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Abstract—In this paper, a two-stage BEM-OTFS channel 

sparse Bayesian learning (SBL) estimation algorithm is proposed 

to address the problem of increasing error of the compressed 

sensing channel estimation algorithm at low resolution when 

OTFS is embedded in the pilot frequency mode and the pilot 

frequency overhead is too large. The algorithm uses a complex 

exponential basis expansion model (CE-BEM) at the transmitter 

side to design a design mode with lower pilot overhead, and a 

linear solution is used to obtain the roughly estimating channel 

matrix. After detecting the rough estimated channels, some of data 

symbols detected are used as pseudo-pilot for the second stage 

estimation. In the second stage, a sparse expression about the basis 

parameters is constructed using the discrete prolate spheroidal 

basis expansion model (DPS-BEM), which is solved by the SBL 

algorithm to calculate a more accurate channel after the sparse 

Bayesian learning (SBL) algorithm. The simulated numerical 

analysis shows that the present algorithm has ideal performance 

for OTFS symbols with lower Resolution, which is better than the 

SBL algorithm which is based on the DD domain pilot input-

output relationship in general. Meanwhile, the present algorithm 

also has some advantages in spectral efficiency.  

Keywords—sparse Bayesian learning, basis expansion model, 

embedded pilot design 

I. INTRODUCTION  

The proposed planning of 6G network in [1] contains 
requirements for intelligent three-dimensional communication 
established in the full frequency bands everywhere in air, sky, 
earth, and sea, which includes intelligent three-dimensional 
communication proposed for high-speed mobility management, 
and higher requirements for signal reliability in different types 
of communication scenarios. Orthogonal Frequency Division 
Multiplexing(OFDM) technology is widely used in current 5G 

communication, and many researchers have proposed different 
OFDM modulation and demodulation schemes for different 
channel environments. However, OFDM often needs to 
consume a certain number of protection intervals and cyclic 
prefixes in the face of time-frequency double-selected channels, 
and its demodulation process also needs to face problems such 
as excessive complexity and estimation of the corresponding 
guide frequency design affected by the symbol alignment. 

In 2017, R HADANI proposed orthogonal time frequency 
space (OTFS) modulation technique [2] as the main modulation 
alternative to OFDM in the future. It arranges the signals in a 
specific Delay-Doppler (DD) domain, where each symbol is 
represented by a pair of orthogonal basis functions in the time-
frequency domain, and the time delay under multipath channels 
as well as the Doppler frequency shift in the DD domain will 
lead to a shift in the delay domain and the Doppler domain, 
respectively, which greatly improves the spectrum utilization 
and estimation accuracy of OTFS in the demodulation process. 
Therefore, research on OTFS is emerging, and many researchers 
are exploring OTFS channel characteristics to meet the 
requirements of 6G communication scenarios.  

Many researchers have used the sparse property of double-
selected channels under OTFS modulation for this purpose and 
applied compressive sensing to their channel estimation. Among 
them, Sparse Bayesian Learning (SBL), as one of the methods 
of sparse channel information recovery algorithms, is widely 
used in OTFS channel estimation because it does not require 
setting regularization parameters. For example, [3] proposed a 
method for estimation by sparse Bayesian under embedded 
guide frequency. In [4], a Bayesian estimation algorithm using 
multiple measurement vectors is designed by subspace channel 
estimation method, and then the team in [5] improves the 
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Bayesian estimation algorithm using row and group sparsity 
properties and applies it to MIMO channels. Then [6] uses 
block-sparse Bayesian estimation in MIMO scenarios and 
combined it with block reorganization to obtain better channel 
estimation accuracy by updating the size of non-sparse blocks at 
iteration time. [7] explores the Doppler-angle domain in terms 
of a local β-process to make it transformed into a sparse signal 
solution problem and follows this with sparse Bayesian 
estimation for large-scale MIMO uplinks. 

