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Abstract—Fiber nonlinearities from Kerr effect are considered 
as major constraints for enhancing the transmission capacity in 
current optical transmission systems. Digital nonlinearity 
compensation techniques such as digital backpropagation can 
perform well but require high computing resources. Machine 
learning can provide a low complexity capability especially for 
high-dimensional classification problems. Recently several 
supervised and unsupervised machine learning techniques have 
been investigated in the field of fiber nonlinearity mitigation. 
This paper offers a brief review of the principles, performance 
and complexity of these machine learning approaches in the 
application of nonlinearity mitigation. 
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I.  INTRODUCTION 
Optical fiber communication systems, as a core part of 

telecommunications, are expected to operate at high data rate 
with maximal throughput and robust error resilience under 
ultra large bandwidth [1]. Fiber nonlinearities, as a result of 
Kerr effect where the refractive index varies with the intensity 
of the optical signals, are considered as the primary challenges 
in enhancing the overall capacity of the optical transmission 
systems. Fiber nonlinear impairments including self-phase 
modulation, cross-phase modulation and four-wave mixing 
cooperatively affect the evolution of optical spectrum, signal 
phase and pulse shape along the propagation, which will 
significantly degrade the performance of optical transmission 
systems [2]. 

Digital backpropagation (DBP) approach has been widely 
investigated due to its satisfactory performance in cancelling 
deterministic fiber nonlinearities by reversely operating the 
signal propagation [3]. However, there still exist stochastic 
impairments e.g. polarization mode dispersion, laser phase 
noise and signal-to-noise interactions that cannot be well 
compensated by DBP. More seriously, the complexity of DBP 
prevents its potential real-time implementation in FPGA and 
related hardware [4]. 

The exploding amount of data manifests the application of 
machine learning (ML) techniques on optical communication 
systems and networks. Due to the strength of ML techniques 
in recognizing underlying connections and hidden patterns 
from data without the need to acquire complicated 

mathematical models, it is prone to compensating stochastic 
distortions therefore an optimal solution for nonlinearity 
mitigation. Moreover, by learning characteristics of nonlinear 
impairments from the collected data at the receiver (Rx), ML 
techniques have great potential to compensate for stochastic 
nonlinearity-induced signal distortions while reducing the 
massive computing resource that DBP demands [5].  

In this paper, we review both established and emerging 
ML methods which have been applied to fiber nonlinearity 
mitigation in long-haul optical transmission systems. Neural 
networks (NN) and support vector machine (SVM) as 
supervised learning methods and K-means clustering as an 
unsupervised algorithm are discussed. We illustrate how these 
ML algorithms have been applied for nonlinearity mitigation 
in optical transmission systems and compare the performance 
of their applications under the metrics of bit error rate (BER), 
Q-factor and computational complexity. 

II. MACHINE LEARNING METHODS AND APPLICATIONS 
IN NONLINEARITY COMPENSATION 

In this section, we review NN, SVM for supervised 
learning and K-means for unsupervised learning applied in 
point-to-point optical communication systems.   

ML, when applied in nonlinearity compensation, is similar 
to digital compensation methods that equalizes the nonlinear 
effects at Rx side based on received symbols. Two major 
approaches are conducted: 1) to treat the received symbols as 
ordinary data samples and develop a ML model for symbol 
detection without considering system parameters; 2) to 
integrate fiber parameters into ML modeling, particularly 
input fiber parameters into neural network models [5]. The 
second approach utilizes more comprehensive knowledge of 
optical fibers and transmission systems. 

Here we consider an optical transmission system with 
coherent detection described as follows. Pseudo random bit 
sequence (PRBS) data are converted to quadrature amplitude 
modulation (QAM) optical signals using the in-phase and 
quadrature (IQ) modulator. These optical signals are then 
transmitted in the transmission fiber loop with erbium doped 
fiber amplifier (EDFA) to compensate for the fiber loss in 
each span. Coherent detection is employed at the Rx, and 
symbol detection is realized after the signal equalization e.g. 
CD compensation, NLC, ML, carrier phase estimation (CPE).  



Figure 1 illustrates a schematic diagram of the optical 
transmission system where blocks A, B and C denote ML 
applications for nonlinearity compensation at corresponding 
interfaces. Block B denotes the most prevalent scheme which 
blindly operates on received symbols as training data to 
generate the ML classifiers for symbol detection at the Rx end 

through training and execution period, the operation of which 
is also part of A and C.  Block A represents the type of ML 
equalization where the trained model is developed based on 
received symbols and applied at either transmitter (Tx) side or 
Rx side. Block C represents the type of ML technique applied 
at multiple stages of the digital equalization process. 

