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Abstract—Failures in optical network backbone can cause
significant interruption in internet data traffic. Hence, it is very
important to reduce such network outages. Prediction of such
failures would be a step forward to avoid such disruption of
internet services for users as well as operators. Several research
proposals are available in the literature which are applications
of data science and machine learning techniques. Most of the
techniques rely on significant amount of real time data collection.
Network devices are assumed to be equipped to collect data and

these are then analysed by different algorithms to predict failures.
Every network element which is already deployed in the field may
not have these data gathering or analysis techniques designed into
them initially. However, such mechanisms become necessary later
when they are already deployed in the field. This paper proposes
a Bayesian network based failure prediction of network nodes,
e.g., routers etc., using very basic information from the log files of
the devices and applying power law based data augmentation to
complement for scarce real time information. Numerical results
show that network node failure prediction can be performed with
high accuracy using the proposed mechanism.

Index Terms—Bayesian Networks, data augmentation, optical,
failure prediction

I. INTRODUCTION

Today’s digital world depend primarily on internet. Internet

backbone network carries bulk of the data traffic from different

users, such as, individuals, Internet of Things (IoT) devices,

edges devices, computers and cloud. Backbone networks pri-

marily use optical communications due to their high bandwidth

and low bit error rates. These networks comprise of huge

number of nodes, e.g., routers, etc., which carry data from

one part of the world to the other. A failure in any of these

nodes can lead to major disruption in internet services leading

to losses in business and other activities. Hence, for reliable

internet services it is essential to prevent failures proactively

in backbone networks using intelligent mechanisms.

There are several approaches for failure prediction in optical

networks. A gaussian classifier based approach to detect single

link failures has been proposed in [1]. Authors applied heuris-

tics to shortlist the probable failed links and then the gaussian

classifier is applied to identify the failed link. [2] proposes

support vector machine along with double exponential smooth-

ing approach to predict optical network equipment failure. [3]
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describes a method for prediction of link quality estimate in

wireless sensor networks using online and offline supervised

learning. A comparison of three data mining approaches, K-

Means, Fuzzy C-Means, and Expectation Maximization, to

detect abnormal behaviour in networks is proposed in [4].

Using Bayesian networks, [5] derives a mechanism to predict

failures in cellular networks.

Most of the proposals mentioned above are data intensive.

They rely on collecting real time data from various monitors

in the network and then analyze the data to predict failures.

For deployed systems in the field, such prediction mechanism

may not be built into the initial design. However, subsequently,

a need for failure prediction arises. In such a scenario, non-

availability of relevant data is a major hindrance. Changes

to the deployed system like introducing new probes to col-

lect data are highly risky. Hence, applying convention data

intensive techniques are not possible. Non-intrusive failure

prediction techniques have to be developed with very little

information available (quantitative or qualitative) without dis-

turbing the deployed network. This paper proposes such a

technique using Bayesian Networks (BN) as explained below.

In [6], we described an architecture for non-intrusive fault

prediction in network nodes. It applies an ad-hoc node failure

prediction mechanism as an initial solution. This paper extends

and generalizes the network node failure prediction mechanism

in [6] applying formal approach of data augmented BN.

Network nodes are equipped with log files which are used

by the developers to debug problems. Observing the logs of

past failures, patterns emerge on the sequence of events leading

to a failure. These events can be represented as nodes in a

Directed Acyclic Graph (DAG). This DAG can used as BN

based failure prediction mechanism. Bayesian networks need

conditional probabilities of a node (event) given its parents in

the DAG for prediction. As already mentioned above, statistics

on events and failures are not readily available in deployed

network nodes. However, qualitative information on how fre-

quently or infrequently a failure occurs can be acquired from

the developers. Using this information, data augmentation

is applied to generate the conditional probabilities assuming

power law distribution for failure occurrences. The BN uses

these probabilities and predicts failures as events occur in real-
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time. Numerical results show, even with scarce data available

from logs retrieved from the deployed network nodes, fairly

accurate failure prediction is possible.

Objectives behind this BN based approach are as follows.

• Construct a quick solution to meet time to market re-

quirements

• Construct a non-intrusive prediction mechanism devoid

of any changes in the deployed network

• Effectively use information from the logs and qualitative

information on frequency of occurrence of failures from

the developers

• Failure prediction mechanism should evolve over time

The remaining of this paper is organized as follows. Section

II describes the proposed idea and the system model. The

results obtained applying the proposed idea are presented in

section III. Section IV concludes this work with some future

directions.