Although the SBL algorithm has achieved some results in 
OTFS channel estimation, it is limited by the coding and 
decoding process. Usually the actual solution process obtains an 
approximation and does not solve the true fractional Doppler 
offset, and its effect will be greatly reduced when the OTFS 
frame grid size is small. In addition the actual double-selected 
fading channel causes signal frequency and phase variations due 
to the propagation distance difference problem, called Doppler 
expansion,  few studies have proposed solutions for it. 

Basis expansion model (BEM) parameterizes the time-
varying channel as a weighted combination of basis functions to 
reduce the number of unknown channel coefficients, thus 
improving spectral efficiency, and is widely used in OFDM 
high-speed scenarios. However, the application of BEM in 
OFDM faces weaknesses such as restricted model usage 
conditions and difficulties in modeling in millimeter wave 
environment. To this end, this paper investigates the SBL 
algorithm based on the BEM-OTFS modeling environment and 
designs an algorithm to save the guide frequency overhead in 
this environment. 

II. OTFS SYSTEM MODEL 

The Modem link of OTFS model is shown in Fig 1. 
Assuming that binary symbols are passed through mQAM or 
𝑚PSK(𝑚 denotes the number of mapping orders and 𝑚 ≥ 2) 
and mapped as 𝑀𝑁  data symbols arranged in DD domain. 
OTFS symbols are arranged in a grid size of 𝑁 ×𝑀, the spacing 
of delay axis and  doppler axis of each grid areΔ𝜏 = 1 (𝑀Δ𝑓)⁄  
and Δ𝜐 = 1 (𝑁𝑇)⁄  respectively, where 𝑁  and 𝑀  denotes Grid 
size of the Doppler and time-delay domains in the DD domain 
respectively. 
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Fig. 1. OTFS channel model 

The ranked signal is following inverse symplectic finite 
Fourier transform (ISFFT) and Heisenberg transformed to 
obtain the time domain transmit signal 𝑠(𝑡). Then it is converted 
to a receiver-side signal 𝑟(𝑡) after suffering multipath double-
selected fading channel 𝐇 and additive Gaussian white noise 𝐰. 
After receiver’s wigner transform and symplectic finite Fourier 
transform (SFFT), DD domain signal 𝑦𝐷𝐷(𝑘, 𝑙) can be received. 

The vectorized expression of the input-output relationship 

can be written as: 𝐫 = 𝐇𝑡𝐬 + 𝐰,where 𝐇𝑡 ∈ ℂ
𝑀𝑁×𝑀𝑁

 denotes the 
time domain channel matrix, which its specific structure is 

shown in Equation (1),where ℎ[𝑡, 𝑙′] denotes  The channel gain 
at the 𝑡-th moment under the 𝑙′-th normalized delay, and  𝑙′ =
0,1… . , 𝐿 , 𝐿  denotes the maximum normalized time delay. 
Usually, the maximum normalized delay 𝐿  is known at the 
receiver side for a given channel environment. 

𝐇𝑡 =

[
 
 
 
 
 
ℎ[0,0] 0 0 ⋯ ℎ[0,2] ℎ[0,1]

ℎ[1,1] ℎ[1,0] 0 ⋯ ⋮ ℎ[1,2]

⋮ ℎ[2,1] ⋱ ⋱ ℎ[𝐿 − 2, 𝐿] ⋮

ℎ[𝐿, 𝐿] ℎ[3,2] ⋮ ⋱ 0 ℎ[𝐿 − 1, 𝐿]
0 ⋮ ⋮ ⋮ ⋱ 0
⋮ 0 ⋮ ⋮ ℎ[𝑀𝑁, 1] ℎ[𝑀𝑁, 0] ]

 
 
 
 
 

 (1) 

The delay and doppler offsets of the 𝑖-th path under the DD 
domain grid are 𝑙𝑖 = 𝜏𝑖 ×𝑀Δ𝑓 and 𝑘𝑖 = 𝜐𝑖 × 𝑁𝑇respectively. 
Meanwhile, the maximum delay and the maximum Doppler 
shift of the channel in the DD domain can be written as 𝑙𝜏 =
𝜏𝑚𝑎𝑥 ×𝑀Δ𝑓  and 𝑘𝜐 = 𝜐𝑚𝑎𝑥 × 𝑁𝑇  respectively. Usually the 
actual number of paths 𝐿 ≤ 𝑃 ≪ 𝑁 ×𝑀  , and the sampled 
values can be compressed, so there is sparsity in OTFS. 

