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ABSTRACT

Deep learning methods in the literature are commonly benchmarked on image data sets, which may
not be suitable or effective baselines for non-image tabular data. In this paper, we take a data-
centric view to perform one of the first studies on deep embedding clustering of tabular data. Eight
clustering and state-of-the-art embedding clustering methods proposed for image data sets are tested
on seven tabular data sets. Our results reveal that a traditional clustering method ranks second out
of eight methods and is superior to most deep embedding clustering baselines. Our observation
aligns with the literature that traditional machine learning of tabular data is still a robust approach
against deep learning. Therefore, state-of-the-art embedding clustering methods should consider
data-centric customization of learning architectures to become competitive baselines for tabular
data.
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1 INTRODUCTION

The success of deep learning has established a strong perception that deep learning is all we need regardless of
the data problem. However, newly proposed deep learning methods are always benchmarked on several standard
image data sets, including MNIST, ImageNet, and CIFAR-10 [1]. The superiority of deep learning methods proposed
for computer vision applications is often perceived as a general deep solution or baseline for other data problems.
For example, an image contains homogeneous pixels with spatial regularity, which makes convolution operations in
convolutional neural network (CNN) high performing and meaningful for computer vision tasks. Conversely, tabular
data with heterogeneous variables can be strikingly different from image data, as shown in Table 1. A multilayer
perceptron (MLP) is a default choice for learning tabular data [2] because convolution-based filtering is not intuitive
on multivariate feature vectors without temporal or spatial regularity. Therefore, the contrast in data types is an
important factor in designing an appropriate deep architecture.

An emerging example of deep learning application is deep embedding clustering, which has been so far proposed to
obtain cluster-friendly embedding for image data sets only [3, 4, 5, 6, 7, 8, 9]. When a novel embedding clustering
method is proposed for non-image tabular data, one may expect to compare its performance with those baseline
embedding clustering methods [10]. This expectation assumes that the same deep method is a fair and equally effective
baseline for both image and non-image data sets. Conversely, it may be argued that the deep learning architectures
proposed for image data sets may not be suitable or optimal for tabular data. To address this concern, one may take
several alternative approaches. First, 2D images can be vectorized into a tabular format to form tabular data sets.
However, vectorized images still contain homogeneous pixels, not multivariate feature columns. Merely converting
images into pixel vectors in tables does not satisfy the characteristics of tabular data, as presented in Table 1. Second,
one may selectively use high-dimensional tabular data sets with large sample sizes to keep the problem and results
compatible with image benchmarks and corresponding baseline methods. It is noteworthy that the top 100 most
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Factors Image data Tabular data

Homogeneity Homogeneous Heterogeneous or multivariate
Spatial Regularity Yes No
Sample size Large, >50,000 Small, median size ∼ 660
Benchmark data sets CIFAR, MNIST None
Dimensionality High, >1000 Low, median 18
Best method Deep CNN Traditional machine learning
Special methods transfer learning, image augmentation None
Application Computer vision Data analytics

Table 1: Image versus tabular data. Median sample size and median data dimensionality are obtained across the 100
most downloaded tabular data sets from the UCI machine learning repository [11].

downloaded tabular data sets in the UCI machine learning repository have a median dimensionality of only 18, which
is far below the lowest 784-dimensional pixel vectors in the MNIST data set.

These alternative approaches are often chosen to stay within the strict realm of image benchmarks and image-based
learning architectures without proposing custom methods for tabular data. Here, the model-centric view of deep
learning to achieve superior performance largely conceals the need for data-centric requirement analysis in designing
deep learning methods. A fundamental challenge for deep learning methods is to claim superiority on non-image and
low-dimensional data as these methods commonly claim on image data sets. In this context, this paper investigates the
effectiveness of state-of-the-art deep-embedding clustering methods on tabular data sets. We hypothesize that these
deep embedding clustering methods are not effective baselines for tabular data.

