M-PLAT: Multi-Programming
Language Adaptive tutor

Alberto Nuiiez, Javier Ferndandez and Jestis Carretero
Universidad Carlos 11 de Madrid
Spain

1. Introduction

The learning process is, most of the times, a difficult journey that one has to travel mainly on
its own. A successful trip is usually determined by the indispensable help of a good teacher
and the toolset at their disposal. The former is especially true when one tries to acquire
programming skills. These new skills require a new way of thinking that can only be
obtained with practice and experience. Subsequently, it can be a very frustrating and time-
consuming process. Several works like (Lewis, 2002) and (K. Proulx, 2000) describe the
difficulties that novice programmers have to face.

The main requirement to achieve good programming skills is to perform a lot of practices
and exercises. The concepts that are under the hood have to be explained properly (here, the
teacher's hand is essential), but the ability to use them correctly and smoothly can only be
obtained by the practice and the experience.

The labour of the teacher not only includes the theoretical lessons but also the practical ones.
The teacher's labour to instruct these practical lessons include things as: designing of
practices and exercises, helping with doubts that could arise, checking the solutions
proposed and warning about the mistakes committed. All these tasks consume most of the
teacher's time and limit his ability to instruct a large number of students. That is the reason
why most programming classes have a low number of students.

Up to now, there have been many efforts to improve the productivity of the teacher by
automating these processes as much as possible. That is why tutoring systems came into
play. The first tutoring systems were very simple. They were usually oriented to learn only
one programming language and they only offered a set of multiple-choice questions to
evaluate the student.

Nowadays, a new generation of ITS (Intelligent Tutoring Systems) and IPTs (Intelligent
Programming Tutors) has emerged (See (Park, et al, 2001) for a good overview). There are
several works related to programming tutoring systems for undergraduate students
oriented to languages like Java, C, Lisp ... The common aim of all those tutoring systems is
to allow the students to familiarize themselves with the language basics (data structures,
syntax, nomenclature, etc.).

An example of a more sophisticated ITS is (Aguilar & Kaijiri, 2002). This work is based on
the evaluation of prior knowledge and abilities, learning styles, intelligence type and the

www.intechopen.com

126 Advances in Learning Processes

determination beliefs and attitudes. This system generates a tailored course based on the
obtained results of a previous evaluation. Another example is (Aase & Kurfess, 2004). This
work presents a Web-based learning environment to teach Artificial Intelligence concepts to
college students.

At present there are several IPTs (Intelligent Programming Tutors) like RAPITS (Rapid
Prototyping Adaptive Intelligent Tutoring System) (J. Woods & R. Warren, 1995), SIPLeS (Y.
S. & S. Xu, 1997), SIPLeS II (Xu & Y. S. Chee, 1999), MoleHill (S.R. Alpert et al., 1995),
PROUST (Lewis, 2002) or INTELLITUTOR (Ueno, 2000). Also, there are works (like (Pillay,
2003)) that proposes a generic architecture for the development of intelligent programming
tutors.

One of the biggest problems that all tutoring systems have to face is that each student has its
own way of thinking and learning style. The work (Valdés, 1999) describes the concept of
learning style as “The set of cognitive, affective and physiological factors that will be used as
stable indicators of how the learner perceives, how the learner interacts with his or her
environment, or how he or she responds to the environment.” Furthermore, it mentioned
that the learner uses learning styles when he or she applies strategies in the learning process.
The learning styles have their basis in the neurological structures and in the experiences
acquired through the life of an individual. A good tutoring system has to bend to this reality
and adapts its behaviour depending on the learning style the student shows.

In this work we present M-PLAT, an intelligent tutoring system aimed at learning
programming languages. M-PLAT is focused on achieving a system that helps the student to
gain practice and experience in learning a specific programming language. The design of M-
Plat tries to cover those objectives that are crucial to achieve a good ITS. The basic objectives
that M-PLAT intended to fulfil are the following: First, M-PLAT should allow the student to
perform programming exercises that are adequate to his level of knowledge. Then, the
system will check the solution proposed by the student. Finally, the student will receive a
feedback about the quality of his solution and a summary of the existing faults and
mistakes. Other objectives of the M-PLAT design are: support for on-line documentation,
access to historical reports and evaluations, adapt the behaviour to each student
characteristics, ensure authentication and non-refusal, present an usable and fool proof

environment, etc.