II. SYSTEM MODEL

As already mentioned, the statistical information about the

occurrence of events and failures at network nodes is not

readily known, since the deployed systems are not equipped

with necessary mechanisms to collect such data by initial

design. Mining all the historical logs to extract statistical infor-

mation mentioned above can be a extremely time consuming

approach and may not meet time to market requirements. The

only information extracted from the logs is the sequence of

events leading to failures with the help of the developers.

Also, qualitative information on which errors occur more

frequently than others can be known from the experience of

the developers.

An example log file is shown in Fig. 1. The first column

contains the time at the which the corresponding text (second

column) is logged and associated values of system parameters,

e.g., clock drift, Optical Signal To Noise Ratio (OSNR), etc.

Based on analysis of the developers some of the texts can

be designated as events shown in third column of Fig. 1.

There can be several events, such as, clock drift exceeding

certain threshold, temperature rising above a certain value,

OSNR exceeding lower threshold, or a node not receiving

signal from its peer. Once the failures and their corresponding

events are designed from the logs, they are presented in form

of a matrix as shown in (1) for 5 failures. Each row in the

matrix represents a sequence of events leading to a failure. A

value 1 means that the corresponding event has to happen for

that particular failure. For example, event E2 has to happen

for failures F1, F2 and F3, not for F4 and F5. Subsequently,

a DAG comprising all the events can be constructed (Fig. 2)

which forms the BN. For example, event E1 → E2 → E3 →
E5 have to occur in sequence for failure F2. Note that E1 and

E2 (marked in red) are the valid start states of event sequences

leading to failures. By (1), F1, F2, F4 and F5 start with E1,

and F3 starts with E2.

Figure 1. Example log file with events

Figure 2. DAG constructed using (1)

E5,5 =













E1 E2 E3 E4 E5

F1 1 1 0 1 1
F2 1 1 1 0 1
F3 0 1 0 1 1
F4 1 0 1 1 0
F5 1 0 1 0 1













(1)

A. Generation of statistics for events and failures

To apply BN for failure prediction, statistics of occurrence

of events and their failures are necessary to calculate the

conditional probabilities. However, as already mentioned such

statistics are not readily available. For this purpose, two avail-

able information are used. Firstly, events are extracted from

old logs as explained above. Secondly, developers can provide

the information on which failures occur more frequently than

others. Based on this information, a probability distribution

can be assumed to artificially create statistics of the events and

their corresponding failures. Since, there is non-zero chance

of any failure a scale free probability distribution can be

assumed. For this purpose, a power law probability distribution



is assumed in (2) for occurrence of N failures, though other

scale free functions can also be considered (in future).

p(x) = ax−k (2)

where a is constant and failure Fx occurs with probability

p(x), x = 1, 2, .., N and k ≥ 2. Also, it is assumed that

p(i) > p(j) for i < j and i, j ∈ {1, 2, .., N}. Value of a can

be adjusted so that,

N
∑

x=1

p(x) ≈ 1 (3)

Based on the probability distribution function, statistics of

each of the failures can be calculated as follows using (4).

CFx
= ⌊S × p(x)⌋ (4)

where CFx
is the number of occurrences of Fx in the popu-

lation of S failures.

Once the number of occurrence of each failure is estimated

with (4), the statistics of the events can also be found out

using (1). Using all these augmented data and information, a

BN can be constructed with all the conditional probabilities.

B. Application of Bayesian Networks

Application of BN is explained with the following scenerio.

Lets evaluate the probabilities of occurrences of E4 and E5

given E1 = 1 (Fig. 2) as shown in (5). Note that there are 4

possible combinations for E4 and E5.

Pr(E5, E4|E1 = 1) =
Pr(E5, E4)

Pr(E1 = 1)
(5)

E4 and E5 depend on other predecessors (Fig. 2), so the above

equation has to be expanded as follows.

⇒ Pr(E5, E4|E1 = 1) =
1

Pr(E1 = 1)

×
∑

E3

∑

E2

Pr(E5, E4, E3, E2) (6)

⇒ Pr(E5, E4|E1 = 1) =
1

Pr(E1 = 1)

×
∑

E3

∑

E2

Pr(E5|E4, E3)

× Pr(E4|E3, E2)

× Pr(E3|E2, E1)

× Pr(E2|E1) (7)

⇒ Pr(E5, E4|E1 = 1) =
1

Pr(E1 = 1)

×
{

∑

E3

Pr(E5|E4, E3)×
(

∑

E2

× Pr(E4|E3, E2)

× Pr(E3|E2, E1)

× Pr(E2|E1)
)}

(8)

Thus, Pr(E5, E4|E1 = 1) is expressed as conditional prob-

abilities of occurrences of its predecessors in Fig. 2. These

derivations have to be repeated for each combination of events.

