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Abstract—Modern heterogeneous multiprocessor embedded 

platforms is important for the high volume markets that have 

strict performance. However, it presents many challenges that 

need to be addressed in order to be efficiently utilized for 

multitask applications. Since mapping and scheduling problems 

for multi processors belong to the classic of NP-Complete 

problems, common methods used to solve this kind of problem 

usually fail. In this paper, we present an algorithm based on the 

meta-heuristic optimization technique, set-based discrete particle 

swarm optimization (S-PSO), which efficiently solves scheduling 

and mapping problems on the target platform. This algorithm 

can simultaneously addressed the mapping and scheduling 

problems on a complex and heterogeneous MPSoC and it has 

better performance than other algorithms in dealing with large 

scale problems. This algorithm also reduces the execution time of 

the application by exploring various solutions for mapping and 

scheduling of tasks and communications. We compare our 

approach with other heuristics, Ant Colony Optimization (ACO), 

on the performance to reach the optimum value and on the 

potential to explore the target platform. The results show that 

our approach performs better than other heuristics. 

Keywords—set-based discrete particle swarm optimization 

(DPSO); mapping; scheduling; communications. 

I. INTRODUCTION

The multiprocessor System-on-Chip (MPSoC) is a system-
on-a-chip (SoC) which is made of multiple processors, usually 
designed for embedded applications [1]. All these components 
are connected into a whole through the on-chip interconnect. In 
order to address different kind of applications, the processors 
are usually designed to be heterogeneous. We use different 
processors to accelerate the different parts of the application to 
optimize the performance of the multitask applications. 

In order to optimize the program performance, e.g., the 
program execution time, we need to find out a set of 
appropriate assignments for the execution tasks and the data 
transfers of the application to the components. However 
mapping and scheduling problems for multi-processors are NP-
Complete [2]. General methods cannot deal with this kind of 

problems efficiently, especially for the large-scale problems. 

Many heuristic methods to deal this kind of problems have 
been proposed, for example, the tabu search [3],[4], genetic 
algorithms [5], the Kernighan-Lin method [6], and ant colony 
optimization (ACO) [7],[8],[9]. Nevertheless, a majority of 
these approaches above usually concentrate on one aspect of 
the problem and when the design space is heavily constrained 
the optimization solutions are always not satisfactory. When 
they simultaneously deal with the mapping and scheduling 
problems, it is very suitable when the size of the problem is 
small. However, when they faced with large-scale problems 
due to the complex of the calculation and the increase of 
solutions these methods will lose its effectiveness. General 
approaches that able to efficiently generate high-quality 
solutions for complex application on the heterogeneous 
embedded architectures are definitely required. 

In this paper, we present an algorithm, based on set-based 
discrete particle swarm optimization (S-PSO) [10], which has 
been proved to have good performance in TSP and 0-1 
knapsack problem. Additionally, this algorithm introduces the 
heuristic information to accelerate the speed of convergence.  
For the problem to be solved, we can choose effective heuristic 
information to improve the performance of the algorithm. For 
large scale problems due to the effective heuristic information 
the improvement of the performance will be more noticeable 
than general methods. Because the scheduling and mapping 
problems on the target platform is a combinatorial optimization 
problem so the S-PSO method is also suitable for dealing with 
this problem. In this paper, we use the S-PSO solves 
scheduling and mapping problems on the target platform, with 
the aim of minimizing overall application execution time. The 
major contributions of this paper can be summarized as follows. 

• The S-PSO method has been invented for solving the
combinatorial optimization problem and has more
simple computation procedure than Ant Colony
Optimization. The S-PSO algorithm can reduce the
execution time of the application by exploring various
solutions for mapping and scheduling of tasks and
communications.