The remainder of the manuscript is organized as follows. Section II highlights the challenges of deep learning methods
on tabular data sets and state-of-the-art methods proposed for embedding clustering. Section III provides the methods
and preparation of state-of-the-art embedding clustering methods for learning tabular data. Section IV highlights the
important results and shows a performance comparison between traditional clustering and deep embedding clustering
methods on tabular data. A summary of the results is highlighted in Section V, and this paper concludes in Section VI.

2 Background

2.1 Tabular versus image data

Table 1 summarizes the contrasts between image and tabular data. One obvious distinction is that tabular data consist
of multivariate feature vectors, whereas images are a distribution of homogeneous pixels in 2D space. The pixel
variable is distributed over space with spatial regularity, which makes convolution-based image filtering meaningful
and effective. The variables in tabular data (e.g., age, salary, height, weight) have different scales without regularity
or repetitions as pixel intensities. While images can be very high-dimensional, the number of variables in tabular data
can be considerably low. The sample size of many tabular data sets is relatively much smaller than what we see in
benchmark image data sets.

2.2 Deep learning of tabular data

Deep learning has overtaken traditional machine learning methods because of its ability to simultaneously learn a
new feature space or embedding during supervised training. This alleviates the need for suboptimal hand-engineered
features before training a machine learning model [12]. As a result, the clustering of deep embedding is known to
yield significantly superior accuracy when compared to clustering on the image pixel space. Therefore, one may
always expect a new deep embedding method to significantly outperform traditional machine learning.

Conversely, it may be unknown to many computer vision researchers that traditional machine learning methods are
still superior to deep learning on tabular data sets. There is mounting evidence in the literature in favor of traditional
machine learning on tabular data [13, 14, 15, 16, 17], including conclusions such as “deep learning is not all you
need” [17], “tabular data is the last unconquered castle for deep learning” [16]. Without reference to these studies, it
may be counter-intuitive to deep learning researchers that traditional clustering methods are still strong and superior
baselines for tabular data. This leads to a preconceived notion that the performance of a deep method is always
expected to be significantly better than those obtained by traditional baseline methods. In practice, outperforming
traditional machine learning baselines on tabular data remains a challenge for deep learning methods [17, 15, 16]. This
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challenge remains because data-centric requirements are not usually considered when preparing learning algorithms
and architectures.

2.3 Deep Embedding Clustering

The goal of deep embedding clustering is to learn a cluster-friendly embedding by jointly training an unsupervised
deep neural network with a clustering algorithm. Autoencoders are the most common form of unsupervised deep
learning architectures used to first encoder input data (X∈ <d) into a latent space or embedding (Z∈ <m) where
d < m. The input data are reconstructed from the embedding using a decoder module as (X̂). The encoder and
decoder involve a set of trainable parameters θ ∈ {Wθ, bθ} and Φ ∈ {WΦ, bΦ}, respectively. The outputs of the
encoder (Z) and decoder (X̂) are obtained as follows.

Z = f(θ,X) (1)

X̂ = g(Φ, f(θ,X)) (2)

Here, f(.) and g(.) represent sigmoid activation functions to introduce non-linearity in embedding. The learning
objective of an autoencoder is to minimize the following reconstruction loss, updating θ and Φ parameters.

Lrecon = argmin
θ,Φ

N∑
i=1

||Xi − X̂i||22. (3)

The autoencoder embedding (Z) is known to retain all information about the input data to facilitate perfect data re-
construction. Instead, an ideal embedding should emphasize or retain information useful for clustering. Accordingly,
the quality of an embedding can be improved by first clustering the Z space using a clustering algorithm. The cluster
assignments and centroids are used to compute an embedding distribution (Q) or pseudo labels as a learning target.
A target distribution (P) is mathematically derived from the embedding distribution (Q). The overall learning objec-
tive is to update the autoencoder’s trainable parameters (θ,Φ) by jointly minimizing the reconstruction loss and the
divergence between P and Q distributions, as below.

