ (6)

where j
kpbest is the best position of particle k in its history and

gbestj is the best position state for all particles. c1 and c2 are
positive real numbers to control the movement towards the
individual and global best position. ω is the inertia weight to
balance the ability of global search and local search. In
addition, []1,0∈1

j
r and []1,0∈2

j
r are random numbers, used

ensure the diversity of the population.

In S-PSO [10], the particles search the discrete space
obeying the same rules to update their positions and velocities
as the standard PSO, however when we find the solution we
must obey the rules under the discrete space. So we redefined
the operators. All the arithmetic operators in rule (5) and (6)
are redefined as follows:

• position X: A position X is a solution to the problem.
We define the kth particle as Xk (Xk⊆E), in the jth

dimension of Xk we denote as),...,2,1(DjEX jj
k =⊆ ,

where E can be divided into D dimensions,
DEEEE  ...21= .

• velocity V: In S-PSO the velocity is defined as a set
with possibilities. A set with possibilities V is given by

V = {e / p(e) | e∈E}， (7)

p(e) is the possibilities, based on the definition, in the
jth dimension, }|)(/{ jj

k EeepeV ∈= .

• constant × velocity: the term constant is a parameter, in
the S-PSO, the multiplication operator between a
constant c(c≥ 0) and a set with possibilities V = {e/p(e)
| e∈E} is defined as follows:

{
otherwiseepc

epcif
ep

EeepecV

),(
0)(,1

)('

},|)('/{

×

>×
=

∈=

(8)

• position – position: The minus operator between two
sets A and B is given by

A–B = {e | e∈A and e∉B} (9)

• Constant × (position - position): The multiplication
operator between a constant c and a set E’∈E is
defined as follows:

cE’ = {e / p’(e) | e ∈E’}, (10)

ᇱሺ݁ሻ݌ ቐͳ,					 	݂݅	݁ܧᇱܽ݊݀	ܿ > ͳ							ܿ,						 			݂݅	݁ܧᇱܽ݊݀	Ͳܿͳ			Ͳ,						 				݂݅	݁		ܧᇱ									
• velocity + velocity: given two set with possibilities

V1= {e / p1(e) | e∈E} and V2 = {e / p2(e) | e∈E}, the
plus operator between two sets with possibilities is
defined as follows:

Fig. 3. Pseudo code for the position updating procedure.

V1+V2 = {e/ max(p1(e), p2(e)) | e∈E} (11)

According to the above definitions, we can update the
velocity of the discrete PSO obey the rule (5).

After updating the velocity, particle i follows the rule (6) to
update its current position Xi. However, the problems in
discrete space are different from the continuous space, there are
various constrains when we optimize the problem. In this case
the positions’ updating must satisfy the constraints Ω we
considered above. So we defined a new set named
CandidateSet, we put all the elements satisfied constrains in it.

Every step we update the particles’ position, we can only chose
the element in the candidate set. To ensure the feasibility of the
newly generated position NEW_Xi in S-PSO, we redefined the
plus operator between a set with possibility and a crisp set. The
procedure of the plus operator is given in Fig. 3.

IV. PROPOSED APPROACH

The general idea of our approach is to use the set-based
PSO to find out a feasible workflow scheduling list. There are
three key steps when we using the D-PSO to solve the mapping
and scheduling problem. The first is how to encode the
problem, that is, how to represented the solution. The second is
the definition of the fitness function, according to the fitness
function we can compare the optimal results can determine
how to optimal the result in the next iteration. The last one is
how to present the heuristic information, according the fitness
function we should find out the heuristic information, the
heuristic information are directly associate with the optimal
results and the optimal time.

For the mapping and scheduling problem, we regard the
particle’s position X to represent the feasible solutions. The
number of particle’s dimension equal to the number of jobs in
the application G, each dimension is composed by a key-value
pair like <j, i>, it means job j executed in the implementation
point i. In every generation, each practical will construct a new
feasible solution. As an example, the particle depicted in Fig.4
represents a feasible solution under the condition P.

Fig. 4. Example of the particle’s position. Each dimension is composed by a
job and an implementation point.

Fig. 5. The serial generation scheme schedule method to get the execution
times.

For the problem we proposed, we need define a fitness
function which is used to evaluate the potential solutions, in
this case we try to find out the minima cost time for the
application, so we define the fitness function to be the
execution time of the problem. When we get a position X, we
use the serial schedule generation scheme (SSGS) method to
get the execution time. The SSGS construct the complete
solution in n stages, where at each stage one feasible element is
selected from the scheduling list. A simple schedule plan is
shown Fig. 5.