• We compare our algorithm with the ACO [9] which can
also simultaneously address the mapping and
scheduling problems on a complex and heterogeneous
MPSoC, and our algorithm has better performance than
ACO in dealing with large scale problems.
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The rest of this paper is organized as follows. In section II, 
we define and formalize the problem that we address in this 
paper. Section III introduces some background work, 
presenting the S-PSO heuristic. Section IV details the 
formulation proposed in this paper, then we evaluate and 
compare with previous heuristics dealing with the same 
problem in Section V. Finally, section VI includes the 
discussion and conclusion. 

II. PRELIMINARIES

In this section, we provide a brief description of what we 
address in this paper. First, we abstract the model of multitask 
applications and the target architecture. Then we present the 
abstraction and definition of the mapping and scheduling 
problem on the target architecture. 

A. Target Architecture 

In this work, we consider a typical architectural model H
for a heterogeneous multiprocessor system-on-chip (MPSoC), 
formal description is as follows: 

H = PE∪CC (1)

where PE represents a set of processing elements and CC 
represents a set of communication components. A simple 
example of such an MPSoC is shown in Figure 1 and it is an 
abstract description of the target architecture. It is composed of 
three processing elements and a single system bus as the 
communication components. 

Fig. 1. The abstract model of the target architecture. 

There are more details about the target architecture we 
should take care. 

• As a formal description of the multimode resource
constrained scheduling problem [11], there are a set of
associated resources on the component of the target
architecture (e.g., the local memory). These resources
can be divided into two parts: 1) renewable resources
RR, which can be re-used when the task assigned in
the resource has been completed; and 2) nonrenewable
resources NR, which the quantity of the resource will
be consumed by the task assigned in the resource.

• No more than one task can be executed on a processor
at the same time.

• When a data transfer happens, if the data dependent
tasks executed on the same processor the transfer time
will be zero, otherwise, the transfer time only depends
on the quantity of data and the bandwidth of the
system bus. We assume that the communication model
is the same for all the data transfers.

B. Application Model 

A multitask application is composed of a set of N tasks and 
each task to be executed on a single unit. We abstract the 
application as a directed acyclic graph (DAG). A DAG is 
formally defined as a graph G = (V, T) without feedback edges, 
where V represents a set of operations (tasks), T represents the 
data transfer (communications) and the data dependences 
among the tasks. 

There is a constraint on the application executed order. If 
the graph G exists an edge tt(v’, v)∈T, this indicates that the 
task v can be executed only after the task v’ and all the data 
transfers point to v have been completed. Each edge tt(v’, v)∈T 
is also annotated with a weight which means the amount of 
data exchanged from the parent task v’ to the child task v. A 
simple example of an application graph is shown as follow.  

Fig. 2. An application graph. Edges are annotated with the amount of data to 
be transferred between source and target tasks. 

C. Problem Abstraction and Definition 

The problem is defined as follows: 

P = (H, G) composed of the target architecture H and 
multitask application G which we defined above. Under the 
given condition P, we try to find out the minimum over all 
execution time of the application G on the target platform H. 

A job j: A job j is defined as an event to be executed on a 
component of the architecture. Thus, all the tasks and the 
communications in the application G can be abstracted as a set 
of jobs J. 

The implementation points I: We abstract all the 
components of the target platform H as a set of implementation 
points I. An implementation point i is defined as a structure of 
resources and time, formally like (r, t), we describe the job j 
executed not in the real hardware but the implementation point 
i we have been abstracted. 

There are some facts as follows. First, some of these jobs 
can execute on various processing unions with different 
performances. Second, due to the different consumption of 
resources, the task will take different time in the same 
component. 

According to the facts above, we can abstract two functions 
as follows. 

