
Case Studies on the Support of Computer Managed Instruction
Functionalities in e-Learning Systems

Gennaro Costagliola, Filomena Ferrucci, Vittorio Fuccella

Dipartimento di Matematica e Informatica, Università di Salerno
Via Ponte Don Melillo, I-84084 Fisciano (SA)
{gcostagliola, fferrucci, vfuccella}@unisa.it

Abstract

The term Computer Managed Instruction (CMI) often
refers to a set of functionalities which allow Learning
Objects to be launched in the Learning Management
System and to exchange data with it. A framework for
the support of CMI Functionalities in Learning
Management Systems, named CMIFramework, has
been developed at the University of Salerno. In this
paper we present two case studies concerning the
adoption of CMI functionalities, using
CMIFramework, in different e-learning contexts. Our
present work is aimed at demonstrating the ease in
using the framework and its power in solving several
problems connected to the adoption of CMI
functionalities.

1. Introduction

In the past years, a big effort has been made to
define standards, reference models and guidelines for
e-learning. This effort is aimed at obtaining a stronger
interoperability among Learning Management Systems
(LMS). In the context of these systems, the term
interoperability refers to the sharing of Learning
Objects (LO), and, consequently, their re-use, with
remarkable time and resource saving for the content
developers.

Among the specifications produced, some, such as
Learning Object Metadata and Content Packaging,
have reached quite a good maturity level and have been
adopted in software systems. Some others have not
reached the same success, probably due to their
intrinsic difficulty in being understood adequately and
implemented properly. This is the case for the set of
specifications named Computer Managed Instruction
(CMI), consisting of a set of functionalities which allow
LOs to be launched in the LMS and to exchange data
with it. A complete reference on the way in which the
launch and the communication take place has been
proposed in several specification documents, issued by
the producers of the main standards and guidelines for

e-learning, such as AICC [1], SCORM [2] and IEEE
[3]. Even though the proposed basic model is the same,
several differences are present among the documents
issued by different producers and often among different
versions of the same specification. These differences
have resulted in an incompatibility problem: LO
developed in compliance with a specific document
cannot be launched in environments designed for
different ones. This problem, added to the difficulty of
adopting a specification not easy to understand, has
resulted in an insufficient adoption of a specification
whose importance is attested by the attention of the
three main producers of standards and of several
software vendors. Furthermore, many LOs compliant
with specifications no longer in use, must be up-
graded, wasting time and opportunity to re-use
material.

A framework, named CMIFramework, has been
developed at University of Salerno with the aim of
facilitating the adoption of CMI functionalities in LMSs
[4]. The goal of this paper is to show that the proposed
framework effectively allows developers to make their
LMS compliant to most of the specification documents
produced so far, equipping them with an environment
in which LOs, compliant with different specifications
or different versions of a specification, can be launched
without incurring incompatibility problems, thus
avoiding the effort necessary to up-grade the older
contents. To this aim, we present two case studies
connected to the adoption of CMI functionalities. The
software solutions presented have been developed
instantiating CMIFramework. In the first case study,
presented in section 4, we show how a system for on-
line testing and assessment can be enhanced with a no-
standard module which tracks students’ client-side
interactions. This information can be used to enrich the
data available to data mining systems for catching
cheats among the students. A more comprehensive
case-study, with which we provide an LMS with a
module to launch SCORM compliant LOs, is presented
in section 5. The next section contains a brief
explanation of the architecture specified in CMI

specifications. For a more comprehensive explanation,
please refer to [1, 2, 3]. In section 3 we outline some of
the main features and the architecture of
CMIFramework. Final remarks and future work
conclude the paper.

2. The CMI Functionalities

The CMI specifications propose a standard
environment in which the LOs could be launched and
can exchange data with the LMS. The way in which the
communication works is shown in figure 1, which
depicts a Web-based scenario, where a LO has already
been launched in a Web browser window and the LMS
runs within a Web Server. The LO must be equipped
with a software module, called ECMAScript, which
allows it to communicate with the LMS. The API
Instance module, provided by the LMS, exposes an
interface to the LO, through which it can invoke
methods to handle the communication with the LMS
server and to exchange data with it. The API Instance
must handle error conditions which can occur during
the communication. Another important part of the
specifications defines the Data Model, which is the
schema of the data on which the communication
between the LO and the LMS must be based. Some
rules on how to launch LOs are established as well.

Figure 1 - CMI architecture (SCORM RTE)

As mentioned before, there are some differences

among the specifications produced so far, and several
changes have been made over time. The most
significant of them have regarded the definition of the
API Interface and the structure of the Data Model. API
Interfaces have been changed in methods signatures
(e.g., from SCORM 1.2 to SCORM 2004, the
LMSInitialize() method has become initialize(),
LMSFinish() has become terminate() and so on) and in
the error handling system (error names and codes have
changed, new errors have been introduced, etc.). The

Data Model has changed above all in regards of the
element names.