It is evident, when the BN is large, these derivations can be

extremely tedious and cumbersome.

C. Failure Prediction

Once the BN is constructed as explained above, failure

prediction is performed based on the events happening in real

time, extracted from network node logs and traversing the BN.

A remote machine, running the proposed BN failure prediction

model, transfers the real time logs from the network nodes

using remote copy, etc., parses the logs for events, using the

architecture proposed in [6].

III. RESULTS AND DISCUSSION

This section presents the results obtained using the system

model in section II. The model is implemented in python

using pgmpy library [7]. The first step is the generation

of statistics of occurrence of failures. Using the generated

statistics, the failures are predicted using BN. Calculating the

conditional probabilities given all its predecessors of a event

in the BN manually for equations such as (8) can be extremely

cumbersome, tedious and error-prone when the network is

large (which is expected to be in future). Hence, using a

tool such as pgmpy can be extremely beneficial to reliably

calculate the probabilities.

A. Generation of failure statistics

For generation of population of failures the power law

distribution in (2) is used with k = 2, N = 5, a = 0.7
satisfying (3). Number of each failures Fi, i = 1, 2, 3, 4, 5 is

shown in Fig. 3 and the probability distribution of failures

is shown in Fig. 4, under the assumption that occurrence

frequency of F1 > occurrence frequency of F2 > occurrence

frequency of F3 > occurrence frequency of F4 > occurrence

frequency of F5, available from the qualitative information

provided by the developers. Ten thousand samples of failures

are generated. The probabilities of the events are shown in

Fig. 5.

B. Application of BN

Using the augmented data described above in section III-A,

the conditional probabilities necessary for prediction of fail-

ures applying BN are calculated. Probabilities of E1 are shown

in Table I. Similarly, the probabilities of E2 given its parent E1

Table I
PROBABILITIES OF E1

Pr(E1 = 1) Pr(E1 = 0)

0.924128 0.075871

(Fig. 2) occurred or not are provided in Table II. Likewise, the

same for E3 is provided in Table. III. Note that probabilities

of E3 given E1 = 0 and E2 = 0 are not valid failures in

current set (1). However, pgmpy needs all the combinations of
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probabilities of nodes given their parents to be made available

and each row in the tables should add up to 1. This does not

adversely affect the performance of the prediction model as

the results show subsequently. The probabilities of E4 and

E5 given their respective parents are shown in Tables IV and

V. These probabilities are then fed into the BN for failure

prediction.

Table II
PROBABILITIES OF E2

Condition on Pr(E2 = 1) Pr(E2 = 0) Comments

E1 = 1 0.924128 0.075871

E1 = 0 1 0 Tool needs all
the combination

Non-occurrence of an event, i.e., E1 = 0, is hard to provide

as evidence to the BN. Hence, occurrence of event is always

set as evidence to predict the failures. The tool takes all the

probabilities provided in that tables above and outputs the

prediction after calculating the equations such as (8).

If function call to query the BN for prediction of the
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Table III
PROBABILITIES OF E3

Condition on Pr(E3 = 1) Pr(E3 = 0) Comments

E1 = 0 and E2 = 0 0 1 Tool needs all
the combinations
to add up to 1

E1 = 0 and E2 = 1 0 1

E1 = 1 and E2 = 0 1 0

E1 = 1 and E2 = 1 0.2 0.8

subsequent events with the evidence that E1 has already

occurred, its output predicts F1 defined in (1) as shown

below. The PREDICTION is concatenation of evidence and

OUTPUT.

FUNCTION CALL:

infer.map_query([’E2’, ’E3’,

’E4’, ’E5’],

evidence={’E1’: ’1’})

OUTPUT:

{’E2’: ’1’, ’E3’: ’0’,

’E4’: ’1’, ’E5’: ’1’}

PREDICTION:

{’E1’: ’1’, ’E2’: ’1’, ’E3’: ’0’,

’E4’: ’1’, ’E5’: ’1’} --> Failure F1

Afterwards, when events E1 and E2 occur which are presented

as evidence to the BN, it continues to predict failure F1.