III. TWO-STAGE CHANNEL ESTIMATION ALGORITHM BASED 

ON BASE EXPANSION MODEL  

A. Pilot Design And Linear Estimation Based On CE-BEM 

the expression of 𝐇𝑡 after BEM modeling can be written as：

𝐇𝑡 = ∑ diag{b𝑞}𝐂𝑞
𝑄
𝑞=0 + 𝐄𝑚𝑜𝑑 ,where b𝑞  denotes the 𝑞 -th 

basic function vector, which its values are related to the type of 
model used. The 𝑞-th basis function vector of CE-BEM, for 

example, is b𝑞 = [1, 𝑒
𝑗𝜔𝑞 , … , 𝑒𝑗𝜔𝑞(𝑀𝑁−1)]

𝑇
;𝐄𝑚𝑜𝑑  denotes the 

modeling error of the base expansion model, which is related to 
the model selection. The size of 𝜔𝑞  determines the type of 

BEM. 𝒄𝑞 = [𝑐𝑞[0], 𝑐𝑞[1], … , 𝑐𝑞[𝐿]] denotes the 𝑞-th unknown 

BEM parameter vector.𝑐𝑞[𝑙
′], 𝑙′ = 0,1,2, . . , 𝐿 denotes the BEM 

confident of 𝑙′-th delay taps. 𝑄 denotes the order of BEM, which 
determines the modeling size. The size of 𝑄  varies with the  
resolution 𝑅 .Typically it has the lower limit 𝑄 ≥ 𝑅𝑁[𝑓max Δ𝑓⁄ ], 
where 𝑓max Δ𝑓⁄  denotes the biggest doppler spread with 𝑓𝑚𝑎𝑥 
under the subcarrier spacing Δ𝑓 .The conversion expression 
between 𝐜𝑞 and its matrix structure of 𝐂𝑞as shown in (2),where 

𝐜𝑞 = [𝑐𝑞[0], 𝑐𝑞[1],… , 𝑐𝑞[𝐿]]
𝑇

, 𝑐𝑞[𝑙
′], 𝑙′ = 0,1,2, . . , 𝐿  denotes 

the cofficient of   𝑙′-th delay taps,which is the value to be solved 
in the channel estimation process. Thus, the number of unknown 
parameters to be solved using BEM channel estimation is 
reduced from𝑀𝑁 to (𝑄 + 1)(𝐿 + 1). 

𝐂𝑞 = 𝑭𝑀𝑁
𝐻 diag{𝑭𝑀𝑁×𝐿𝒄𝑞}𝑭𝑀𝑁

= circ {𝑐𝑞[0], 𝑐𝑞[1], … , 𝑐𝑞[𝐿], 0, … ,0}⏟                  
(𝐿+1)(𝑄+1)

 (2) 

 Considering the problem that the usage of BEM modeling 
methods should ensure a lower pilot overhead compared to [8], 
there is a two stage estimation algorism is designed. The 
detection is performed on the basis of the previous CE-BEM and 
the results are used as pseudo-pilots to achieve spectral 
occupancy reduction. The second estimation of which uses 
DPS-BEM as a modeling method, whose basis function has a 
stronger energy concentration , difficult to cause significant 
frequency leakage and adaptable in high doppler environments 
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compared to the former,[9]. And the structure schematic of the 
whole algorithm is shown in Fig 2.  