• The function δ: J→I, it’s the mapping from J to I, δ is
one-to-many mapping function, in order to find out the
minimum over all execution time of the application,



TABLE I.   THE MAPPIGN RELATIONSHIP OF Δ AND Γ FOR THE EXAMPLE TASK GRAPH

job

pe0 pe1 pe2 pe3 Cc

i0 i1 i2 i3 i4 i5 

t rr t rr t rr t nr t nr t Rr

A 3 6 7 4 3 8 6 3 2 9 null Null 

B 5 6 2 2 7 9 2 3 1 12 null Null 

C 6 8 2 9 2 10 10 9 12 2 null Null 

D 9 12 4 8 19 5 7 13 7 9 null Null 

E 3 6 7 4 3 8 6 3 2 9 null Null 

F 8 2 7 12 1 12 2 9 11 7 null Null 

G 12 3 12 7 1 9 11 12 9 10 null Null 

(A,B) null null null null null null null null null null 2 8 

(A,C) null null null null null null null null null null 4 8 

(B,E) null null null null null null null null null null 5 8 

(C,E) null null null null null null null null null null 7 8 

(C,F) null null null null null null null null null null 3 8 

(D,F) null null null null null null null null null null 1 8 

(E,G) null null null null null null null null null null 2 8 

(F,G) null null null null null null null null null null 2 8 

the proposed algorithm should select an appropriate 
implementation point i for each job j. 

• The function γ: I→H, it’s the mapping from I to H.
Where H represents the components in the target
platform. γ is many-for-one mapping function, from
this function we can get the components h (h∈H)
connected with the implement point i.

Under the given condition G, in order to simplify the 
optimization algorithm we assume the functions of δ and Ȗ are 
already known. A mapping relationship of δ and Ȗ are show in 
Table I. For a given job and implementation point we can get a 
pair (r, t), if the number of resources over the number of the 
implementation point contains or the job and the implement 
point are not the same type, we think the job can’t be executed 
in this implement point. 

For each job in the application includes the following 
properties: start time, end time and execution time, we use 
StartTime(j), EndTime(j), and ExecutionTime(j) to represent 
them. We can easily find out the fact: 

EndTime(j) = StartTime(j) + ExecutionTime(j), (2) 

when we chose an implementation point to execute the job j, 
we can get a correct number of execution time from the table 
like TABLE I. 

The job’s start time is decided by its direct predecessors 
and component of the implementation point. The job can be 
executed only when its direct predecessors have been 
completed and the component is free. The formal expression as 
follows: 

max[parent(j),free(Ȗ(δ(j)))]≤ StartTime(j), (3)

parent(j) returns the maximum end time of all the direct 
predecessors of job j, aj is a component, we can get it from the 
implementation point of job j, free(Ȗ(δ(j)) return the end time 
when the component Ȗ(δ(j)) is available. We assume that all the 
components’ end time is initialized to zero. 

In this paper, our aim is to optimize the overall execution 
time of the multitask application; the make-span can be defined 
as: 

CostFuncton = max(EndTime(j)),     ∀j∈J (4)

The CostFunction depends on the maximum of all the jobs’ 
end time, in order to get the minimum CostFunction, we need 
to efficiently map and schedule all the tasks and the 
communications of the application. 

III. RELATED WORK

Many previous works have been addressed on mapping and 
scheduling tasks and communications on heterogeneous 
embedded systems. The methods can be classified as online 
and off-line algorithms.  

Niemann and Marwedel [12] proposed an integer linear 
programming (ILP) to find the optimal solution for the 
mapping and scheduling problem, however, the ILP only 
consider the multiple implementations on executed union (e.g. 
the processor ) but the different kind of communication models 
are not supported. In this paper, our algorithm can solve more 
complex and general problems. The resources (i.e., the local 



memory) are divided into renewable and nonrenewable and we 
also consider multiple implementations for each task on 
different components. Moreover, several methods often 
separate solving the mapping and scheduling problems, like 
simulated annealing (SA), Tabu search (TS) [13] and genetic 
algorithms(GAs) [14], in our method we abstract the 
calculating operations and data transfer operations as tasks, so 
we can optimal the mapping and scheduling problem as whole 
and it will get more optimization results. Some works also 
consider the communications independently from the 
components [15], our method make the communication as a 
general components, this make mapping and scheduling more 
efficient. However, when expand the scale of the tasks, the 
execution time of the algorithm is not acceptable and the 
optimized result is not satisfactory, like ant colony 
optimization (ACO) [9]. Our approach is more effective in 
dealing with large scale problems.  

