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Abstract—Musical instrument identification has for long had a
reputation of being one of the most ill-posed problems in the field
of musical information retrieval. Despite several robust attempts
made at solving the problem, a timeline spanning over the last five
odd decades, the problem remains an open conundrum. In this
work, we take on a further complex version of the traditional
problem, we attempt to solve the problem with minimal data
available - one audio excerpt per class. We propose to use a
convolutional Siamese network and a residual variant of the
same to identify musical instruments based on the corresponding
scalograms of their audio excerpts. Results obtained for two
publicly available datasets validate our algorithm, achieving over
80% accuracy with only 5 sets of training data. Moreover, our
proposed architectures work for both spectrograms as well as
scalograms, and exhibit improvements, albeit marginal (=~ 3%),
for the later input class.

Index Terms—Audio excerpts, scalogram, one-shot learning,
convolutional Siamese network.

I. INTRODUCTION

USICAL signal processing applications like automatic

music transcription, beat tracking and extraction of
melody from music [1] are increasing at a brisk pace. Mixing
of musical notes, instrument wise equalization, archiving and
cataloging also require proper identification of instruments.
The task can be quite challenging, for example, music gen-
erated in an orchestra is often a superposition of concurrent
notes, echos, and other background noise. The problem of
musical instrument classification is thus ill-posed and demands
application of sophisticated algorithms.

Deep learning (DL) algorithms based on convolutional neu-
ral networks (CNNs) are progressively being used for musical
instrument classification [2]. Recently, scalograms, instead
of traditional spectrograms, have been proposed for such
frameworks [3] to exploit the rich time-frequency localized
features. However, none of the existing works are directed
towards reducing the training data. This fact motivated the
authors to explore a CNN based Siamese network as it has
the potential to outperform several complex algorithms in
single-shot classification [4]. Nevertheless, scalogram based
one-shot classification task is unfrivolous as the scalogram
of the same instrument at two different notes (e.g. clarinet
notes G5 and F3) has a significant amount of difference while
different instruments of similar class (e.g. violin and viola)
have a striking similarity.

The problem of one-shot musical instrument classification
is fairly immature and has received limited attention by far.

In this paper, we present a deep convolution Siamese neural
network, and the residual network variant of the same, to
address this problem. Specifically, the major contributions of
this work are:

o A robust Siamese network architecture has been proposed
to classify the musical instrument in one-shot. Feasibility
of the network ensures that it is possible to obtain
appreciable accuracy despite the dearth of data.

o To reduce the number of parameters and thus the mem-
ory foot-print of these architectures, we also propose a
residual version of the proposed Siamese architecture.

o« We have tested the detection accuracy of both these
architectures on scalograms obtained for two openly
available datasets. Further, a comparative study of one-
shot classification with scalograms and spectograms is
performed to study how time-frequency representation
affects accuracy of the identification task.

The rest of the paper is organized as follows. Section II gives
a brief overview of the datasets used in our study and Section
IIT introduces the architectures. Next, Section IV presents
the experiments performed and their corresponding results.
Finally, Section V concludes the paper.

II. DATASETS

The music instrument datasets from Kaggle [5] and ISMIR
[6] are used as they satisfy the basic conditions such as trans-
parency, openness and proper annotations. Both the datasets
contain enough musical instruments for testing and training
our model.

We have taken the Morse analytic wavelet transform
for generating scalograms. The short-time Fourier transform
(STFT) suits better for non-stationary signals, while contin-
uous wavelet transform (CWT) gives high time-frequency
resolution and is better suited for analyzing signals that contain
non-periodic and fast transients features.

A. Dataset from Kaggle

The dataset [5] has been procured by recording 14 different
musical instruments for 1 s at a sampling rate of 44.1 kHz.
Table I gives the figures for class and categories of all the
instruments recorded.

Although the dataset contains 2500 audio signals, only 1540
audio excerpts were used as equal amount of data was required
for each instrument. Scalograms of size [224, 224, 3] produced
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Fig. 1. Schematic of the Siamese neural network architecture for musical instrument identification using scalograms.

TABLE I

INSTRUMENT SAMPLES IN KAGGLE DATASET

String

Brass

Woodwind

Bass[Double] (153)
Cello (227)
Guitar (420)
Viola (220)
Violin (560)

French Horns (166)
Saxophone [Alto] (480)
Saxophone [Soprano] (284)
Tuba (560)

Clarinet (481)
Flute (454)
Oboe (360)
Trombone (312)
Trumpet (246)

by CWT are fed to the proposed networks for training and
validation of one shot learning.

