
Sessink ODT, Beeftink HH, Tramper J, Hartog RJM (2003) Author-Defined Storage in the Next Generation Learning Management
Systems. Proceedings of the Third IEEE International Conference on Advanced Learning Technologies (ICALT), 2003, pp. 57-61

Author-Defined Storage in the Next Generation Learning Management Systems

Olivier Sessink, Rik Beeftink, Johannes Tramper, Rob Hartog

Olivier Sessink, Rik Beeftink, Johannes Tramper
Food and Bioprocess Engineering Group

P.O. Box 8129 6700 EV
Wageningen University, The Netherlands

Olivier.Sessink@wur.nl, Rik.Beeftink@wur.nl, Hans.Tramper@wur.nl
++31 (317) 483229, ++31 (317) 482237 (fax)

Rob Hartog
School of Technology and Nutrition

P.O. Box 8128 6700 ET
Wageningen University, The Netherlands

Rob.Hartog@wur.nl
++31 (317) 483408 / ++31 (317) 483158 (fax)

Abstract

One of the current trends in E-learning is the
development of student-activating learning material. In
four research projects aiming at the design of high quality
learning material, a large body of student-activating
learning material is being developed. During the
development of this learning material, the limitations of
the current generation learning management systems
became obvious. The forthcoming SCORM 1.3 standard
will resolve some of these limitations, but we have
identified six additional functional requirements. The
learning management system should enable adaptivity,
the retrieval of history and state, comparison of results,
tracking for pedagogical research, shared reference
databases, and problem scenario databases. Each
requirement will be illustrated with examples from
learning material developed in one of the research
projects. Also an overview is given of temporary
workarounds we have developed to deploy this learning
material in the current generation of learning
management systems. However, we argue that future
learning management systems with an author-defined
storage facility will satisfy all six requirements.

Introduction

One of the current trends in E-learning is the
development of student-activating learning material. In the
Food and Biotechnology (FBT) program at Wageningen
University, a large body of digital learning material is
being developed. Most courses are supported by simple
static objects, but in four research projects more advanced
learning material is being developed [7]. One of the results
of these projects is the articulation of new requirements
for a next generation of learning objects as well as
learning management systems. These projects aim to
exploit the pedagogical possibilities of digital learning
material, resulting in the development of activating
learning material [2]. This learning material has been used
for the last years and is appreciated both by students and
lecturers [4][5][6]. Most of the student-activating learning
objects, developed in these four research projects, process
data, and these data are often related to a user action (e.g.
a mouse click in a specific region or text submitted in a
form). We will call these objects active objects.

One of the results of these research projects is a highly
increased awareness of the limitations of the current
generation learning management systems (LMSs). Future
learning management systems are likely to implement the
forthcoming SCORM 1.3 specification with the Simple
Sequencing Specification from IMS [1]. Once learning
management systems support SCORM 1.3, some of the
most pressing shortcomings will be resolved, but six

Sessink ODT, Beeftink HH, Tramper J, Hartog RJM (2003) Author-Defined Storage in the Next Generation Learning Management
Systems. Proceedings of the Third IEEE International Conference on Advanced Learning Technologies (ICALT), 2003, pp. 57-61

requirements will remain. The LMS should enable
adaptivity, retrieval of history and state, comparison of
results, tracking for pedagogical research, a shared
reference database, and a problem scenario database. This
paper will give an overview of these requirements, and
why each of the requirements is neither met by the current
generation LMSs nor by the SCORM 1.3 standard. Each
requirement will be illustrated with examples from
learning material developed in one of the research
projects. Next, the paper will give an overview of
workarounds we have developed to deploy this learning
material in the current generation of learning management
systems. Finally, the paper will describe a single solution
for all requirements, the author-defined storage. This is a
database where the data structure is to be defined by the
author. We will argue that future standards should include
this feature to overcome the mentioned problems when
deploying advanced learning material.

Adaptivity

“Adaptive systems cater information to the user and
may guide the user in the information space to present the
most relevant material, taking into account a model of the
users goals, interests and preferences” [3]. In an
educational context, the users competence levels are also
part of the model and the model is called a student model.
In demo site [7d], a student model for the process
engineering knowledge domain has been developed. The
learning material can raise or lower the levels of
competences in the student model based on the interaction
with the student. In the navigation overview, the data in
the student model are used to inform the student if a
document fits his competences. This helps students to
quickly find their way through the material, thus limiting
the time spent on searching, and maximizing the time
spent working with the learning material.