4

Client
Applications

Fig. 1. Global System Schema

Internet

»

Sener
Application

M-PLAT has been developed as a web application using a client-server architecture
(figure 1). It has been developed using Web Services technology. Thus, the system is both

www.intechopen.com

M-PLAT: Multi-Programming Language Adaptive tutor 127

platform and language independent. Client side application has been developed in Java.
Basically it contains a GUI where students can study the corresponding topics and write
their programs, which will be sent to server side application to be evaluated. Server side
application has been written in C# and contains a database, lessons, exercises, compilers, an
expert module that evaluate students, a pedagogical module that adapts the tutor
behaviour, etc. The communication between those two applications is performed using the
SOAP protocol. Due to our proposed system is platform independent, it can be used in a
mobile device, in a laptop, or in a personal computer.

2. M-PLAT Design

M-PLAT has been designed as a teacher's tool that eases the learning process for the student.
The objective is to automate most of the learning process related to perform practical
exercises. As a good intelligent tutor system, M-PLAT will adapt the level of requirements to
the learning pace of each student. M-PLAT will provide to the student a learning
environment where the student can perform the exercises proposed by the system. The
system will compile, execute and check the student solution and a report with the faults and
mistakes founded is sent to the student. The system will also record the student history in
order to improve the learning experience.

M-PLAT is designed to operate in one of two working modes: online mode and offline
mode. Each mode has different objectives and requirements. The online mode is focused on
acquiring the practical basis and fastens the individual concepts. The work of the student
consists on several exercises to be performed individually and oriented to acquire a specific
concept or knowledge. These exercises are classified on different levels of exigency. The
student should open an online M-PLAT session. After that, the system proposes exercises to
the student, one at a time. Once the exercise is finished, it is submitted to the system. M-
PLAT will compile, execute and check the solution. If it is OK the system proposes a new
exercise. If not, the system sends the faults and mistakes founded and waits for the student
to fix the solution.

The offline mode is focused on learning how to mix the individual concepts and to perform
larger exercises. The online behavior cannot be used here because these exercises take days
or weeks to be finished, and it also common to propose the exercise as teamwork. These
proposed exercises are intended to be developed using state-of-the-art programming
environments (not M-PLAT). MPLAT is in charge of collecting the solutions and, after
compiling, executing and checking, it sends to the authors a report with the results as soon
as possible (normally within a day). But the tools to compile are external and maybe any of
the existing into the market.

M-PLAT has been implemented as a web application. This design lets the client application
to run on every platform and to update it everywhere instantly. The client is merely a GUI
that offers the M-PLAT functionality that is implemented in the server. The communication
between client and server is performed using Web services. The server offers a generic
service called Programming Languages Learning Method (PLLM). This service is
independent of the programming language used. The service is implemented as a bunch of
modules, each one in charge of an specific task. These modules are:

- The communication module: Used as interface between client and server.

- The expert module: Used for compiling and checking the online exercises.

www.intechopen.com

128 Advances in Learning Processes

- The online documentation module: Used for offering documentation to the user.

- The pedagogical module: Used to adapt the exercise level to the student behaviour.

- The offline exercises module: Used to collect, compile and check the offline exercises.

- The database module: Used to keep the students profiles and other useful information.

ClientSide Server-Side

¥ Java application

Internet Browser

Client-Side
Java application

]

Communication Module ‘

C
[

Java

Expert
Exercises
Module 4—‘ Evaluators [~

Op. Systems

Communicaition Module |

X - [Cr Offline
‘ Topics [Java Exerci
> xercices
Module Topics | M
H anager
! ’Ji
Pedagogical ReTs
Module Adaptive | -
: Strategies [~
Data Base
: . Student Skill
Client-Side "

Student Statistics |
Student programs

Fig. 2. M-PLAT Architecture

2.1 M-PLAT working modes

The main aim of M-PLAT is to ease students the way they learn programming languages.
Mainly, M-PLAT is focused on monitoring the progression of students that are coursing
certain subjects, like Operating Systems, Distributed Systems, Advanced Programming, etc.
Thus, the M-PLAT system provides two different working modes for students.

First mode, called online mode, is used for performing exams and exercises that can be
developed in relatively short time. In this mode, a set of exercises is presented to the
student, where the student has to solve an exercise before trying to solve next one. The
student develops his solutions on the M-PLAT environment. When a student has finished its
program, the source code is sent to the server to be compiled and evaluated. Then, a
response with the results is sent back to client-side application. After that, the student will
receive one of the following messages:

- Compilation errors have been found.

- There are no compilation errors, but the provided program is not correct.

- The program is correct.

If the program is not correct, then the student has to modify its program and send it again to
the server. The maximum number of tries that a student has to solve a corresponding
exercise is configurable in M-PLAT.