These changes have been enough to prevent the
launch of LOs developed in compliance with a specific
document in environments designed for different ones.

3. CMIFramework

The CMIFramework is an Object-Oriented Java
framework which can be instanced in order to alleviate
the work of LMS developers in adopting CMI
functionalities in their systems, thanks to the software
re-use principle. It also solves the incompatibility
problems mentioned before, allowing the launch of
LOs compliant with any CMI specification in the same
environment. Presently, CMIFramework can support
most of the specifications produced so far, avoiding the
time-consuming task of up-grading all the LO
compliant with older versions of the specifications.
Nevertheless, it has been conceived flexible enough to
address several future changes in the specifications.
Furthermore, it goes beyond the standard
functionalities, allowing the developers to define
customized solutions, not necessarily adhering to them
strictly.

More in detail, among the features of
CMIFramework, we can find the support for user-
defined API Interfaces with the related error handling
system and for user-defined data models. This user-
defined solutions can be combined to standard ones,
providing all these functionalities in a unique
environment. Other interesting features of the
CMIFramework is the caching of LO-LMS
communication and the server-side persistence of the
Run-Time data.

CMIFramework has an innovative architecture: on
the client-side, based on inter-applet communication, it
allows the deploying of any number of API Interfaces.
This is simply done editing the XML- based
configuration and coding the Interface. The
configuration also allows the developer to completely
define the elements of the Data Models.

On the server-side, a small amount of code must be
written in order to customize the LMS behavior. The
server-side component consists mainly of a Java
Servlet, which have to be extended by the LMS
developer. In order to accomplish this task, three
methods can be overridden: onInitialize(), onCommit()
and onTerminate(). The former method allows us to
initialize the Run-Time data, before the communication
starts, with LMS-specific settings. The latter two
methods allow the LMS to manipulate the Run-Time

data upon the commit and termination of the
communication.

4. Case Study I: Learner’s Interaction
Tracking in On Line Testing

As proven by several studies in the education field,
many learners cheat at exams, when they can [5,6].
Cheating detecting in assessment tests is not an easy
task: most of the techniques employed so far have been
based on the comparison of the results obtained in the
tests [7]. These techniques cannot give the certainty of
the guilt, since a high similarity of two tests can be due
to coincidence. Furthermore, as in all fraud detection
systems, the task is complicated by several
technological and methodological problems [8]. It
could be useful to gain information on the learners’
behavior during the test. Analysis on these data can be
integrated to results comparison in order to have a
more comprehensive data set as input for a data mining
technique to detect cheating. This is possible when the
tracking of the client-side interactions of the learner
with the test during its execution is performed. For
example, let’s consider the following situation: during
the test, learner A answers true to a question and
learner B, who is seated behind the former, answers the
same few instants later. The tracking of this
information could be useful to prove that the learner
has cheated, looking on the screen of his classmate.
Due to the static nature of HTML pages, there are
several challenges in performing the interaction
tracking. Our case study illustrates how
CMIFramework has been instanced to obtain a
software module able to generate a complete log of the
interactions of the learner during the execution of the
test. This module has been added to an advanced
Computer Aided Assessment system, developed at the
University of Salerno, named eWorkbook [9]. This
system can be used for evaluating learner’s knowledge
by creating (the tutor) and taking (the learner) on-line
tests based on multiple choice, multiple response and
true/false question types.
eWorkbook, which is fully accessible with a Web
browser, launches the tests from its main window in a
child window. The question items are shown one at a
time, and a simple button bar in the bottom of the page
can be used to browse the test: there is one button to
submit the test and two more, labeled respectively with
next and previous, to browse the items sequentially.
The submission of the test can occur voluntarily from
the learner when the test is finished or forced by the
system on the expiry of a timer. Once the test is
submitted, the child window is closed.

The client component (the API Instance) of the
framework has been integrated in the main window,
exactly in the page that launches the test, which is open
for the duration of the test. The test itself has been
modified in order to incorporate the ECMAScript
module, which has the duty of dialog with the client
component of the framework. For the APIInstance, the
standard API of the SCORM 2004 has been chosen,
since it is quite easy to find a free implementation of an
ECMAScript module for this combination of producer
and version. A very simple data model has been
defined to record the interactions, as the reader can see
by looking at the configuration code, shown in figure 2.