L = Lrecon + γ ∗ Lcluster

= argmin
θ,Φ

N∑
i=1

||Xi − X̂i||22 + γ

N∑
i=1

K∑
j=1

pij log
pij
qij

(4)

Here, N is the number of samples, K denotes the number of clusters, and γ is the trade-off parameter between the
reconstruction and clustering losses.

It has been shown that the clustering accuracy on Z obtained via joint learning in Equation (4) is substantially better
than that obtained by minimizing the reconstruction loss alone (Equation 3). Deep Embedding Clustering (DEC)
is one of the first methods in this area [3]. The DEC method first pretrains a deep autoencoder by minimizing the
data reconstruction loss only. Excluding the decoder, the pre-trained encoder part is then fine-tuned by minimizing
the Kullback-Leibler (KL) divergence between a t-distributed cluster distribution (Q) on the embedding and a target
distribution (P). The DEC method is further improved by proposing an improved DEC (IDEC) framework [4]. In
IDEC, the autoencoder reconstruction loss and the KL divergence loss are jointly minimized to update the weights of
a deep autoencoder for producing a cluster-friendly embedding (Equation 4). Both DEC and IDEC methods perform
k-means clustering on embedding to obtain the t-distributed cluster distribution (Q). A joint embedding and cluster
learning (JECL) is proposed for multimodal representation learning of text-image data pairs [8] using t-distribution
assumption, k-means clustering, and KL divergence loss between the embedding and target distributions. The Deep
Clustering via Joint Convolutional Autoencoder (DEPICT) method is proposed for learning image embedding via a
de-noising convolutional autoencoder [9]. Following this research trend, new embedding clustering methods have
been proposed in recent years [5, 6, 18, 7], which are all evaluated on benchmark image data sets.

3 Methods

Because current deep embedding clustering methods are evaluated only on image data sets, several image-specific
operations are often involved, including image augmentation, Sobel filtering, transfer learning, image corrupting, and
denoising. These operations are not trivial on tabular data sets. CNN-based architectures with 2D image filtering are
proposed for embedding clustering in addition to several MLP-based architectures. The 2D image filters in CNN are
at least required to be replaced by 1D kernels for tabular data. Therefore, deep baseline methods proposed for image
learning require modifications for learning tabular data.
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Data set Sample size Dimensions Classes

Breast Cancer 569 30 2
Dermatology 358 34 6
E. coli 336 7 8
Malware 4465 241 2
Mice data 552 78 8
Olive 572 10 3
Vehicle 846 18 4

Table 2: Summary of tabular data sets used for comparing clustering and embedding clustering performance in this
study.

3.1 Baseline embedding clustering methods

We compare the clustering performance of six state-of-the-art deep embedding clustering methods with traditional
clustering (K-means, Gaussian mixture model) of tabular data. The deep embedding clustering models are trained
for a varying number of epochs, which we set to 1000 epochs to fairly compare the methods. We make the least
possible changes to the state-of-the-art embedding clustering methods for producing embeddings on tabular data sets
as follows.

3.1.1 DEC method

The autoencoder architecture in the DEC [3] method uses a fully-connected autoencoder with three hidden layers. The
encoder and decoder sections are set to d–500–500–2000–10-2000-500-500-d, inspired by [19]. Here, d is the input
data dimension, 500 or 2000 denotes the number of neurons at a given layer, and the embedding dimensionality is 10.
We have disabled the greedy layer-wise pretraining done for 50000 iterations and the 20% dropout in layers to make a
fair comparison with other methods.

3.1.2 IDEC method

The Improved DEC (IDEC) [4] and DEC methods share the same architecture. While the DEC method optimizes the
reconstruction loss of the autoencoder and the clustering loss separately, IDEC optimizes both losses jointly for the
first time, as shown in Equation 4.

