
Automatic Evaluation of Spatial Representations for Complex Robotic Arms 
Manipulations 

 
 

Philippe Fournier-Viger1, Roger Nkambou1, André Mayers2 and Daniel Dubois1 
1Department of Computer Science, University of Quebec at Montreal 

2Department of Computer Science, University of Sherbrooke 
Fournier-Viger.Philippe@courrier.uqam.ca 

 
Abstract 

 
 This paper describes how a knowledge model 

allows training software to evaluate spatial cognitive 
maps and provide tailored assistance.  
 
1. Introduction 
 

Many tasks involve relying on complex spatial 
representations. One such task is the manipulation of 
the CandarmII arm (CA) on the international space 
station (ISS). The CA is a robotic arm with seven 
degrees of freedom. Handling it is a demanding duty 
since astronauts who control it have a view of the 
environment rendered by three monitors. Each one 
show the view usually obtained from a single camera at 
a time among about ten cameras mounted at different 
locations on the ISS and on the CA. Guiding the CA 
requires several skills such as selecting cameras for a 
situation, visualizing in 3D an environment perceived 
in 2D and selecting efficient sequences of 
manipulations. Astronauts follow a rigorous protocol 
that comprises many steps, because one mistake can 
engender terrible consequences. To achieve the task, 
astronauts need to build spatial representations and to 
visualize them in a dynamic setting. Our team is 
working on RomanTutor [4], a software program for 
training to manipulate the CA. The GUI reproduces 
part of CA’s control panel. The task of interest in this 
paper is moving the CA from one configuration to 
another, according to the protocol. The aim of the work 
presented here is to describe the relevant cognitive 
processes of learners so that the software can follow 
their reasoning to grant a tailored assistance.  

 
2. Spatial cognition 
 

Since more than fifty years, many researchers have 
been interested in the knowledge involved in spatial 
reasoning. In the light of the researches carried out 
during the last decades, there is no doubt that humans 
rely on egocentric representations (which encode the 
space from the person’s perspective) and allocentric 

“representations (independent of any point of view) 
[6]. An egocentric representation describes a route to 
follow to go from one place to another, and it is 
composed of an ordered set of stimuli/response 
associations [7]. Usually, this knowledge is gained 
through experience, but it can also be acquired directly 
(for instance, from textual route instructions). Route 
navigation is very inflexible and leaves little room for 
deviation. Indeed, choosing correct directions with 
landmarks strongly depends on the relative position of 
a person to landmarks. Consequently, a path deviation 
can easily disturb the achievement of the whole 
navigation task. An incorrect encoding or recall can 
also compromise seriously the attainment of the goal. 
Egocentric representations may be sufficient to travel 
through an environment, but they are inadequate to 
perform complex reasoning [7]. For reasoning that 
requires inference, humans build cognitive maps that 
do not preserve measurements but keep the main 
relationships between elements. These representations 
do not encode any perspective but makes it possible to 
adopt several perspectives. Cognitive maps are also 
prone to encoding or recall errors. But, it is generally 
easier to recover from an error, when relying on 
cognitive maps than on an egocentric representation. 
Tversky [7] indicates that a parallel can be drawn 
between cognitive maps and the semantic memory. 
Since these latter are key to complex spatial reasoning, 
tutoring software that diagnose and teach complex 
spatial reasoning should possess the ability to evaluate 
semantic knowledge.  
 