CE—BEM
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Data 
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DPS-BEM

Based SBL 
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Data 

Detection

0ĥ
0x̂ ĥ x̂

 

Fig. 2. Two-Stage BEM algorithm Principle diagram 

 Let the CE-BEM order of the first stage is 𝑄𝑠 = 𝑁[𝑓𝑚𝑎𝑥 ∕
Δ𝑓].therefore ,the Tx symbols in DD domain and estimation 
area as shown in Fig 3, and let the area of second stage 
estimation is 𝐲𝑝2.With the help of CE-BEM framework from 

[10],and considering 𝑁𝑝𝑀𝑝 pilots’ input-output relationship  in 

the area of size ℂ(𝑁𝑝+𝑄𝑠)×(𝑀𝑝+𝐿) of 𝐇, the 𝑙′-th basis coefficient 

of CE-BEM can be solved by (3), and then 𝐂̃q
0 and 𝐇̃0 can be 

solved . 

0

N

M

p sN Q+

pM L+L
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Datas Guards Pilots

First stage estimate Second stage estimate
 

Fig. 3. Tx symbols in DD domain and estimation area 

 𝐲𝑝2  is constructed as shown in Equation(),where 𝐱̂1
0  and 

𝐱̂2
0 denotes data symbols in matrix 𝐱̂0  recovered by the first 

detection in its 𝑘 ∈ (1: 𝑘𝑝 − 𝑄𝑠, 𝑙𝑝: 𝑙𝑝 + 𝑙𝜏)  and 𝑙 ∈ (𝑘𝑝 +

𝑄𝑠: 𝑁, 𝑙𝑝: 𝑙𝑝 + 𝑙𝜏) respectively. 

𝐲𝑝2 = [𝐱̂1
0𝑇, 𝐲𝑝1

𝑇, 𝐱̂2
0𝑇]

𝑇

 (4) 

B. Sparse Bayesian learning based on DPS-BEM  

Before utilizing Sparse Bayesian learning algorithm, the 
DPS-BEM is first introduced. Let the order under the DPS-BEM 
estimation be 𝑄𝐿 = 4𝑁[𝑓𝑚𝑎𝑥 ∕ Δ𝑓].The acquisition of the basis 
functions of the DPS-BEM requires first establishing the kernel 

functions𝕰 ∈ ℂ𝑀𝑁×𝑀𝑁 ,the [𝑛,𝑚] element calculating formula 
of 𝕰  is:  

 𝔈[𝑛,𝑚] =
sin[2𝜋(𝑛 −𝑚)𝑓𝑑𝑇𝑠]

[𝜋(𝑛 − 𝑚)]
 (5) 

Where 𝑛,𝑚 = 0,1. . . , 𝑁 × 𝑀.Then 𝐁𝑡, the eigenvector group of 
𝕰 can be solved, and the basis function matrix 𝐁 by extracting 
first 𝑄𝐿 + 1 vector of 𝐁𝑡. That is 𝐁 = 𝐁𝑡(: ,1: 𝑄𝐿 + 1). 

To facilitate the next analysis, the channel link matrix needs 
to be redescribed by the BEM modeling idea, which transforms 
the original underdetermined problem of channel estimation into 
an overdetermined problem of sparse signal recovery. Therefore, 
in order to match symbols of 𝐲𝑝2 , Let the pilot offset is on the 

range in  delay domain is 𝑀DPS = 𝑙𝜏est + 1, the basis function 

matrix corresponding to compressed sensing, that is 𝐁𝑝𝑖𝑙𝑜𝑡 =

[𝐛0
𝑝𝑖𝑙𝑜𝑡

, 𝐛1
𝑝𝑖𝑙𝑜𝑡

, . . , 𝐛𝑄
𝑝𝑖𝑙𝑜𝑡

] , where 𝐛𝑞
𝑝𝑖𝑙𝑜𝑡

 can be obtained by 

truncate the first 𝑄𝐿 + 1 column elements of 𝐛𝒒
𝑝𝑖𝑙𝑜𝑡

, that is: 