In conclusion, we define a method that is able to efficiently 
explore and exploit all the dimensions of the problems to 
obtain efficient implementations for the applications on a large 
class of target platforms with complex constraints. 

A. S-PSO 

Piratical Swarm Optimization is a heuristic search 
methodology proposed by Kennedy and Eberhart in 1995 [16]. 
Later, various improved PSO variants have been developed, 
making PSO one of the most popular optimization techniques 
in recent years. PSO is simple and efficient, but its original 
form is mainly used to solve continuous space problems. Since 
mapping and scheduling tasks is a discrete problem, traditional 
PSO is not suitable to solve this kind of problem. However, 
there are many discrete PSO methods have been proposed, 
such as binary Discrete PSO by Kennedy and Eberhart [18], 
Discrete multi-phase PSO by B.Al-Kazemi and C. K. Mohan 
[19], angle modulation PSO to solve binary problems by G. 
Pampara and N. Franken [20] and discrete PSO with genetic 
manipulation for the workflow scheduling problem by Pan [21], 
they are the advancement of using PSO to solve the problems 
in a discrete space. In this paper we use a set-based PSO (S-
PSO) proposed by Chen et al. [10] to solve the optimization 
problem. 

In the standard PSO, PSO is initialized with a population of 
particles with random positions and velocities in the search 
space of the problem. It can be described as follows. Consider 
a population of particles. The position of a particle is denoted 
by xk = (xkd : d = 1,…, D)T which is a D-dimensional vector in 
the search space of the problem. The index k (k = 1,…,S) labels 
the kth particle in the swarm. The velocity of a particle is 
denoted by vk = (vkd : d = 1,…,D)T, PSO explores the search 
space by modifying the velocity of each particle. 

Each particle's location is a potential solution of the 
problem. In order to optimize the solution, the particles are 
exploring and exploiting the search space obeying the rules to 
update their positions and velocities as follows: ݆݇ݒ = ߱ ∗ ݆݇ݒ + ܿͳ ∗ ͳ݆ݎ ∗ ൫݆݇ݐݏܾ݁݌ − ൯݆݇ݔ + ܿʹ ∗ ݆ʹݎ ∗ ሺܾ݆݃݁ݐݏ − ሻ݆݇ݔ

௞௝ݔ (5) = 	 ௞௝ݔ + 	 ௞௝ݒ (6)    

where j
kpbest  is the best position of particle k in its history and 

gbestj  is the best position state for all particles. c1 and c2 are 
positive real numbers to control the movement towards the 
individual and global best position. ω is the inertia weight to 
balance the ability of global search and local search. In 
addition, [ ]1,0∈1

j
r  and [ ]1,0∈2

j
r  are random numbers, used 

ensure the diversity of the population. 

In S-PSO [10], the particles search the discrete space 
obeying the same rules to update their positions and velocities 
as the standard PSO, however when we find the solution we 
must obey the rules under the discrete space. So we redefined 
the operators. All the arithmetic operators in rule (5) and (6) 
are redefined as follows: 

• position X: A position X is a solution to the problem.
We define the kth particle as Xk (Xk⊆E), in the jth

dimension of Xk we denote as ),...,2,1( DjEX jj
k =⊆ ,

where E can be divided into D dimensions,
DEEEE  ...21= .

• velocity V: In S-PSO the velocity is defined as a set
with possibilities. A set with possibilities V is given by

V = {e / p(e) | e∈E}， (7)

p(e) is the possibilities, based on the definition, in the 
jth dimension, }|)(/{ jj

k EeepeV ∈= . 