Figure 1. The document overview; on the left
for a student educated in membrane

technology, on the right for a starting student.

The combination of Simple Sequencing and the CMI
model in SCORM 1.3 does facilitate limited adaptivity.

However, the only available data for the user model are
the data in the fixed CMI model. The data that can be set
by the active learning objects are also limited to the CMI
model. Alternative or more complex approaches to
adaptivity such as described above are therefore not
possible within SCORM 1.3.

Retrieving history and state

We have developed learning objects that need to
retrieve their state history, or the state history of other
objects, in order to initialize themselves. In demo site [7a],
a tool has been developed with which students should
design a downstream processing chain. Downstream
processing is a series of steps in which a product is
purified. Students work several days with this tool to carry
out several assignments. It is essential that they can
compare designs with other designs from previous days or
previous assignments [4]. This tool therefore needs a
storage facility, so the student can retrieve previous
designs.

Figure 2. The downstream process designer, a
learning object that stores and retrieves much

state information.
The same kind of functionality is used in demo sites

[7b] and [7c] where previous decisions or previous actions
may have consequences for what is presented to the
student [5].

The CMI model used in SCORM does specify the
core_lesson property to temporary store the learning
object state. However, this property is limited to 256 bytes
of ASCII and its use is limited to a single learning object.

Sessink ODT, Beeftink HH, Tramper J, Hartog RJM (2003) Author-Defined Storage in the Next Generation Learning Management
Systems. Proceedings of the Third IEEE International Conference on Advanced Learning Technologies (ICALT), 2003, pp. 57-61

This property will not meet the requirements when a
compound state (e.g. a state that consists of several
attributes and their values) or a state history is required for
one or more learning objects.

Enabling students to compare
(aggregate) results

In the previous section, a downstream processing
design tool is described. This tool has another interesting
feature. It stores several scores for all designs, like best
recovery, best purity, least number of units, least waste
and best price. Every assignment that uses this tool can
show which student scored the best result for each
category. This introduces a competitive aspect, which is a
great motivator [4]. Also this clear indication that other
students are working on the same learning material will
motivate the students if the material is used in a distance-
learning setting. The SCORM specification does not
feature a way to store and retrieve this type of scores.

Tracking for pedagogical research

In demo site [7b], learning material is developed that
tracks all interaction aspects [6]. The internal navigation
within the learning objects and the navigation outside the
learning objects are stored. It is possible to follow every
activity from a student. A typical tracking log for some
student could look like:
1.student starts learning object I (a question is presented)
2.student answers possibility B in this learning object
(feedback on possibility B is presented)
3.student starts learning object II in the library
(information is presented)
4.students continues with learning object I and answers
possibility A (feedback on possibility A is presented)
5.etc.

After interpretation this gives much information to the
lecturer about the understanding of different parts of the
learning material, the difficulties students have, and the
effect of the feedback presented by the learning objects to
the students.

Shared reference database

In demo site [7d], there is a shared definition list and a
shared equation list, which are used throughout all
learning objects from the department of Process
Engineering. The definition list is simply a list of
keywords and their definition. The equation list is a little
more complex. The base is a list of equations with a

description. Every equation has a list of associated
equations describing the symbols in the pertinent equation.
Both the equations and the definitions are server-side
added to the learning objects.

Figure 3. The mouse is over an equation and a
popup is shown.

If the student moves the mouse over a keyword, a
popup with the definition is shown. If the student moves
the mouse over an equation, a popup is shown with the
description of that equation and all related equations. This
functionality is highly rewarded by the students.

Also in demo site [7c], there are six reference
databases used. One of these databases has additional
features and is described in the next section.

In terms of sharable content objects every definition
and every equation should be a separate object. However,
automatically adding this separate object to other learning
objects would be out of the question, and equation objects
could not refer to related equation objects. Another
difference is the different nature of the information. The
list is not to be studied by the student, but is typical
reference information.

Larger knowledge bases, especially if they are also
used outside the educational context, should not be in the
author-defined storage. A link to an external server would
be more appropriate.