Firstly, considering the channels under each time delay tap 
𝐿  as it respective independent linear time-varying channels 
according to the BEM expression (6), that is 𝐡(: , 𝑙) =
(ℎ[0, 𝑙], ℎ[1, 𝑙], … , ℎ[𝑀𝑁 − 1, 𝑙])𝑇 ∈ ℂ𝑀𝑁×1 .The resulting 
BEM modeling of the matrix yields: 

 𝐡(: , 𝑙) = ∑ b𝑞(: , 𝑞)𝐜𝑞(𝑞, 𝑙)

𝑄

𝑞=0

 (7) 

Following the structure of 𝐡  , from 𝐲𝑝2 ,let each Column 

vectors of 𝐲𝑝2  are 𝐱̂𝑝
1(: ,𝑚),where 𝑚 = 1,2, … ,𝑀DPS ,and then 

each 𝐱̂𝑝
1(: ,𝑚)  can be constructed as a circular matrix  𝚫𝑖 =

𝑐𝑖𝑟𝑐[𝐱̂𝑝
1(: ,𝑚)𝑇],which is shown as (8).  

 𝐖𝑙 = (

𝚫1
𝚫2

⋱
𝚫𝑀

) ∈ ℂ𝑀DPS𝑁×𝑀DPS𝑁 (8) 

Utilizing the matrix 𝐖 = [𝐖0,𝐖1, … ,𝐖𝑙 , … ,𝐖𝑙𝜏est
] ∈

ℂ𝑀𝑁×𝑀𝑁(𝑙𝜏est+1), The observation matrix expression can then be 
derived as: 

 𝐀 = 𝐖(𝐈𝑀DPS⊗𝚿) (9) 

Where 𝚿 = 1 √𝑁⁄ (𝐅𝑁⊗ 𝐈𝑀DPS)𝐁𝑝𝑖𝑙𝑜𝑡 , 𝐅𝑁 is the 𝑁-order DFT 

matrix. Therefore, the sparse DPS-BEM input-output relation 

for OTFS receiver can be written as： 

 𝐲𝑝 = 𝐀𝐜DPS +𝐰𝑝 (10) 

Among them, 𝐜DPS = [c0
𝑇 , c1

𝑇, . . . , c𝑄𝐿
𝑇]
𝑇

 denotes BEM 

coefficient vectors to be solved in the sparse expression. In  the 
response of the biggest delay we assumed in pilot design is lower 
than actual biggest delay 𝐿 ,therefore BEM most of taps 
coefficients of 𝐜DPS  can be regarded as 0 except only 𝐿  taps 
exist larger parameters. Thus, the BEM modeling solution 

 
c̃q
0[𝑙′] = ∑

𝑦[𝑘, 𝑙]

𝑥𝑝

𝑀𝑝

𝑖𝑘=0

𝑒−𝑗2𝜋
𝑞′(𝑙+𝑖𝑘)
𝑀𝑁  

𝑘 = 𝑘𝑝 − 𝑁𝑝 2⁄ + 𝑞′, 𝑙 = 𝑙𝑝 + 𝑙
′ 

(3) 
 

𝐛𝒒
𝑝𝑖𝑙𝑜𝑡(𝑀DPS(𝑖 − 1) + 1:𝑀DPS𝑖 + 1) 

= 𝐛𝑞
𝑝𝑖𝑙𝑜𝑡

(𝑙𝑝 +𝑀𝑖: 𝑙𝑝 + 𝑙𝜏est +𝑀𝑖) 
(6) 
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problem is converted into a sparse signal solution problem, and 
the basis parameter vector 𝐜 will be solved next from the sparse 
solution perspective. 

Sparse Bayesian learning is based on statistical assumptions 
on sparse signals, where the signals are considered to be 
probability distributions in a finite dimensional space. These 
assumptions usually involve prior distributions of signals and 
sparsity constraints. According to [11] , [12] and [13],The 
principle of sparse Bayesian estimation is as follows. 