• constant × velocity: the term constant is a parameter, in
the S-PSO, the multiplication operator between a
constant c(c≥ 0) and a set with possibilities V = {e/p(e)
| e∈E} is defined as follows:

{
otherwiseepc

epcif
ep

EeepecV

),(
0)(,1

)('

},|)('/{

×

>×
=

∈=

(8) 

• position – position: The minus operator between two
sets A and B is given by

A–B = {e | e∈A and e∉B} (9) 

• Constant × (position - position): The multiplication
operator between a constant c and a set E’∈E is
defined as follows:

cE’ = {e / p’(e) | e ∈E’}, (10) 

ᇱሺ݁ሻ݌ ቐͳ,					 	݂݅	݁ܧᇱܽ݊݀	ܿ > ͳ							ܿ,						 			݂݅	݁ܧᇱܽ݊݀	Ͳܿͳ			Ͳ,						 				݂݅	݁		ܧᇱ									
• velocity + velocity: given two set with possibilities

V1= {e / p1(e) | e∈E} and V2 = {e / p2(e) | e∈E}, the 
plus operator between two sets with possibilities is 
defined as follows: 



Fig. 3. Pseudo code for the position updating procedure. 

V1+V2 = {e/ max(p1(e), p2(e)) | e∈E} (11) 

According to the above definitions, we can update the 
velocity of the discrete PSO obey the rule (5).  

After updating the velocity, particle i follows the rule (6) to 
update its current position Xi. However, the problems in 
discrete space are different from the continuous space, there are 
various constrains when we optimize the problem. In this case 
the positions’ updating must satisfy the constraints Ω we 
considered above. So we defined a new set named 
CandidateSet, we put all the elements satisfied constrains in it. 

Every step we update the particles’ position, we can only chose 
the element in the candidate set. To ensure the feasibility of the 
newly generated position NEW_Xi in S-PSO, we redefined the 
plus operator between a set with possibility and a crisp set. The 
procedure of the plus operator is given in Fig. 3. 

IV. PROPOSED APPROACH

The general idea of our approach is to use the set-based 
PSO to find out a feasible workflow scheduling list. There are 
three key steps when we using the D-PSO to solve the mapping 
and scheduling problem. The first is how to encode the 
problem, that is, how to represented the solution. The second is 
the definition of the fitness function, according to the fitness 
function we can compare the optimal results can determine 
how to optimal the result in the next iteration. The last one is 
how to present the heuristic information, according the fitness 
function we should find out the heuristic information, the 
heuristic information are directly associate with the optimal 
results and the optimal time. 

For the mapping and scheduling problem, we regard the 
particle’s position X to represent the feasible solutions. The 
number of particle’s dimension equal to the number of jobs in 
the application G, each dimension is composed by a key-value 
pair like <j, i>, it means job j executed in the implementation 
point i. In every generation, each practical will construct a new 
feasible solution. As an example, the particle depicted in Fig.4 
represents a feasible solution under the condition P.

Fig. 4. Example of the particle’s position. Each dimension is composed by a 
job and an implementation point. 

Fig. 5. The serial generation scheme schedule method to get the execution 
times. 

For the problem we proposed, we need define a fitness 
function which is used to evaluate the potential solutions, in 
this case we try to find out the minima cost time for the 
application, so we define the fitness function to be the 
execution time of the problem. When we get a position X, we 
use the serial schedule generation scheme (SSGS) method to 
get the execution time. The SSGS construct the complete 
solution in n stages, where at each stage one feasible element is 
selected from the scheduling list. A simple schedule plan is 
shown Fig. 5. 