Problem scenario database

In demo site [7c], one of the reference databases as
described above is extended to a problem scenario
database with microbiological hazard problems. The

Sessink ODT, Beeftink HH, Tramper J, Hartog RJM (2003) Author-Defined Storage in the Next Generation Learning Management
Systems. Proceedings of the Third IEEE International Conference on Advanced Learning Technologies (ICALT), 2003, pp. 57-61

database contains both problems (for example infection
with Salmonella), and reference information with solutions
for all these problems (for example detecting a
Salmonella infection). A learning object with an
assignment can select random or specific problems from
the database and introduce these to the student. A learning
object in the library from this course allows the student to
search in the same database for solutions. Since these
objects share the same database, the solution is guaranteed
to be available. The other advantage of the problem
scenario database as illustrated above, is that it can be
used to produce a range of different but equivalent
assignments. The microbiological hazard database is
accessed by several learning objects.

Workarounds for current
generation LMSs

There is no standard for the described learning
material yet. Nonetheless, we have developed such
learning material and have deployed it in a well-known
LMS. At Wageningen University these workarounds are
used for several years now, with full appreciation of
students and authors. Two workarounds are described, but
of course a mixed approach would be possible as well.

In the first workaround the functionality of the LMS
server is extended. Many LMSs internally consist of a
webserver, a database management system (DBMS) for
administration storage, and a filesystem for storage of
learning objects. In this situation the webserver can be
configured to run server-side languages. In our setup, the
PHP scripting language was chosen. When there is no
public application programming interface (API) to
communicate with the LMS, the scripting language has to
connect directly to the underlying DBMS. We have
developed a PHP library for retrieval of the LMS
administration data from the DBMS. The client-side
objects (JAVA, FLASH) interface with a PHP script to
store and retrieve data.

This situation is far from ideal. Most LMSs are
currently not designed for server-side languages and this
introduces security problems. There are several
possibilities to bypass the LMS security if server side
scripting is enabled on the LMS server. The PHP library is
also specific for one LMS, and only available on our
server, so neither the library nor the learning material is
portable to other systems.

The second workaround is to run all active objects on a
second server. This will avoid all interference with the
LMS server. This server can be built from standard
components. Our server is configured to run the PHP
scripting language, and the MySQL and InterBase

DBMSs. We have also developed a PHP library to retrieve
LMS administration data from the LMS DBMS for
authentication and authorization. The client-side active
objects (JAVA, FLASH) again interface with a PHP script
to store and retrieve data.

This situation is also not ideal. The objects outside the
LMS are not managed at all by the LMS. The courses in
the LMS consist of links to the external objects which are
not managed either. Furthermore the learning material and
the PHP library are again specific for this configuration,
so that this material is not portable either.

Interface requirements for future
generation LMSs

To deploy the learning material described in this paper
in a future generation of LMSs there is a need for a
standard extension to LMSs. This extension should enable
the author-defined data storage on the LMS. Essentially,
this facility adds database functionality to the LMS. This
database is to be defined by the author instead of the LMS
manufacturer. Therefore the extension should include a
user interface to define and edit the database. Since the
learning objects need to access the database, the extension
should also include an API. The extension should also
provide some security (e.g. which learning objects, and
which authors have access to the database), and it should
prevent name-clashes.

The first requirement for the user interface of the LMS
is an interface to define the data model. An obvious way to
enable this is to add an SQL data definition upload facility
to the LMS. Besides SQL upload, a web interface as found
in phpMyAdmin, or a database upload system as found in
Frontpage would certainly improve this user interface. For
interoperability reasons it is important that the data
structure definition is portable. It should be possible to
transfer the data structure from one LMS to another LMS.

The user interface should also feature some
authorization options. Which learning objects are allowed
to retrieve data from this datastore, and which learning
objects are allowed to store data in this datastore. Possible
options should include a selection 'objects from author'
and 'objects in course'.

Some of the data in the author-defined data storage
will be of interest to the lecturer. Other data will be
provided by the author. In both cases the LMS should
have a user interface to search, view and edit the data in
the author-defined data store. Such a user interface could
be similar to the phpMyAdmin web-interface. Another
possibility would be to enable upload and download of the
data in a specified format (e.g. Access format or tab
delimited text file) so third party software can be used to

Sessink ODT, Beeftink HH, Tramper J, Hartog RJM (2003) Author-Defined Storage in the Next Generation Learning Management
Systems. Proceedings of the Third IEEE International Conference on Advanced Learning Technologies (ICALT), 2003, pp. 57-61

search, view and edit the data. It should also be possible to
export and import the data itself from one LMS to another.