3. The cognitive model 
 

Our model for describing cognitive processes [2] is 
inspired by the Miace [5] cognitive theory, which 
attempt to model the human process of knowledge 
acquisition. As [5], we distinguish semantic 
knowledge, procedural knowledge and episodic 
knowledge. This paper does not explain the episodic 
memory part of our model since it is not central to the 
discussion, here. The semantic memory contains 
descriptive knowledge. Our model regards semantic 
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knowledge as concepts taken in the broad sense. 
According to Halford & al. [3], humans consider up to 
four concept instances simultaneously (four 
dimensions) in the achievement of a task. However, the 
human cognitive architecture is able to group several 
of them to handle them as one, in the form of a vector 
of concepts [3]. We call described concepts these 
concepts, in contrast with primitive concepts that are 
syntactically indecomposable. For example, “3 + 5” is 
a decomposable representation of the symbol “8”, an 
undividable representation with the same semantic. 
The concept “3 + 5” represents the sum of the number 
three and the number five, two primitive concepts. The 
addition operator “+” is also a primitive concept. In 
this way, the semantic of a described concept is given 
by the semantics of its components. The procedural 
memory encodes the knowledge of how to attain goals 
automatically by manipulating semantic knowledge. It 
is composed of procedures which fires one at a time 
according to the current state of the cognitive 
architecture [1]. Contrary to semantic knowledge, 
activating a procedure does not require attention. For 
example, when someone add automatically “3 + 5” to 
obtain the sum “8”, the person does not recall the 
knowledge explicitly. As [5], we differentiate primitive 
and complex procedures. Whereas the first are seen as 
atomic actions, activating a complex procedure 
instantiates a set of goals, to be achieved either by a 
complex procedure or a primitive procedure. We 
consider goals as a special type of semantic 
knowledge. Goals are intentions such as the goal to 
solve a mathematical equation or to draw a triangle [5]. 
A goal is realized by means of procedure(s) execution. 
There can be many correct and incorrect ways 
(procedures) to achieve a goal. In our model, a goal has 
zero or more concept instances components, which are 
the object of the goal, and are determined by the 
complex procedure that instantiated the goal. Our 
model describes knowledge entities according to sets 
of slots. Concepts are encoded according to six slots. 
The “Identifier” slot is a character string used as a 
unique reference to the concept. The “Metadata” slot 
provides general metadata about the concept. The 
“Goals” slot contains a goals prototypes list; it 
provides information about goals that students could 
have and which use the concept. “Constructors” 
specifies the identifier of procedures that can create an 
instance of this concept. “Components” is only 
significant for described concepts. It indicates, for each 
concept component, its concept type. Lastly, 
“Teaching” points to some didactic resources to teach 
the concept. Goals have six slots. "Skill" specifies the 
necessary skill to accomplish the goal, “Identifier” is a 
unique name for the goal, “Metadata” describes the 
goal metadata, "Parameters" indicates the types of the 

goal parameters, "Procedures" contains a set of 
procedures that can be used to achieve the goal, and 
“Didactic-Strategies" suggests strategies to teach how 
to achieve that goal. Ten slots describe procedures. The 
“Metadata” and “Identifier” slots are the same as for 
concepts/goals. “Goal” indicates the goal for which the 
procedure was defined. “Parameters” specifies the 
concepts type of the arguments. For primitive 
procedures, “Method” points to a Java method that 
executes an atomic action. For complex procedures 
“Script” indicates a set of goals to be achieved. 
“Validity” indicates if the procedure always gives the 
expected result. “Diagnosis-Solution” contains data 
that indicate for each diagnosis, the suitable teaching 
strategy to be adopted. Finally, “Didactic-Resources” 
points to additional resources to teach the procedure.  

Though the model was successfully employed in a 
tutoring system [2], it lays the emphasis on procedural 
knowledge learning and offers less support for 
semantic knowledge learning. The reason is that there 
is no structure for modeling the retrieval of knowledge 
from semantic memory, a key feature of many 
cognitive theories. Evaluating semantic general 
knowledge is essential for diagnosing and teaching 
spatial reasoning. To address this issue we define 
general knowledge, the semantic knowledge 
memorized or acquired through experience that is true 
in all situations of a curriculum. To be used properly, 
general knowledge must (1) be properly acquired 
beforehand, (2) be recalled correctly and (3) be 
handled by valid procedures. A general knowledge is a 
special type of described concept, because to be useful 
it must represent a relation. We added three slots to 
described concepts. The “General” slot indicates if a 
concept is general. The “Valid” slot specifies the 
validity of the concept (true/false), and optionally the 
identifier of an equivalent valid concept. In addition, 
the “RetrievalComponents” slot specifies a set of 
concepts to be instantiated to create the concept 
components when the concept is instantiated. Table 1 
presents a concept encoding the erroneous knowledge 
that the ISS module “MPLM” is connected below the 
ISS module “NODE2” (according to the ISSACS 
coordinate system). The “Valid” slot indicates an 
equivalent valid knowledge is the concept 
“MPLM_TopOf_NODE2”.  