According to the rule we defined above. When we update the 
position, we should define the heuristic information to help us 
make a good decision. In this question we define the job’s 
execution time in the implementation point i as the heuristic 
information, we use the roulette wheel to chose an element 

Position updating (Xi, Vi)

Step 1) Generate a cut set 

Generate a random number )1,0(∈α . 
For each dimension j 

})()(/|{)( αα ≥∈= epandVepeeVcut
j

k
j

k  
End for 

Step 2) update the position 

φ=kXNEW_  
For each dimension j 

})(|{ Ω∈= satisfieseandVcuteeetCandidateS
j

k
j

k α  

While the construction of j
k

XNEW_ is not finished and 

φ≠
j

k
etCandidateS

Select an element from j
k

etCandidateS  and add it to 
j
k

XNEW_ ; 

Update j
k

etCandidateS ; 
End while 
 If the construction of j

k
XNEW_ is not finished 

},|{ Ω∈= satisfieseandXeeetCandidateS
j

k
j

k
; 

While the construction of j
k

XNEW_ is not finished and 

φ≠
j

k
etCandidateS

 Select an element from j
k

etCandidateS  and add it 

to j
k

XNEW_ ; 

 Update j
k

etCandidateS ; 
        End while 

 End if 
 If the construction of j

k
XNEW_ is not finished 

 },|{ Ω∈= satisfieseandEeeetCandidateS jj
k

; 

 Select an element from j
k

etCandidateS  and add it to 
j
k

XNEW_

 End if 
End for 

 ii XNEWX _=  
End procedure



from the candidate set, the less time needed the more 
probability it has. 

Fig. 6. The speed of convergence in small problem.

We formula the heuristic information as follows: 

spt(<j, i>) = 1 / tji ,  <j, i>∈CandicateSetj (12) 

The structure of the S-PSO is similar to the standard PSO, 
but when we update the velocity and the position, we use the 
function we defined above. The update of the pbestk and the 
gbest are similar to the standard PSO, when each particle’s 
position has been update, we use the new position to get the 
pbestk and the gbest, and the pseudo-code of the proposed 
methodology is shown Fig. 7. 

Procedure S-PSO 

Initialization; 
While terminal condition not meet 

For each particle i (i=1,2,…,M) 
 Velocity updating; (5) 
Position updating; (6) 

End for 
For each particle k (k=1,2,…,M) 

Update the pbestk and gbest. 
End while 

End procedure 

Fig. 7. The pseudo-code for the proposed methodology. 

V. EXPERIMENTAL EVALUATION 
In this section we implemented the proposed approach to 

deal with the mapping and scheduling problem and evaluated 

our methodology by optimizing several synthetic test cases on 
the abstract target architecture H and then we compare our 
approaches with other heuristics. 

A. Experimental setup 

First, we should initialize the number of the associated 
resources in the target architecture H. The number of resources 
is shown in Table II, when we deal with the problem, the 
mapping and scheduling solution should remain the resource 
constrains. Second, we use the task graph in [22] as the test 
DGA, we randomly generated the number of the time and 
resources consumed for each job j in the implementation point
i. 

To analyze the methodology in this paper, we compare our 
approaches with the ant colony optimization (ACO). We set 
the experimental condition as follows: 

• ACO: The ACO [9] is a heuristic approach that has
been applied to these problems with good result, in this
experiment, we set α = ȕ = 1, where α is the weight for
local heuristics and ȕ is the weight for global
heuristics. The evaporation rate has been set to ρ =
0.015 

• S-PSO: this is the methodology we proposed in this
paper and described above. We set the acceleration
factor c1 = c2 = 2and the inertia weight ω = 0.3.



In this experiment we defined the number of particles and 
ants are 50. We compare the optimized results under the same 
iteration numbers, in this experiment we set all the iteration 
number are 1000 times. 

TABLE II.   THE NUMBER OF RESUOURCES IN THE PLATFORM 

Component pe0 pe1 pe2 pe3 cc

Recourse 

number 
30 30 30 60 8 

pei (i = 0, 1, 2, 3) is the number of local memory and cc is the number of  
bandwidth.