3.1.3 DKM method

The deep k-means (DKM) method uses an autoencoder architecture similar to the DEC and IDEC methods [6]. Instead
of a fixed dimensional embedding, they use a k-dimensional latent space (d–500–500–2000–k-2000-500-500-d) where
k is the number of target clusters. The DKM method does not use cluster distributions or KL divergence loss as the
DEC method. Instead, the authors propose a clustering loss that minimizes the distance between the embedding and
cluster representatives. They compare the DKM method only against MLP-based models to avoid architectural bias.

3.1.4 AE-CM method

We use the embedding clustering method proposed by Boubekki et al., which has a clustering module (CM) integrated
into a deep autoencoder (AE) for joint learning of the embedding [7]. The AE-CM method uses a fully connected
autoencoder (d-500-500-2000-p-2000-500-500-d) with leaky rectified linear unit (ReLU) activations where p is the
dimension of the embedding. We use the default setting of this method where p is set to k, the number of target
clusters. The three learning hyperparameters tuned are denoted as α, β, λ. The method is implemented using the
Keras deep learning package.

3.1.5 DynAE method

The DynAE method is also implemented using the Keras deep learning package [20]. The deep autoencoder archi-
tecture is similar to the DEC/IDEC method d-500-500-2000-10-2000-500-500-d. However, the objective function
is regularized by image augmentation and an adversarially constrained interpolation step. The image augmentation
(shifting and rotation) is disabled for producing tabular data embeddings. Their default training and pretraining steps
are performed for 130000 and 100000 epochs. Instead, we decide to skip the pertaining step for the DynAE and other
methods to ensure a fair comparison.
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Fold 1

Train and tune 
model

Trained cluster 
embedding model

Generate test fold 
embedding

Clustering accuracy 
on test folds

Fold 2 Fold 3 Fold 4 Fold 5

Figure 1: Five-fold validation and evaluation of deep embedding clustering methods for reproducibility.

3.1.6 DEPICT method

The DEPICT method uses a convolutional autoencoder with 2D image filters and is implemented using the Theano
deep learning package [9]. We have replaced the 2D filters with 1D kernels for learning embedding from tabular data
vectors. Following three convolutional layers, the autoencoder has a fully-connected network with a d-50-50-10-50-
50-d architecture. Because the Theano library support and upgrade have been discontinued for the last two years, we
have to update the code for each neural network layer and the loss function to accept float64 input instead of float32.

3.2 Data sets

A summary of the seven tabular data sets is provided in table 2, which are representative of seven application domains.
These data sets include examples of different sample sizes, data dimensionality, and class distributions, which may
affect the performance of embedding clustering methods. Except for the malware data set, all data sets have less than
1000 samples. The number of variables or data dimensionality ranges between seven and 241, which is far below the
pixel dimension of any image data set.
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Data set GMM K-means DEC IDEC AE-CM DynAE DEPICT DKM

Breast cancer 89.8 (4.6) 90.2 (4.3) 68.3 (5.1) 83.6 (14.0) 77.7 (14.4) 92.1 (3.8) 91.2 (0.5) 64.2 (3.9)

Dermatology 76.8 (8.8) 76.2 (9.2) 50.0 (5.6) 78.8 (10.3) 55.5 (4.2) 77.4 (2.3) 62.3 (5.8) 23.2 (0.5)

Ecoli 29.4 (4.5) 29.2 (3.2) 29.2 (3.1) 32.4 (2.5) 30.7 (2.0) 31.5 (3.2) 35.7 (4.4) 35.4 (2.9)

Malware 79.1 (1.7) 79.1 (1.7) 78.9 (1.3) 85.8 (3.2) 73.3 (7.5) 73.1 (4.7) 56.3 (2.1) 48.7 (11.3)

Mice data 40.8 (1.7) 40.2 (5.7) 36.2 (3.9) 40.6 (1.7) 36.0 (3.4) 42.2 (3.5) 25.3 (3.4) 17.2 (2.7)

Olive 67.2 (11.5) 71.4 (10.8) 68.0 (10.0) 77.4 (3.9) 53.7 (8.8) 47.9 (4.0) 55.3 (7.1) 56.5 (0.0)

Vehicle 39.4 (2.9) 37.2 (1.7) 38.3 (4.3) 42.4 (3.3) 37.5 (2.4) 37.2 (1.2) 37.2 (0.6) 31.1 (5.6)

Table 3: Five-fold average clustering accuracy of traditional clustering algorithms (Gaussian mixture model: GMM,
k-means) and six deep embedding clustering methods on tabular data sets.