We added a retrieval mechanism to connect 
procedures to the general knowledge in order to model 
the recall process. It works as the retrieval mechanism 
of ACT-R. We choose ACT-R, because our model is 
already based on that theory. A slot named “Retrieval-
request” is added to procedures, to express a retrieval 
request for a concept in semantic memory, by means of 
patterns, that specifies the identifier of a concept to be 
retrieved and zero or more restrictions on the value of 
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its components. Table 2 shows the procedure 
“RecallCameraForGlobalView”. Its execution requests 
the knowledge of a camera on the ISS that a global 
view of a location taken as parameter by the procedure. 
The “Retrieval-request” slot states that a concept of 
type “RGlobalView” is requested (a relation that state 
that a camera gives a global view of a place), and that 
its first component should be a place whose concept 
type match the type of the procedure parameter, and 
the second component need to be of type “Camera”. A 
correct recall following the execution of this procedure 
will result in depositing an instance of “RGlobalView” 
in a one instance buffer. The instance will then be 
available to the next procedures to be executed.  

Table 1. Partial definition of the concept 
“MPLM_Below_MPLM2“. 

Identifier MPLM_Below_Node2 
Components Module, Module 
RetrievalComponents MPLM, Node2 
General True 
Valid false  

(true :  MPLM_TopOf_ Node2) 

Table 2. Partial definition of the procedure 
“RecallCameraForGlobalView“. 

Identifier RGlobalView 
Goal GoalRecallCameraForGlobalView 
Parameters (ConceptPlace: p) 
Retrieval-
request 

ID: RelationshipCameraGlobalView A1: 
ConceptPlace         A2: ConceptCamera 

 
We have modelled the knowledge for the task of 

moving the CA from one position to another. We 
discretized the 3D space into 3D sub spaces (SS). The 
spatial knowledge is encoded as relations (described 
concepts) such as a camera can see a SS or an ISS 
module, a SS comprise an ISS module, a SS or ISS 
module is next to another, or a camera is attached to an 
ISS module. Moving the arm is modelled as a loop 
where one must recall a set of cameras for viewing the 
SSs containing the arm, select the cameras, adjust their 
parameters, retrieves a sequence of SSs to go from the 
current SS to the goal, and then move to the next SS. 
RomanTutor detects all the actions like camera 
changes and entering or leaving an SS. Describing the 
task in finer details (like choosing the right joint(s) to 
move to the next SS) is part of our current work. 

The model provides two ways for evaluating 
general knowledge. First, the tutoring system can test 
general knowledge directly with questions. For 
example, RomanTutor may ask to name the closest 
modules to a given module or to ask to select the best 
cameras for viewing one or more modules. Second, 

general knowledge can be evaluated through problem-
solving exercises. The result of each procedure makes 
it possible to infer through backward reasoning if a 
general knowledge was recalled (the result of the 
procedure allow deducing the retrieval buffer content). 
If the learner uses procedures to retrieve a valid 
knowledge several times, the system can suppose that 
the learner possesses that general knowledge. 
Similarly, the system tracks the use of erroneous 
knowledge. After building a portrait of the procedural 
and semantic knowledge of a learner, it generates 
tailored demonstrations, exercises and questions that 
involve the knowledge to be trained for.  
 
4. Conclusion and Further Work 

 
We presented a model for describing domain 

knowledge in tutoring systems to evaluate and teach 
semantic knowledge that learners should possesses. 
Because the model link semantic knowledge retrieval 
to procedural knowledge, evaluation of the semantic 
knowledge can also be achieved through problem-
solving observation. Virtual tutors based on our model 
should be able to generate better feed-back, because 
they know how the recalled semantic knowledge is 
connected to procedures. Moreover, this paper showed 
how the model can be used to support spatial 
reasoning. Evaluating the effectiveness of our approach 
with humans is part of our future work. 
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