B. Result 

In the first experiment, we randomly generated several 
small benchmarks and real-life benchmarks to demonstrate our 
method’s effectiveness, namely S1-S7 in Table III. In this 
experiment there are some applications have the same tasks 
and edges but they are not the same, because the applications 
have the different type of DGA. According to the experiment 
result, we compared the methods on the number of the 
optimum value and the speed of convergence. Because the 
value of the optimal results are directly related with the mount 
of the jobs and the execution time of each job, in order to 
compare the algorithm performance more objective, we also 
compute the ratio of the performance improved, we compute 
the performance as (Avg.(ACO)–Avg.(PSO)) / Avg.(ACO), 
Avg. is the average time of the experiments, Std. is the 
standard deviation of the experiments, the Diff. presents the 
percentage of optimization. In order to observe the 
optimal results directly, we also display the optimized 
procedure in the line chart, for the experiment we did in the 
small test set we can get the plot Fig. 6, from Fig. 6 we can 
compared the search methods on the number of evaluations.  

TABLE III.  THE SMALL-SCALE TEST SET 

App.
#Tasks/ 

#Edges

ACO PSO

Diff. 

Avg. Std. Avg. Std. 

S1 7/8 75.25  2.17 76.25  3.90 1.33% 

S2 15/20 150.50  8.90 107.75  3.11 28.41% 

S3 31/40 371.00  17.56  286.50  6.58 22.78% 

S4 48/32 432.50  15.20  382.00  11.41 11.68% 

S5 48/32 427.00  8.87 383.00  14.34 10.30% 

S6 48/32 443.50  17.54  426.00  6.38 3.95% 

S7 48/32 416.00  22.41  410.50  11.68 1.32% 

As the scale of the problems becomes larger, many 
algorithms fail to optimize the problem. In the second 
experiment, we compared our algorithm on the larger 
benchmarks described in Table IV, namely S8-S19. For the 
same size jobs, we also compared the optimized results for 
different type of DGA. For the large scale test set we 

composed the optimization results in Table IV and the 
speed of convergence in Fig. 8. 

TABLE  IV.   THE LARGE-SCALE TEST SET  

App. 
#Tasks/

#Edges 

ACO PSO
Diff. 

Avg Std. Avg Std.

S8 93/62 1001.50 18.89  818.50  12.29 18.27% 
S9 93/62 994.00  16.36  910.50  12.79 8.40% 
S10 93/62 993.50  13.40  803.50  30.19 19.12% 
S11 93/62 1016.00 21.52  947.50  11.30 6.74% 
S12 138/92 1390.50  45.61  1323.50  12.21 4.82% 
S13 138/92 1466.00  35.19  1254.00  58.00 14.46% 
S14 138/92 1435.50  23.98  1257.50  16.15 12.40% 
S15 138/92 1435.50  31.88  1321.00  6.00  7.98% 
S16 183/122 1934.00  21.99  1894.00  17.00 2.07% 
S17 183/122 1990.50  19.55  1674.00  11.00 15.90% 
S18 183/122 1957.00  26.39  1752.00  54.00 10.48% 
S19 183/122 1941.50  40.11  1827.00  48.00 5.90% 

Fig. 8. The speed of convergence in large scale of problems . 



VI. CONCLUSION

In this paper, we proposed a set-based PSO algorithm for 
optimizing the mapping and scheduling problem on the 
heterogeneous multiprocessor architectures. We use the 
execution time for each job in the candidate set as the 
heuristic information, so we can construct a new solution 
effectively under the constraints of the target. In the section V, 
we compare our method with the ACO which has been tested 
can solve the problem efficiently. We compare the two 
methods on the set of instances in the benchmark library 
PSPIB. The result in Table III and Table IV show that our 
method is more effective than ACO. For the same number of 
evaluations, we get the results 10.86% better on average. For 
the same problem our method can get the better optimum 
value. Moreover, from Fig.6 and Fig.8 show that our approach 
was able to reach the optimal solutions much faster than ACO. 
The results proved that our algorithm has higher efficiency to 
optimize both in the small and lager scale of problems. 
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