FUNCTION CALL:

infer.map_query([’E3’, ’E4’, ’E5’],

evidence={

’E1’: ’1’,

’E2’: ’1’})

OUTPUT:

{’E3’: ’0’, ’E4’: ’1’, ’E5’: ’1’}

PREDICTION:

{’E1’: ’1’, ’E2’: ’1’, ’E3’: ’0’,

’E4’: ’1’, ’E5’: ’1’} --> Failure F1

With evidence E1, E2 and E3, the BN changes its prediction

from F1 to F2 as defined in (1).



Table IV
PROBABILITIES OF E4

Condition on Pr(E4 = 1) Pr(E4 = 0) Comments

E2 = 0 and E3 = 0 0 1 Tool needs all
the combinations
to add up to 1

E2 = 0 and E3 = 1 0.607843 0.392156

E2 = 1 and E3 = 0 1 0

E2 = 1 and E3 = 1 0 1

Table V
PROBABILITIES OF E5

Condition on Pr(E5 = 1) Pr(E5 = 0) Comments

E3 = 0 and E4 = 0 0 1 Tool needs all
the combinations
to add up to 1

E3 = 0 and E4 = 1 1 0

E3 = 1 and E4 = 0 1 0

E3 = 1 and E4 = 1 0 1

FUNCTION CALL:

infer.map_query([’E4’, ’E5’],

evidence={

’E1’: ’1’,

’E2’: ’1’,

’E3’: ’1’})

OUTPUT:

{’E4’: ’0’, ’E5’: ’1’}

PREDICTION:

{’E1’: ’1’, ’E2’: ’1’, ’E3’: ’1’,

’E4’: ’0’, ’E5’: ’1’} --> Failure F2

However, if occurrence of E1, E2, E3 and E4 are provided

as evidence then it correctly detects an invalid event since the

output does not match with any row in (1).

FUNCTION CALL:

infer.map_query([’E5’],

evidence={

’E1’: ’1’,

’E2’: ’1’,

’E3’: ’1’,

’E4’: ’1’})

OUTPUT:

{’E5’: ’0’}

PREDICTION:

{’E1’: ’1’, ’E2’: ’1’,

’E3’: ’1’, ’E4’: ’1’,

’E5’: ’0’} --> invalid event

If occurrence of events E2 and E4 are provided as evidence

then the BN predicts F3 as expected.

FUNCTION CALL:

infer.map_query([’E5’],

evidence={

’E2’: ’1’,

’E4’: ’1’})

OUTPUT:

{’E5’: ’1’}

PREDICTION:

{’E1’: ’0’, ’E2’: ’1’, ’E3’: ’0’,

’E4’: ’1’, ’E5’: ’1’} --> Failure F3

If events E1 and E3 are evidences, then F4 is predicted due

to its higher probability (Fig. 4).

FUNCTION CALL:

infer.map_query([’E4’, ’E5’],

evidence={

’E1’: ’1’,

’E3’: ’1’})

OUTPUT:

{’E4’: ’1’, ’E5’: ’0’}

PREDICTION:

{’E1’: ’1’, ’E2’: ’0’, ’E3’: ’1’,

’E4’: ’1’, ’E5’: ’0’} --> Failure F4

To predict F5, the query has to happen on the evidence that

E4 has occurred, since it is the only difference between F4

and F5, and E1, E3 and E5 have to occur. Doing so, the BN

predicts F5 correctly.

FUNCTION CALL:

infer.map_query([’E4’],

evidence={

’E1’: ’1’,

’E3’: ’1’,

’E5’: ’1’})

OUTPUT:

{’E4’: ’0’}

PREDICTION:

{’E1’: ’1’, ’E2’: ’0’, ’E3’: ’1’,

’E4’: ’0’, ’E5’: ’1’} --> Failure F5

IV. CONCLUSION AND FUTURE WORK

Failures in backbone optical networks can lead to major

disruption in internet traffic. Hence, prediction of such failures

can avoid such problems. This paper proposed an data aug-

mented BN to predict failures of networks node using some

information from logs and (qualitative) inputs from developers

on frequency of occurrence of failures. The conditional prob-

abilities of the BN is calculated after generation of failure

population applying a power law distribution of the failures

based on their frequency of occurrences. Results show that the

proposed node failure prediction mechanism is able to perform

with high accuracy.

Future work will extend the model to more nodes in the BN

and integrate this to the deployed network.
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