According to the rule we defined above. When we update the
position, we should define the heuristic information to help us
make a good decision. In this question we define the job’s
execution time in the implementation point i as the heuristic
information, we use the roulette wheel to chose an element

Position updating (Xi, Vi)

Step 1) Generate a cut set

Generate a random number)1,0(∈α .
For each dimension j

})()(/|{)(αα ≥∈= epandVepeeVcut
j

k
j

k
End for

Step 2) update the position

φ=kXNEW_
For each dimension j

})(|{ Ω∈= satisfieseandVcuteeetCandidateS
j

k
j

k α

While the construction of j
k

XNEW_ is not finished and

φ≠
j

k
etCandidateS

Select an element from j
k

etCandidateS and add it to
j
k

XNEW_ ;

Update j
k

etCandidateS ;
End while
 If the construction of j

k
XNEW_ is not finished

},|{ Ω∈= satisfieseandXeeetCandidateS
j

k
j

k
;

While the construction of j
k

XNEW_ is not finished and

φ≠
j

k
etCandidateS

 Select an element from j
k

etCandidateS and add it

to j
k

XNEW_ ;

 Update j
k

etCandidateS ;
 End while

 End if
 If the construction of j

k
XNEW_ is not finished

 },|{ Ω∈= satisfieseandEeeetCandidateS jj
k

;

 Select an element from j
k

etCandidateS and add it to
j
k

XNEW_

 End if
End for

 ii XNEWX _=
End procedure

from the candidate set, the less time needed the more
probability it has.

Fig. 6. The speed of convergence in small problem.

We formula the heuristic information as follows:

spt(<j, i>) = 1 / tji , <j, i>∈CandicateSetj (12)

The structure of the S-PSO is similar to the standard PSO,
but when we update the velocity and the position, we use the
function we defined above. The update of the pbestk and the
gbest are similar to the standard PSO, when each particle’s
position has been update, we use the new position to get the
pbestk and the gbest, and the pseudo-code of the proposed
methodology is shown Fig. 7.

Procedure S-PSO

Initialization;
While terminal condition not meet

For each particle i (i=1,2,…,M)
 Velocity updating; (5)
Position updating; (6)

End for
For each particle k (k=1,2,…,M)

Update the pbestk and gbest.
End while

End procedure

Fig. 7. The pseudo-code for the proposed methodology.

V. EXPERIMENTAL EVALUATION
In this section we implemented the proposed approach to

deal with the mapping and scheduling problem and evaluated

our methodology by optimizing several synthetic test cases on
the abstract target architecture H and then we compare our
approaches with other heuristics.

A. Experimental setup

First, we should initialize the number of the associated
resources in the target architecture H. The number of resources
is shown in Table II, when we deal with the problem, the
mapping and scheduling solution should remain the resource
constrains. Second, we use the task graph in [22] as the test
DGA, we randomly generated the number of the time and
resources consumed for each job j in the implementation point
i.

To analyze the methodology in this paper, we compare our
approaches with the ant colony optimization (ACO). We set
the experimental condition as follows:

• ACO: The ACO [9] is a heuristic approach that has
been applied to these problems with good result, in this
experiment, we set α = ȕ = 1, where α is the weight for
local heuristics and ȕ is the weight for global
heuristics. The evaporation rate has been set to ρ =
0.015

• S-PSO: this is the methodology we proposed in this
paper and described above. We set the acceleration
factor c1 = c2 = 2and the inertia weight ω = 0.3.

In this experiment we defined the number of particles and
ants are 50. We compare the optimized results under the same
iteration numbers, in this experiment we set all the iteration
number are 1000 times.

TABLE II. THE NUMBER OF RESUOURCES IN THE PLATFORM

Component pe0 pe1 pe2 pe3 cc

Recourse

number
30 30 30 60 8

pei (i = 0, 1, 2, 3) is the number of local memory and cc is the number of
bandwidth.