Data set GMM K-means DEC IDEC AE-CM DynAE DEPICT DKM

Breast Cancer 4 3 7 5 6 1 2 8
Dermatology 3 4 7 1 6 2 5 8
Ecoli 6 8 7 3 5 4 1 2
Malware 2 3 4 1 5 6 7 8
Mice protein 2 4 5 3 6 1 7 8
Olive 4 2 3 1 7 8 6 5
Vehicle 2 7 3 1 4 6 5 8

Average 3.3 (1.4) 4.4 (2.1) 5.1 (1.7) 2.2 (1.5) 5.6 (0.9) 4.0 (2.6) 4.7 (2.2) 6.7 (2.2)
Overall rank 2 4 6 1 7 3 5 8

Table 4: Tabular data set-specific and overall rank ordering of clustering and deep embedding clustering methods.

3.3 Model evaluation

The quality of tabular data embedding is evaluated using the clustering accuracy metric, as shown below.

ACC = max
m

∑N
i=1 1{ytrue(i) = m(ypred(i))}

N
(5)

Here, ytrue(i) is the ground truth label for the i-th sample. ytrue(i) is the predicted label following clustering. m() finds
the best label mapping between the cluster and the ground truth labels. The mapping can be obtained by the Hungarian
algorithm [21]. The accuracy score is multiplied by 100 to represent scores in percentages. In all experiments, the
number of clusters equals the number of known classes for individual data sets (Table 2). Although embedding
clustering methods are unsupervised, the cluster accuracy metric uses ground truth labels to determine the accuracy
of cluster assignments. We use separate training and test data folds to ensure reproducibility and tune the model
hyperparameters (e.g., γ in Equation 4) on the cluster accuracy metric. A five-fold validation scheme is used where four
folds are used for training and tuning the model hyperparameters, as shown in Figure 1. The weakly supervised trained
model with the best hyperparameter setting, obtained using four data folds, is then used to generate the embedding
on the test data fold. The clustering accuracies on the left-out test folds are averaged to report and compare the final
performance of an embedding clustering method.

4 Results

Table 3 compares the clustering accuracy of eight clustering and deep embedding clustering methods. The traditional
clustering Gaussian mixture model (GMM) ranks the second best for the malware, mice, and vehicle data sets. The
k-means clustering of tabular data ranks the second best for the olive data set. GMM and k-means clustering rank
the third best on the dermatology and breast cancer data sets, respectively. The GMM clustering algorithm ranks the
second best among eight methods with an average rank of 3.3 (1.4) across seven tabular data sets, as shown in Table 4.
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The clustering accuracy of the first embedding clustering method (DEC) is substantially worse than other methods for
breast cancer (68% versus 90%) and dermatology (50% versus 76%) data sets. Although the DEC method ranks third
for the olive and vehicle data sets, its average rank is 5.1(1.7), and the overall rank is six out of eight methods. The
recent deep embedding clustering method (AE-CM) yields substantially worse performance on most tabular data sets,
including the olive (54% versus k-means: 71%) and malware (73% versus k-means: 79%) data sets. The AE-CM
method earns an average rank of 5.6 (0.9) and an overall rank of seven out of eight methods. The dynAE method
ranks the third best among the eight methods with an average rank of 4.0 (2.6). dynAE is the best method for the
breast cancer and mice data sets, and it ranks the second best for the dermatology data set. However, its performance
improvement appears marginally better than the k-means clustering for the breast cancer (92.1% versus K-means
90.2%) and mice (42.2% versus k-means: 40.2%) data sets.