 

 
Figure 1.  Schematic of machine learning-assisted optical transmission system: Block A, B and C denote different ML application types. 

 

A. Neural Networks 
Artificial neural networks (ANNs) that simulate neurons 

for information processing has demonstrated widespread 
applicability during the past decade with its unique structure 
of multiple layer perceptron, hidden layer and activation 
functions [6]. In communication systems, they are beginning 
to demonstrate potential in improving the performance of sub-
systems. A typical deep neural network layout is depicted in 
Fig. 2: input nodes, output nodes with many intermediate 
hidden layers that consist of linear and nonlinear functions.  

 

 
Figure 2.  Deep neural network structure. 

Compared to the DBP, neural networks can significantly 
reduce the computational complexity [7]. NN models are 
usually generated as a black box with aforementioned two 
major ML approaches for NLC that are applicable for neural 
networks. For the first equalization approach, the NN design 
is independent of the optical physics and the architecture can 
be considered sub-optimal either from a physics or a 
neuroevolution sense, while the second builds transmission 
system parameters into the construction of the NN model. 
Even though a functional NN could be built to serve the 
classification purpose from the former approach, the 
simulation and experimental results of the latter has shown 
significant improvement. Kamalov et al. proposed an 

artificial-intelligence NLC (AI-NLC) algorithm considering 
“triplets” generated based on intra-channel cross-phase 
(IXPM) modulation and intra-channel four-wave mixing 
(IFWM) in time-domain perturbation pre/post-distortion 
(PPD) algorithm [9, 10]. Based on a similar concept of 
interpreting Tx symbols into input features fed into neural 
networks during training period, a field and lab experiment of 
nonlinearity compensation was conducted, and the obtained 
neural network model demonstrates the capability of being 
applied without the necessities of acquiring information of 
link parameters hence transparent to transmission systems. 
Also, a deep neural network structure was proposed by Häger 
and Pfister where linear and nonlinear functions of the deep 
neural networks were modeled based on the split-step Fourier 
method (SSFM) which is similar to a DBP structure by 
employing hidden layers as a substitution of the reverse SSFM 
for optical fibers which negate the nonlinear process with 
numerous steps for the sake of precision however with much 
less computing resource [7]. 

Due to the specific linear, nonlinear and layered indirect 
characteristics of NN, choosing appropriate activation 
function and loss function is also vital in achieving better 
performance for corresponding neural network models. 
However, the selection of the model appears to be case by 
case. Leaky RELU as an experimentally demonstrated 
example, gives the best performance under the NN 
configuration of [11], for which case the generated model can 
also be employed at either Tx or Rx with around 1dB Q-factor 
gain at Tx side compared to it employed at Rx side. 

B. Support Vector Machine 
SVM as a classic classification ML method that derives 

the largest margin i.e. largest support vector and finds a 
hyperplane to separate complex low-dimensional data where 
the distance from the separating hyperplane corresponds to the 
“confidence” of prediction [12]. Hinge loss and kernel method 
distinguish SVM from other ML techniques. Kernel method 
avoids complicated calculations when transforming data from 

 



low to high dimension and equivalency has been illustrated 
between data transformation and the inner product of the input 
vector with all support vectors [13].   

Figure 3(a) and Fig. 3(b) demonstrate the application of 
binary and multi-class SVM classifications on received 
symbols with nonlinear distortions under the modulation 
format QPSK at Rx side. The seemingly inseparable data is 
usually kernel-mapped to feature space to be separable and 
separated in high dimensions. Due to its robustness, SVM is 
believed to separate received symbols to correct 
classifications well during nonlinearity equalization process. 
An SVM classifier was first trained and applied in 
nonlinearity compensation for combating nonlinear phase 
noise in amplitude phase-shift keying (APSK) system [14]. 

 

 
Figure 3.  Schematic diagram of binary and multi-class SVM 

classification. 

Recently, five SVM methods including: 1) the one versus 
rest (OvR) where the multi-classifiers are built one by one 
considering the rest belonging to the other class with the 
concept of binary SVM; 2) the symbol encoding; 3) the binary 
encoding (BE) is based on whether each bit of label feature is 
0 or 1; 4) the constellation rows and columns (RC); and 5) the 
in-phase and quadrature components (IQC) were investigated 
and IQC indicates the optimal results among all five in terms 
of computing resource and hardware storage [15]. 