B. Result

In the first experiment, we randomly generated several
small benchmarks and real-life benchmarks to demonstrate our
method’s effectiveness, namely S1-S7 in Table III. In this
experiment there are some applications have the same tasks
and edges but they are not the same, because the applications
have the different type of DGA. According to the experiment
result, we compared the methods on the number of the
optimum value and the speed of convergence. Because the
value of the optimal results are directly related with the mount
of the jobs and the execution time of each job, in order to
compare the algorithm performance more objective, we also
compute the ratio of the performance improved, we compute
the performance as (Avg.(ACO)–Avg.(PSO)) / Avg.(ACO),
Avg. is the average time of the experiments, Std. is the
standard deviation of the experiments, the Diff. presents the
percentage of optimization. In order to observe the
optimal results directly, we also display the optimized
procedure in the line chart, for the experiment we did in the
small test set we can get the plot Fig. 6, from Fig. 6 we can
compared the search methods on the number of evaluations.

TABLE III. THE SMALL-SCALE TEST SET

App.
#Tasks/

#Edges

ACO PSO

Diff.

Avg. Std. Avg. Std.

S1 7/8 75.25 2.17 76.25 3.90 1.33%

S2 15/20 150.50 8.90 107.75 3.11 28.41%

S3 31/40 371.00 17.56 286.50 6.58 22.78%

S4 48/32 432.50 15.20 382.00 11.41 11.68%

S5 48/32 427.00 8.87 383.00 14.34 10.30%

S6 48/32 443.50 17.54 426.00 6.38 3.95%

S7 48/32 416.00 22.41 410.50 11.68 1.32%

As the scale of the problems becomes larger, many
algorithms fail to optimize the problem. In the second
experiment, we compared our algorithm on the larger
benchmarks described in Table IV, namely S8-S19. For the
same size jobs, we also compared the optimized results for
different type of DGA. For the large scale test set we

composed the optimization results in Table IV and the
speed of convergence in Fig. 8.

TABLE IV. THE LARGE-SCALE TEST SET

App.
#Tasks/

#Edges

ACO PSO
Diff.

Avg Std. Avg Std.

S8 93/62 1001.50 18.89 818.50 12.29 18.27%
S9 93/62 994.00 16.36 910.50 12.79 8.40%
S10 93/62 993.50 13.40 803.50 30.19 19.12%
S11 93/62 1016.00 21.52 947.50 11.30 6.74%
S12 138/92 1390.50 45.61 1323.50 12.21 4.82%
S13 138/92 1466.00 35.19 1254.00 58.00 14.46%
S14 138/92 1435.50 23.98 1257.50 16.15 12.40%
S15 138/92 1435.50 31.88 1321.00 6.00 7.98%
S16 183/122 1934.00 21.99 1894.00 17.00 2.07%
S17 183/122 1990.50 19.55 1674.00 11.00 15.90%
S18 183/122 1957.00 26.39 1752.00 54.00 10.48%
S19 183/122 1941.50 40.11 1827.00 48.00 5.90%

Fig. 8. The speed of convergence in large scale of problems .

VI. CONCLUSION

In this paper, we proposed a set-based PSO algorithm for
optimizing the mapping and scheduling problem on the
heterogeneous multiprocessor architectures. We use the
execution time for each job in the candidate set as the
heuristic information, so we can construct a new solution
effectively under the constraints of the target. In the section V,
we compare our method with the ACO which has been tested
can solve the problem efficiently. We compare the two
methods on the set of instances in the benchmark library
PSPIB. The result in Table III and Table IV show that our
method is more effective than ACO. For the same number of
evaluations, we get the results 10.86% better on average. For
the same problem our method can get the better optimum
value. Moreover, from Fig.6 and Fig.8 show that our approach
was able to reach the optimal solutions much faster than ACO.
The results proved that our algorithm has higher efficiency to
optimize both in the small and lager scale of problems.

REFERENCES

[1] W. Wolf, “The future of multiprocessor systems-on-chips,” in Proc. 41st
Assoc. Comput. Machinery/IEEE Design Automat. Conf. (DAC), 2004,
pp. 681–685.

[2] J. Kim, S. Lee, H. Shin, Y. Lee, and Hwangsik Bae, “Effective task
mapping and scheduling techniques for heterogeneous multi-core
systems based on zone refinement,” Computer Sciences and
Convergence Information Technology (ICCIT), 6th International
Conference. 2011, pp. 363 – 366.

[3] T. Wiangtong, P.Y.K. Cheung, and W.Luk, “Comparing three heuristic
searchmethods for functional partitioning in hardware–software code-
sign.” Design Automation for Embedded Systems, 6(4):425–449, 2002.