Assuming the actual channel noise  𝐰 ∼ 𝐶𝑁(0, 𝛿2𝐈𝑀𝑁) , 
where 𝐶 is the of 𝐰, and 𝑁(·) denotes a Gaussian distribution 
with mean 0 and variance 𝛿2.Considering in other SBL algorism 
the equivalent channel matrix to be solved  𝐡 obeying Gaussian 
distribution with mean 𝐀 and variance 𝛿2𝐈𝑀𝑁 ,the conditional 
probability distribution of 𝐜DPS can be decomposed as: 

p( 𝐜DPS ∣∣ 𝚪 ) = ∏  𝑝(𝑐𝑙 ∣ 𝛾𝑙)

(𝐿+1)(𝑄𝐿+1)

𝑙=1

 

 = ∏ 𝐶𝑁(𝑐𝑙; 0, γ𝑙
−1) 

(𝐿+1)(𝑄𝐿+1)

𝑙=1
 

   
(11) 

Where 𝚪 = diag{γi}i=0
L−1 ∈ ℝ𝐿×𝐿 is a hyperparameters vector, of 

which element γ𝑖 ,the 𝑖-th symbol corresponding to 𝑐𝑖, is the 𝑖-
th value of 𝐜.Meanwhile,𝐿 is the magnitude of observation value, 
which is used as observation vector through the iterating process. 
Assuming that 𝚪 obeys gamma distribution and is constrained 
by the shape parameter 𝑎  and the inverse scale parameter 𝑏 , 
their values need to be initialized before estimation, and usually 
the initialized values are related to the signal-to-noise ratio and 
the signal power. 

It’s worth noting that above we resolved is basic basis 
coefficient vector 𝐜 after BEM modeling instead of equivalent  
channel vector 𝐡 .Each c𝑖  of 𝐜DPS  are jointly controlled by 
Laplace prior with hyperparameter λ [14], that is 𝑝(c𝑖|λ) =

Laplace(0, 1 √𝜆⁄ ) ,where the size of  𝜆  is set as 10−4 .So 

combining the Bayesian hierarchical modeling of each stage, the 
joint probability density function about the whole variable can 

be obtained (PDF）： 

 𝑝(𝐜) = 𝑝(𝐜 ∣ 𝐲𝑝, 𝚪, γ0) = 𝑁(𝐜 ∣ 𝝁, 𝚺) (12) 

Where (𝐜 ∣ 𝝁) and 𝚺 denotes mean vector and variance matrix 

of corresponding mean vector and variance matrix, and its 

expression can be obtained as:𝝁 = 𝚺𝐀H𝐘 ∈ ℂ𝐿×1 and 𝚺 =
(𝐀H𝐑v

−1𝐀 + 𝚪−1)−1 ∈ ℂ𝐿×𝐿.Calculating 𝝁 needs to have 𝚪 and 

γ0 firstly. For this reason, using expected to maximize (EM) 

algorithm solution, the formula is expressed as: 

 (𝚪
new, γ0

new) = argmax
𝚪,γ0

𝐸{ln𝑝(𝐘, 𝐜, 𝚪, γ0)} (13) 

According to [15], 𝚪new and γ0
new can be solved as shown in 

the equation (14). 

 {𝛾i
new =

√1 + 4𝜆(𝚺[𝑖, 𝑖] + 𝝁2[𝑖]) − 1

2𝜆
𝚪new = 𝚪new ∪ 𝛾i

new

 (14) 

However, after the iterative process finished, 𝐜̃DPS  is not 
sparse. Therefore, we need to extract the parameters from 𝚪 by 
threshold determination of 𝑖 -th element  𝚪[𝑖] , as shown in 
equation (16).  