1) Dataset from ISMIR: The second dataset used for our
work is the open-source ISMIR dataset [6] which consists of
3 s long clips of various musical instruments sampled at 44.1
kHz. As shown in Table II, the dataset consists 6715 number
of audio data of 10 musical instruments. In order to maintain
consistency, 388 samples of each category of instruments (total
of 3880) were considered for training.

Cello (388)
Electric Guitar (760)

Trumpet (577)

TABLE II
INSTRUMENT SAMPLES IN ISMIR DATASET
String Brass Woodwind
Piano (721) Saxophone (626) Clarinet (505)

Flute (451)
Organ (682)

Violin (580)
Acoustic Guitar (637)

A major difference of the second dataset from the first one
is, apart from the signal of the primary instrument each audio
clip also contains notes from other instruments or human voice
in the background.

Similar to the previous dataset, scalograms are obtained for
each audio data of size [656,875,3]. We further resize these
images to size [224,224, 3] to obtain the final dataset that was
fed to the model.
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Fig. 2. Accuracy of training set with respect to epochs.

III. METHODOLOGY

A. Convolutional Siamese Network Architecture

Fig. 1 demonstrates the basic VGG type convolutional
network architecture in detail. We base our architecture on
deep Siamese (twin) networks which are congruent networks
tied by the same weights. When two networks are sharing
weights, it is expected that when the same image is passed
through both the networks, the corresponding feature maps and
hence the single dimensional feature vectors obtained at the
penultimate layer will be similar. We have used the difference
between the feature vectors as a weighted L1 distance in the
last layer, so that the last layer is sparse enough for easy
processing. Further, we use the sigmoid function to squash the
values of the elements of the last layer to [0, 1] and use it as a
probabilistic measure. The binary cross-entropy objective has
been used for training the model and the loss-epoch training
plot has been shown in Fig. 2.

The network takes input in the form of a pair of scalograms
(or spectrograms), each of which have dimensions [224 x 224 x

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science B@@galuru. Downloaded on May 24,2023 at 10:04:28 UTC from IEEE Xplore. Restrictions apply.



TABLE III
ACCURACY WITH KAGGLE DATASET

Training | Testing convolutional Siamese residual Siamese
data data Scalogram Spectogram Scalogram Spectogram
sets sets max | mean | max | mean | max | mean | max | mean
2 12 82% | 65% | 74% | 61% | 74% | 60% | 71% | 52%
5 9 82% | 69% | 76% | 63% | 84% | 70% | 79% | 64%
8 6 86% | 74% | 8% | 66% | 90% | 73% | 83% | 68%
10 4 86% | 75% | 80% | 69% | 94% | 81% | 89% | 78%
12 2 N2% | 78% | 82% | T3% | 96% | 94% | 89% | 84%

3]. The number of parameters of the network stands out at
=~ 420 million (420, 646, 209, to be exact). Thus, the network
can overfit to a large extent. This necessitates use of pairwise
training and dropout [7] to make the network robust. The
use of max-pooling layers after convolutional layers ensure
dimensionality reduction. This helps the network to focus on a
smaller subspace of the input data, and thus aiding in increased
classification accuracy and lower memory requirements. The
use of ReLU non-linearity [8] ensures that the activations
do not die out in deeper layers of the network. A popular
optimizer, Adam [9], has been used with a constant learning
rate of 6 x 10~* and with other default hyper-parameter values
to obtain an easy convergence.

B. One Shot Learning

Our problem can be mathematically expressed as follows.
Given the set of audio excerpts X, such that xi, xa, .... ,
Xy with corresponding elements x11, 12, ...

s L2y Lls Lk2y weee

> Llas 21, T22,
, Tk, are disjoint subsets of X, with

respective correspondence to the labels yi, y2, .... , yYr, We
wish to find a many-to-one mapping F(.) such that,
yil(i = j) = F(xip, 7q;O), (D

where, 7, j < k, y; is the true label corresponding to some x;,
€ x; € X, O represents the parameters of the network F(.),
and 1(.) is the indicator function.

The prediction vector (P) is given by,

P=o Z%‘
j

where, o(.) is the sigmoid function, -y; are additional weights
(parameters) of the network which are duly learned during
training, and M;(.) and Ms(.) are the two component net-
works of the Siamese network.

The procedure of learning adequate features from small
datasets is daunting and, at the same time, computationally
expensive. One shot learning is one such problem in which
predictions are made based on a single example. However,
once the network has been optimally trained, we are all set
to test and demonstrate the discriminative potential of the
network not just on new data but to data from unknown
distributions. Given a query scalogram z, and corresponding
scalograms X,’jjlc belonging to one of the C classes, we
predict the class C* in accordance to,

M, =M ||, 2)

3)

C* = arg max Py,
Xk

where, Py, is the prediction vector from (2).