<datamodels>
 <datamodel id="eworkbook">
 <element id="eworkbook.start_time"

type="date" privilege="WO" />
 <element id="eworkbook.delivery_type"

type="string" privilege="WO" >
 <value set="volunteer,forced"/>
 </element>
 <element id="eworkbook.interactions.*.time"

type="date" privilege="WO" />
 <element id="eworkbook.interactions.*.type"

type="string" privilege="WO">
 <value
set="set,reset,next,previous,submit"/>
 </element>
 <element id="eworkbook.interactions.*.item_id"

type="string" privilege="WO"/>
 <element id="eworkbook.interactions.*.response"

type="string" privilege="WO" />
 <derived-element

id="eworkbook.interactions._count"
type="int"
class="org.l3.RTEFramework.client.error.util
ity.CountManager" privilege="RO"/>

 </datamodel>
</datamodels>

Figure 2 - The definition of the Data Model for the
Learner’s Tracking Module in eWorkbook

For each interaction of the learner with a question item,
the information recorded is as follows: timestamp, type,
id of the item and the response given by the learner. As
a type of interaction, the following values are admitted:
set, for response given to an item; reset, for response
aborted; next, previous, for browsing items and submit,
for the submission of the test. Finally, the timestamp of
the start of the test and the information whether the test
submission was voluntary or forced are recorded.
The library CMIServer.jar has been imported in the
system. The main server side programming activity has
consisted in sub-classing the CMIServlet in order to
tailor the server side behavior to our simple
requirements. To elaborate, onTerminate() has been
overridden, in order to output the results of the tracking
and to save them in the relational database of the
system through the use of simple JDBC code.
On the client-side, the module CMIClient.jar has been
deployed. The APIInstance has been easily inserted in
the JSP pages using the TagLib provided by the

framework. The interactivity level required for our
purposes has made necessary a modification to the JSP
code which generates the pages of the tests. In
particular, an ECMAScript module, freely downloaded
from the Internet, has been added to the test pages. To
correctly plug it, some event-handling code has been
added to the page of the test, for example, the onClick
events of the input elements of the test page
(radiobuttons or checkboxes for the options, buttons for
the navigation controls) have been handled.

5. Case Study II: A SCORM Module for
Sakai

The Sakai Project [10] is a community source software
development effort to design, build and deploy a new
Collaboration and Learning Environment (CLE) for
higher education. The Sakai application framework has
been customized by our developers to obtain a learning
environment called Running Platform (RP), which has
been used at our department for the management of the
courses, in a blended learning style.
A prototype for a new tool for SCORM RTE has been
developed in order to test the effectiveness of our
framework in creating an environment in which LOs,
compliant with different version of the SCORM
specification could have been launched. The module,
originally designed as a stand-alone application, was
later integrated into the RP. The stand-alone
application is a minimal system, able to launch only
pre-loaded LOs conformant to the versions 1.2 and
2004 of the SCORM.
The framework has been configured declaring the API
Interfaces and the data models for both the 1.2 and
2004 versions of the SCORM. An extract from the
apis.xml configuration file is shown in figure 6. The
figure shows how the two API Interfaces are declared
with the different names of API and API_1484_11, as
required respectively by the 1.2 and 2004 versions. For
space reasons, the configuration of the error handling
system is shown only for the setValue() method of the
2004 interface.

<APIs>
 <APIset id="API"

class="org/l3/CMIFramework/client/SCORM1_2API">
 ...
 </APIset>

 <APIset id="API_1484_11"

class="org/l3/CMIFramework/client/SCORM2004API">
 <errors method="initialize" return="false">
 ...
 </errors>
 <errors method="setValue">
 <error property="apiState"

 check="not_initialized" code="132"/>

 <error property="apiState"
 check="not_terminated" code="133"/>

 <error property="param1" check="required"
 code="401"/>

 <error property="param1" check="defined"
 code="401"/>

 <error property="param1"
check="implemented"

 code="402"/>
 <error property="param1" check="read_only"

 code="404"/>
 <error property="param2" check="type_match"

 code="406"/>
 <error property="param2" check="range"

 code="407"/>
 </errors>

 ...
 </APIset>
</APIs>

Figure 3 – Extract from RP apis.xml config file

<datamodels>
 <datamodel id="SCORM1.2">
 ...
 </datamodel>

 <datamodel id="SCORM2004">
 <element id="cmi._version" type="string"

privilege="RO" >
 <value init="1.0"/>
 </element>
 ...
 <derived-element

id="cmi.comment_from_learner._count"
type="int"

 class="org.l3.CMIFramework.DerivedCount"/>
 <element

id="cmi.comments_from_learner.{n}.comment"
type="string" privilege="RW" />

 ...
 <element id="cmi.comment_from_lms._children"

type="string" privilege="RO" >
 <value init="comment,location,timestamp"/>
 </element>
 ...
 <element id="cmi.completion_status"