 𝑐̃𝑖 = {
𝝁(𝑗), 𝚪[𝑖] ≥ 𝜀𝑐
0     , 𝚪[𝑖] < 𝜀𝑐

 (15) 

Where the size of 𝜀𝑐is planned according to the size of  𝐜̃DPS, to 
ensure that each  𝑐̃[𝑗]  obtained matches the actual channel 

environment and is sufficiently sparse. Then 𝐇̃ can be recovered 

by 𝐜̃ and 𝐁DPS−BEM, and 𝐗̃ can be recovered by 𝐘. The above 
sparse SBL-based BEM-OTFS channel estimation algorithm is 
as follows: 

Algorithm 1 SBL-Based Channel Estimation Algorithm 

Input:𝐘,𝛟, 𝑃, 𝐿, 𝑄. 

Output: Channel basis parameter matrix 𝐜̃DPS 
Initialize :γ0, 𝚪, 𝚪

new, a, b, j = 0 

While not satisfied:1. 
∥∥𝚪new−𝚪∥∥2

2

∥𝚪∥2
2 < 1e − 5 and 2. 𝑗 ≥ 500 then 

        𝚪 = 𝚪new 

𝝁 = 𝚺𝐀H𝐘p  

𝚺 = (𝐀H𝐑v
−1𝐀 + 𝚪−1)−1  

γ0
new =

2𝑎−2+𝑃

2𝑏+𝔼{‖𝐘−𝛟𝝁‖2
2}

  

For 𝑖 = 1: (𝐿 + 1)(𝑄𝐿 + 1) 

            𝛾𝑖
new =

√1+4λ(𝚺[𝑖,𝑖]+𝝁2[𝑖])−1

2λ
 

            𝚪new = 𝚪new ∪ γi
new 

End for 

𝑗 = 𝑗 + 1  

End while 

Get the vector of basis parameters to be solved 𝐜̃DPS from 𝝁 by equation (16) 

IV. SIMULATION RESULTS 

 In this section, we use 3GPP TS 36.141 extended vehicular 
A(EVA) model 0 to simulate. The communicating system 

parameters of the simulation process  as shown in table Ⅰ. 

TABLE I.  SYSTEM SIMULATION PARAMETERS 

Parameter Index 

Carrier frequency 4GHz 

Subcarrier spacing 15KHz 

N 128 

M 64 

Vehicular speed 700km/h 

Pulse type rectangular pulse 
Mapping 4QAM 

 In the two-stage estimation algorism. the Massage 
passing(MP) algorism[16] can be used to recover symbols. And  
in order to Compare the practical performance of channel 
estimation in communication systems, both the SBL algorithm 
and the orthogonal matching tracking (OMP) algorithm with a 
similar pilot design mode as in [3] are used for simulation. And 
in order to verify SBL performance, let OMP algorithm applied 
in the two-stage method. The simulation results are shown in 
Figure 4 and Figure 5. 
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Fig. 4. NMSE variation curve with SNR for four algorithms 

 

Fig. 5. NMSE variation curve with SNR for four algorithms 

From the two curves, although the performance has been 
weakened a lot, the error of two-stage algorism is lower than that 
constructed sparsity in DD domain. It can be seen that The Two 
stage-based OMP algorithm and SBL algorithm have been 
significantly improved in performance. And SBL algorithm in 
BEM has a better performance in the above. The proposed two-
stage SBL algorism has better performance than those three 
algorisms. 

V. CONCLUSION 

In this paper, we propose a two-stage BEM-OTFS SBL 
channel estimation algorithm to solve the problem of decreasing 
estimation accuracy of compressed sensing based OTFS channel 
estimation algorithm at low resolution, and the algorithm uses 
CE-BEM-based Coarse estimation combined with symbol 
detection to establish pseudo-pilots, and has the same estimation 
accuracy while reducing the algorithm leading frequency 
overhead. The Bayesian learning algorithm is applied to the 
proposed BEM-OTFS channel estimation by establishing 
sparsity using the method of setting the maximum delay about 
guard intervals much larger than the actual maximum delay. 
Simulation results show that this algorithm has a more 

promising estimation performance than the SBL and OMP 
algorithms on the DD domain at a lower resolution. 
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