C. Residual Siamese Network Architecture

Mathematically, for some part of a traditional deep CNN,
say « is the input and H(z) = F(z) is the output. Then,
incorporating skip connection, the input-output relation can
be expressed as,

H(z) = F(x) + «. 4)

Making networks go deeper, often makes them overfit on the
training set, resulting in poor performance on the test set.
Residual networks, powered by skip connections as shown
in (4), is able to realize the idea of deeper networks with a
lesser number of parameters. These networks also mitigate the
problem of vanishing gradients, a problem extremely common
to deep CNNss.

Taking an inspiration from [10], we modify our initially
presented architecture to contain residual connections. We find
that the number of parameters drop by 18 times to 23
million (23,553,025, to be exact), without any sacrifice in
accuracy. Like the basic convolutional Siamese network, we
use Adam optimizer but with a learning rate of 5 x 10~* while
all other hyper-parameters are set to their default values.

~
~

IV. EXPERIMENTS

The codes for the project were executed on two separate
systems for two separate tasks. Codes pertaining to the net-
work training and testing were written in the TensorFlow 2.0
environment on the Google Colaboratory and were executed
on a 12 GB Tesla K80 GPU. The codes have been made
available on a open-source repository [11]. Codes pertaining
to CWT of the audio excerpts for obtaining scalograms were
written and executed in MATLAB 2019b on a system with
64GB RAM and Intel-i7 core processor.

A. Dataset from Kaggle

To access and hence justify the potential of our algorithm,
we train the network on randomly chosen training sets which
are essentially subsets of the dataset. We randomly choose
2, 5, 8, 10, and 12 sets of training examples and test it the
network on the rest of the unknown audio examples.

Table III shows the accuracy obtained on the Kaggle dataset
upon using the two proposed networks, namely the VGG type
convolutional Siamese network and residual-convolutional
Siamese network (2 way one shot accuracy achieved after 4000
epochs on ). Even with just 2 training sets, we have a mean
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TABLE IV
ACCURACY WITH ISMIR DATASET

Training | Testing convolutional Siamese residual Siamese
data data Scalogram Spectogram Scalogram Spectogram
sets sets max | mean | max | mean | max | mean | max | mean
3 8 8% | 55% | 13% | 53% | 74% | 60% | 71% | 52%
5 6 82% | 60% | 76% | 59% | 78% | 61% | 73% | 54%
7 4 74% | 63% | 2% | 61% | 80% | 61% | 72% | 61%
9 2 8% | 61% | 76% | 64% | 82% | 64% | 78% | 63%

accuracy of around 65 %, which increases to more than 90 %,
when trained on 12 training sets.

B. Dataset from ISMIR

The ISMIR dataset is one of the few standard datasets in this
field for musical instrument classification and hence has been
studied thoroughly. Table IV shows the performance of the
networks under varied conditions of training and testing. While
best accuracy hovers around 80%, mean accuracy, more often
than comes out to be around 65%. Although our model do not
predict instrument classes more accurately than convention DL
models [12], these numbers are justifiably appreciable.

C. Discussion

From both datasets it was found that our proposed networks
can quite efficiently categorize a musical instrument from its
audio excerpt, even from a noisy version. It is important to
note that traditional DL based classification algorithms [13]
would achieve such prediction levels only when the network
has access to scalograms pertaining to all instrument classes.
Also, since the datasets were not manually screened for ill-
audio excerpts, which if done would have resulted in higher
accuracy, the difference in best accuracy and mean accuracy
is obvious. Fig. 3 sums up a comparative study against
synonymous baselines.
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Fig. 3. Comparing best one-shot accuracy from each type of network against
baselines.

V. CONCLUSION

In this work, we propose a novel single-shot musical in-
strument recognition algorithm. Given the fact that properly
annotated data for musical instruments is not cornucopious,

our proposed algorithm with its abundant pragmatism fits
right into the gap. We base our algorithm on convolutional
Siamese networks which in-effect study the similarities of
two given scalograms rather than memorizing the feature
spaces corresponding to scalograms of one particular musical
instrument. Our experiments show that we can achieve state-
of-the-art results even with just one audio excerpt example
per class. However, our network suffers a major drawback
in terms of network parameters, which although are low in
terms of memory utilization on GPUs but are not suited for
portable device applications. In our future work, we will try
to develop an online-learning method based on light-weight
convolutional or recurrent neural architectures which would
make this algorithm a perfect match with low-power portable
devices.
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