[4] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level
hardware/software partitioning based on simulated annealing and tabu
search.” Design Automation for Embedded Systems, 2:5–32, 1997.

[5] M. Grajcar, “Genetic list scheduling algorithm for scheduling and
allocation on a loosely coupled heterogeneous multiprocessor system."
In DAC’99: the 36th ACM/IEEE conference on Design Automation,
pages 280–285, 1999

[6] F. Vahid and T. D. Le, “Extending the Kernighan/Lin Heuristic for
Hardware and Software Functional Partitioning.” Design Automation for
Embedded Systems,2(2):237–261, March 1997.

[7] G. Wang, W. Gong, B. DeRenzi, and R. Kastner, “Ant colony
optimizations for resource and timing constrained operation scheduling.”
IEEE Transactions on Computer-Aided Design of Integrated Circuitsand
Systems, 26(6):1010–1029, June 2007.

[8] P.-C. Chang, I.-W. Wu, J.-J. Shann, and C.-P. Chung, “ETAHM: An
energy aware task allocation algorithm for heterogeneous

multiprocessor.” In Proceedings of DAC ’08, pages 776 –779, june
2008.

[9] F. Ferrandi, P.L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Antcolony
heuristic for mapping and scheduling tasks and communicationson
heterogeneous embedded systems.” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 29(6):911–924, June 2010.

[10] W.-N. Chen, J. Zhang, Chung, H.S.H., W.-L. Zhong, W.-G. Wu, and Y.
Shi, “A Novel Set-Based Particle Swarm Optimization Method for
Discrete Optimization Problems,” IEEE Trans. Evol. Comput. Vol. 14,
no. 2, pp. 278-300, April 2010.

[11] P. Brucker, A. Drexl, R. Mohring, K. Neumann, and E. Pesch,“Resource
constrained project scheduling: Notation, classification, models, and
methods,” Eur. J. Operat. Res., vol.112, no.1, pp. 3–41, Jan.1999

[12] R. Niemann and P. Marwedel, “An algorithm for hardware/software
partitioning using mixed integer linear programming, ” Design Automat.
Embedded Syst., vol. 2, no. 2, pp. 125–163, Mar.1997.

[13] S. J. Beaty, “Genetic algorithms versus tabu search for instruction
scheduling,” in Proc. Int. Conf. Neural Netw. Genetic Algorithms, Feb.
1993, pp. 496–501.

[14] M. Grajcar, “Genetic list scheduling algorithm for scheduling and
allocation on a loosely coupled heterogeneous multiprocessor system,”
in Proc. 36th Assoc. Comput. Machinery/IEEE Conf. Design Automat.
(DAC), 1999, pp. 280–285.

[15] S. Kim, C. Im, and S. Ha, “Efficient exploration of on-chip bus
architectures and memory allocation,” in Proc.2nd IEEE/Assoc. Comput.
Machinery/IFIP Int. Conf. Hardware/Software Codesign Syst. Synthesis
(CODES+ISSS), 2004, pp. 248–253

[16] J. Kennedy and R. C. Eberhart,“Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[17] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Proc. IEEE Int. Conf. Syst. Man Cybern., 1997,
pp. 4104–4109.

[18] W.-N. Chen, et al. “Particle Swarm Optimization with an Aging Leader
and Challengers”, IEEE Transactions on Evolutionary Computation, vol.
17, no. 2, pp. 241-258, 2013.

[19] B. Al-Kazemi and C. K. Mohan, “Discrete multi-phase particle swarm
optimization,” in Information Processing with Evolutionary Algorithms.
Berlin, Germany: Springer, 2006, pp. 306–326

[20] G. Pampara, N. Franken, and A.P.Engelbrecht, “Combining particle
swarm optimization with angle modulation to solve binary problems,”in
Proc. 2005 IEEE Congr. Evol. Comput., vol. 1. pp. 89–96.

[21] Q. K. Pan, M. F. Tasgetiren, and Y. C. Liang, “A Discrete Particle
Swarm Optimization Algorithm for the Permutation Flow shop
Sequencing Problem with Makespan Criteria,” In the Twenty-sixth
SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence, Cambridge, UK, 2006, pp. 19-31.

[22] R. Kolisch, C. Schwindt, and A. Sprecher, “Benchmark instance for
project scheduling problem,” in Handbook on Recent Advance in
Project scheduling, J. Weglarz, Ed. Amsterdam, The Netherlands:
Kluwer, 1999, pp.147-178.