type="string" privilege="RW">
 <value set="complete, incomplete,

 not_attempted, unknown" init="unknown"/>
 <depends idRefs="cmi.completion_threshold,

cmi.progress_measure"/>
 </element>
 ...
 </datamodel>
</datamodels>

Figure 4 – Extract from RP datamodels.xml config file

As for the API Interfaces, even for the data models,
additional work was requested and performed on the
datamodels.xml file, in order to define the data models
for both the versions of the SCORM.
As for case-study I, the CMIServlet has been
subclassed in order to customize the server side
behavior of the application. In this case, both the
methods onInitialize() and onTerminate() have been
implemented. In the former, the data model used for the
communication has been initialized with the data to
pass from the LMS to the LO. The latter has been used
for the opposite purpose. In both cases, simple JDBC
code has been added to these methods. The server-side
persistence of run-time data, provided by the
framework, has been used to share the data model

instances across multiple sessions of the same learner
on the same LO.
Sakai offers a suitable container for tools and
associated services. Its architecture is quite flexible to
allow different levels of integration for the tools. The
most loosely coupled integration level allows the
developer to integrate stand-alone applications. At the
scope, two main rules must be followed:
1. The request must be intercepted and dispatched to

the application by a module called Sakai Web-App
Gateway

2. Basis services, such as authentication and
authorization management, must be provided by an
interface called Sakai API Gateway.

In light of these arguments, the main integration
programming activity has consisted in the modification
of the application in order to dialog with the Sakai
APIs. To plug the Sakai WebApp Gateway in the
application, actually, there was no need to modify the
application: we just needed to develop a servlet filter
for the requests and the responses. A filter entry was
added to the deployment descriptor (the web.xml file)
of the application. The work necessary to plug the
Sakai API Gateway in the application has been slightly
more complicated: the handling of the user accounts,
based on JDBC, of the stand-alone version have been
substituted with some calls to the Sakai API Gateway.
This has been done in every part of the application
dealing with the user authentication. Additionally,
some user accounts and information have been
imported from the application database to the RP one.

6. Conclusion

In this paper we have presented two case studies
useful in proving the ease of use and the power of
CMIFramework, developed at the University of
Salerno. In the first one we have added a learner’s
interactions tracking module, whose log can be useful
to detect cheating in on-line exams. The description of
the data mining process which will allow us to
accomplish this task goes beyond the scope of this
paper and is postponed to future work.

In the second case study, the development of a
module to launch SCORM compliant LOs in Sakai has
been shown. Through this module, we can launch
content compliant with the most recent versions of the
SCORM in the same environment without incurring
incompatibility problems, avoiding the effort necessary
to up-grade the older content to support newer versions
of the specifications, thus allowing for a better re-use
of the authored content.

Being written in Java, CMIFramework has a
restriction: only Java-based LMSs can benefit from it.
A solution based on Web Services, aimed at
overcoming this limitation, is now in the development
phase.

7. References

[1] CMI Guidelines for Interoperability AICC rev. 4.0,
http://www.aicc.org/docs/tech/cmi001v4.pdf, 2004

[2] The SCORM Run-Time Environment 1.3.1,
http://www.adlnet.org/scorm/history/2004/documents.cfm

[3] IEEE LTSC, WG11: Computing Managed Instruction,
http://ltsc.ieee.org/wg11/index.html

[4] Costagliola, G., Ferrucci, F., Fuccella, V., “A Framework
for the Support of the SCORM Run-Time Environment”,
Proc. of the 2006 Int. Conf. on SCORM 2004, Taiwan, 21-
26

[5] Dick, M., Sheard, J., Bareiss, C., Carter, J., Joyce, D.,
Harding, T., Laxer, C. “Addressing student cheating:
definitions and solutions”, Proc. of ITiCSE 2002, 172-184

[6] Harding, T.S.; Carpenter, D.D.; Montgomery, S.M.;
Steneck, N.H.; “The current state of research on academic
dishonesty among engineering students”, Proc. of FIE ’01,
vol. 3, F4A 13-18

[7] Mulvenon, S. W., Turner, R. C., & Thomas, S.
“Techniques for detection of cheating on standardized tests
using SAS”. Proc. of the 26th Annual SAS Users Group Int.
Conf., Miami, FL, 1 – 6.

[8] Shao, H.; Zhao, H.; Chang, G. R.; “Applying data mining
to detect fraud behavior in customs declaration”, Proc. of
ICMLC’02, 1241-1244 vol.3

[9] Costagliola, G., Ferrucci, F., Fuccella, V., Gioviale, F.,
“A Web Based Tool for Assessment and Self-Assessment”,
Proc. of ITRE ’04, 131-135

[10] Sakai Project, http://www.sakaiproject.org/