Last but not least, the active learning objects need to
access the author-defined data store. New answers from
students have to be inserted or updated in the datastore, or
definitions have to be selected from the datastore.

For client-side active learning objects (e.g. JAVA
applets or FLASH movies), there is an interface described
in SCORM. The SCORM 1.3 runtime API defines a
JavaScript interface for communications initiated by a
client-side learning object to the LMS. This API is used to
get and set values from the CMI model [1]. The interface
to the author-defined storage could be an extension of this
API, for example a method named LMSRunSql().

Example usage would then look like:

var Database_ID = "5432";
var SqlStatus = LMSRunSql(Database_ID, "update scores
set purity='99' where assignment='DSPD';");
if (SqlStatus == 0) {

// Succeeded
} else {

// Error condition; handle appropriately:
}

Enabling server-side active objects (e.g. JSP or PHP
objects) is a completely new area for LMSs. Whether or
not to support server-side active objects in an LMS is a
discussion beyond the scope of this article. Three of our
four research projects referred to in this article have
developed their learning material using server-side
technology. If the LMS would support server-side active
objects, the interface would be very simple. The objects
should simply call a method from the LMS to access the
author-defined data storage. An example in PHP would
look like:

$Database_ID = "5432";
$SqlStatus = LMSRunSql($Database_ID, "update scores
set purity='99' where assignment='DSPD';");
if ($SqlStatus == 0) {

// Succeeded
} else {

// Error condition; handle appropriately:
}

Conclusion

In a number of research projects the limitations of the
current generation of learning management systems
became apparent. Apart from tangible results such as
digital learning material these projects resulted in an

articulation of the shortcomings of current learning objects
and learning management systems and a proposal to
alleviate these shortcomings. In this paper we have
described six functional requirements for learning
management systems. This learning material is neither
supported by the current generation of learning
management systems nor does it fit in the forthcoming
SCORM 1.3 standard.

Having an author-defined storage facility will satisfy
all six requirements, and will enable the deployment of
this learning material. We think there is need for a
standard that will include the author-defined storage
facility. This standard should specify 1) what methods
from the LMS can be called by a learning object, 2) how
data structure and the data itself can be transferred from
one LMS to another LMS.

References

[1] Advanced distributed learning (ADL), (2002). SCORM 1.3
working draft 0.9. http://www.adlnet.org/
[2] Anderson, J.R. (1995). Learning and memory. An integrated
approach., John Wiley & Sons, Inc.
[3] Brusilovsky, P., Kobsa, A., Vassileva, J., editors (1998).
Adaptive Hypertext and Hypermedia. Kluwer, Dordrecht.
http://www.wkap.nl/prod/b/0-7923-4843-5
[4] Schaaf, H. van der, Vermuë, M., Tramper, J., Hartog, R.,
(2003). A Design Environment for Downstream Processes for
Bioprocess-engineering students. submitted to the European
Journal of Engineering Education.
[5] Wilmsen, T., Bisseling, T., Hartog, R., (2002). Web based
learning support for experimental design in molecular biology.
Proceedings of the Edmedia conference, 2063-2068.
[6] Wilmsen, T., Hartog, R., Bisseling, T., (2003) Web based
learning support for experimental design in molecular biology:
a Top-Down approach. Accepted for publication in the Journal
of Interactive Learning Research.
Demo sites:
[7a] downstream process designer, http://www.fbt.eitn.wau.nl/
follow content showcase, Downstream Processing Design Case.
[7b] molecular biology cases, http://www.fbt.eitn.wau.nl/ follow
content showcase, Molecular Biology site.
[7c] food safety management case, contact Marc.Boncz@wur.nl
for access information.
[7d] process engineering cases, http://www.fbt.eitn.wau.nl/
follow content showcase, Mixing and Membranes cases.

Acknowledgements

The authors would like to thank Hylke van der Schaaf, Tinri
Wilmsen and Marc Boncz for providing access to their learning
material, and discussing the requirements for LMSs.