C. Clustering 
Clustering method as unsupervised learning groups 

unlabeled data and K-means algorithm is considered the most 
commonly used clustering algorithm by obtaining hard 
boundary after minimizing the cost function according to 
cluster assignments from received symbols with three steps: 
1) centroids initialization with randomized centroids of 
clusters; 2) cluster assignment based on minimal-distance 
principle; 3) moving centroids for updating and finalization 
with the goal of minimizing the objective function.	Since the 
constellation pattern of transmitted symbols is determined 
with modulation format, centroids initialization for optimal 
performance of the algorithm can be achieved with the 
number of centroids consistent with constellation points. The 
application of K-means algorithm in optical transmission 
system under QPSK is illustrated through Figure 4. As stated, 
the initialization of centroids is fixed according to modulation 
format and its constellation shape in Fig. 4(a). The centroids 
are then easily updated as seen in Fig. 4(b), and the updating 
process will be terminated after certain times of iteration while 

achieving a minimized objective function in Fig. 4(c). As can 
be seen K-means may not performed as supervised learning 
algorithm due to lacking training labels, its simplicity may 
bring practical benefits with real-time communications. 

A novel density-centroid-tracking (DCT) algorithm was 
then proposed to enhance the performance by centroids 
initialization where the centroids can be initially tracked by 
the density of received symbols due to the fact of the non-
convex squared error objective function of K-means [16]. A 
modified density-based spatial clustering of applications with 
noise (DBSCAN) algorithm was proposed [17]. This novel 
algorithm combines K-means clustering on the noisy un-
clustered symbols and surpasses conventional K-means and 
fuzzy logic C-means algorithms. Advanced algorithms e.g.  
Hierarchical and Fuzzy-logic C-means (FLC) demonstrate the 
applicability to practical single- and multichannel optical 
communications after being successfully applied inter-
disciplinarily [18]. Clustering algorithms can also be used in 
multiple stages of equalization introduced in [19], where K-
means and Gaussian mixture model (GMM) algorithms are 
distributed at polarization equalization, CPE and symbol 
detections stages jointly validating clustering method in 
enhancing nonlinearity mitigation at system-level.  

 

 
Figure 4.  Schematic diagram of K-means algorithm for clustering. 

III. PERFORMANCE AND DISCUSSION 
Table I summarizes the transmission performance 

improvement with ML methods introduced in section III and 
considers transmission rate, transmission distance, number of 
channels under the metrics of BER, Q-factor and complexity 
for nonlinearity mitigation.  

The performance of a technique based on supervised 
algorithm, Parzen window (PW), which classifies symbols at 
Rx side based on the labeled training data generated before by 
associating a label to each symbol, is also presented. It 
provides slightly better than SVM, as a two-step nonlinearity 
mitigation method is employed by first applying DBP for 
equalizing deterministic nonlinear effects and then combating 
stochastic nonlinearities with the PW algorithm [20]. 

 
 

 



TABLE I.  PERFORMANCE OF ML METHODS APPLIED FOR NONLINEARITY MITIGATION 

ML Algorithm 
Parameters 

Transmissio
n data rate 

Transmission 
distance 

Modulation 
Format 

No. of 
channels 

Performance 
metric Performance Improvement 

Supervise
d 

NN-LDBP 
[7] 

20Gbaud 3200km 16QAM 1 Q-factor and 
complexity 

3 steps per span (StPS) for LDBP is slightly 
(~0.1dB) better than 50 StPS in DBP 

NN-NLC 
[11] 32Gbaud 2800km 16QAM 1 Q-factor Pre-distort symbols at transmitter side 

improves with ~0.6dB 

SVM [15] 100.3Gb Back-to-back 64QAM 1 BER and 
complexity 

IQC method shows that BER improves to 
the order of 2 with the least complexity 
among other SVM methods 

PW [20] 224Gb 1600km 16QAM/64
QAM 1 Q-factor 

Dispersion unmanaged system and 
dispersion managed system with ~0.4dB 
improvement compared to systems without 
compensation techniques  

Unsuperv
ised 

K-means 
[16] 75Gb 80km 64QAM 1 BER Power penalty can be improved by ~2dB 

with DCT equalizer at BER 10-3 
 

IV. CONCLUSION 
In this paper, the recent progress on ML based nonlinearity 

compensation is reviewed. Even though ML methods have 
shown performance improvements at blind symbol detection 
at Rx side, but do not necessarily have an advantage over 
physics-based DSP approaches. Nonetheless, there is reason 
to be hopeful that ML models will bring its superiority into 
full play when developed by integrating the optical 
impairment physics. We believe that the benefits ML brings 
to optical communications will become more and more 
significant with the rapid growth in exploding data volume. Its 
potential in detecting inherent connections of data is 
undeniable when traditional signal processing analysis is not 
capable in some scenarios such as combating stochastic 
impairments in optical communication systems. 
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