The CNN-based embedding clustering method DEPICT yields the best clustering accuracy on the Ecoli data set and
the second best on the breast cancer data set. The improvement on the Ecoli data set is notable (35.7% versus k-
means: 29.2%). However, the DEPICT method yields substantially worse performance on the dermatology (62.3%
versus k-means 76.2%), malware (56.3% versus k-means 79.1%), mice (25.3% versus k-means 40.2%), olive (55.3%
versus 71.4%) data sets. The average rank of the DEPICT method is 4.7 (2.2), and the overall rank is five out of eight
methods. The DKM method ranks the worst among the eight deep embedding clustering methods, with an average
rank of 6.7 (2.2). However, it achieves the second-best performance on the Ecoli data set on par with the DEPICT
method.

The IDEC method, proposed in 2017, ranks as the best embedding clustering method for tabular data. It ranks the best
for four data sets: dermatology, malware, olive, and vehicle. The average rank of the IDEC method is 2.2 (1.5) com-
pared to the second-best method (GMM clustering with an average rank of 3.3). Although IDEC produces substantially
worse results on the breast cancer data set (83.6% versus k-means 90.2%), it shows some decent improvements on the
malware (85.8% versus k-means 79.1%), olive (77.4% versus k-means 71.4%), and vehicle (42.4% versus k-means
37.2%) data sets.

5 Discussion of results

This paper is one of the first to investigate the performance of state-of-the-art deep embedding clustering methods on
tabular data sets. Current deep embedding clustering methods reveal several new observations on tabular data sets.
First, recently proposed or state-of-the-art embedding clustering methods are not among the best for tabular data. The
best method (IDEC) is proposed in a 2017 research paper. That is, the improvement of deep embedding clustering over
the years has happened by targeting benchmark image data sets only. Second, no single method is the best choice for
all seven tabular data sets. Conversely, the deep learning literature often shows that the proposed method is superior
to all baseline methods on all image data sets. This finding suggests that the performance of embedding clustering
methods on tabular data may depend on the data domain and dimensionality. Third, traditional clustering of tabular
data sets (GMM, k-means) is still a competitive baseline compared to their deep embedding clustering counterparts.
While clustering on image pixel space is ineffective, the clustering of tabular data yields the second and fourth-best
accuracy numbers among the eight methods we compare in this paper. Despite the promising performance of several
deep embedding clustering methods against traditional clustering, the improvement is often marginal. Fourth, MLP-
based architectures (IDEC, DynAE) are superior to the CNN-based method (DEPICT) on tabular data sets. Similar
CNN-based architectures proposed for image learning may be replaced by MLP-based architectures for tabular data
sets. Fifth, clustering objective functions that use cluster distributions (IDEC) are superior on tabular data sets to using
cluster centroids (DKM) as pseudo labels. The performance of the two worst methods (AE-CM and DKM) may be
attributed to the dimension of the embedding, which is set to the number of clusters.

It is important to note that the comparison of deep embedding clustering algorithms can be biased by architectural
selections (convolutional autoencoder versus denoising autoencoder versus stacked autoencoder, deep versus shallow
autoencoder) of individual methods. Furthermore, other secondary methods, including model pertaining, dropout
learning, image processing or augmentation, can play an important role in improving the clustering accuracy beyond
the primary contribution to the learning algorithm or objective function. Therefore, making a fair comparison among
the baseline algorithm independent of those secondary steps or architectural bias can be challenging, as we perform
in this paper. Our results reveal that state-of-the-art deep embedding clustering methods may not be fair and effective
baselines for comparing similar methods proposed for tabular data sets.
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6 Conclusions

This paper compares six state-of-the-art deep embedding clustering methods with traditional clustering on tabular
data sets. Our results reveal that deep methods benchmarked on image data sets are often not optimal for learning
tabular data. In contrast, traditional clustering on tabular data sets is still a superior baseline to most deep embedding
clustering methods. Therefore, data-centric requirement analysis should be considered in developing a deep learning
method superior to those traditional baselines.
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