The most common way to use M-PLAT online is that the student performs exercises in order
to get practice and experience. Thus, the student has to open a session on the M-PLAT

www.intechopen.com

M-PLAT: Multi-Programming Language Adaptive tutor 129

environment. Then, the system will propose exercise after exercise trying to adjust the
difficulty with the needs of the student. One of the most relevant features of MPLA-T is that
it can adapt itself dynamically to each student’s behaviour. To do so, M-PLAT records the
sessions and grab data about the behaviour of the student when solving the exercises and
use this information to decide which exercise should be proposed next. For example, if M-
PLAT detects that a student solves exercises fast with few errors, the next exercise will be
more difficult. By the contrary, if a student has a considerable number of errors and spends
more time than estimated to solve exercises, then next exercises will be easier. The main
objective is to avoid the student to get stalled.

Another popular use of the online mode of M-PLAT is to perform evaluation test and exams
to obtain the level of the students. In this case the exercises are previously defined (normally
by the teacher). Another variation is that the system output when a exercise is submitted can
be restricted. For example, the system will notify the compilation errors, but not the execution
errors; or it can notify if there are execution errors, but not which ones. Also the maximum
number of submissions can be configured as well as a maximum time to perform the exam.
Second mode, called offline mode, is used to evaluate exercises asynchronously. As said
before the online behaviour cannot be used here because these exercises take days or weeks
to be finished, and it also common to propose the exercises as a teamwork. This kind of
exercises is commonly used to evaluate the level of the students. Thus, it is normal that the
exercises proposed have a submission deadline. In this case M-PLAT is only in charge of the
submission, correction and returning back the correction report. These practices are
supposed to be performed in a real programming environment.

The offline mode requires a fool-proof, secure and non-refutable submission environment
That includes things like: using secure channels, authenticating using username and
password, restricting the submission only for the correct files by checking the name and the
type (using the extension and MIME types), returning the student an electronic-signed copy
of his submission that can be used as a proof for him.

The corrections are done off-line periodically (for example, once a day) and the resulting
reports are sent to the students by e-mail. The policy about the correction reports depends
on the learning objectives. The reports can be brief or detailed depending on the level of
requirements to the students. The number of submission can also be limited to force the
students to use they own correction techniques.

2.2 M-PLAT Modules

In this work we have commented that the M-PLAT system follows a client-server
architecture. The entire system consists of a set of modules; where each one has been
designed to perform a concrete task. In this section, the functionality and the purpose of all
those modules will be described with detail.

2.2.1 Client-Side Java application

This module contains a friendly and easy-to-use graphical interface. This GUI contains two
sections. First one (Figure 3) is used to access the online documentation of a concrete
programming language. Those lessons consist of HTML pages that are hosted and
downloaded from the server. Those pages contain corresponding topics related to
theoretical lessons, like loops, functions, modules, data structures ...

www.intechopen.com

130 Advances in Learning Processes

The second mode (evaluation mode) is used to evaluate students and check their skills about
specific topics of the corresponding programming language. In evaluation mode the screen
is split in two areas. The top area is the exercise description area, and the bottom area is the
program area. In the program area students can write their programs (see Figure 4).

Also, a student can obtain help while are writing a program. Thus, in the exercise
description area is shown the current topic related to the corresponding exercise.

This application is initially placed at the server side (a binary .jar file). Students have to use
an Internet Browser to establish connection with server. Then, using the Web Start
application, the client-side Java application will be downloaded to the client computer and
then executed using the browser. The advantage of this system is two-folds. First, there is
only one client-side application copy, which is stored in the server. Then, if we have to
modify the application, we only have to change and compile one code. Thus, each time a
student establish connection with server-side, the student will download the last version of
the application. Second, we can enable access for certain versions of the client application.
Thus, if we detect a security failure in the client-side application code, we can generate a
new version that solves the problem and denying the access to the server to all previous
versions that contain the failure.

71 el AT - Prege ainiiining Linguags Adagiive Tulse g B
Tl Tepsti Msip

Famn wize

3 (0t pETErITL, o AT Checs 1 e
= e’ Start by wring the mam method of the

=E1A andy here

}
AnEay cther Hungs this code denons ming boied town m e
Ehom We CAn add the

lefails W
= o

ncder=and by Breakng che opdé eno omaler, mors
4 ® 1he fiecronal method Defore we worry
1141

Fig. 3. M-PLAT GUI - Topic section

www.intechopen.com

M-PLAT: Multi-Programming Language Adaptive tutor 131

[7] s PLAT: Mauini Fyngramming Language Asapie Tie e B
il Topies ibrip

¥ Q@ O o BB §

Fig. 4. M-PLAT GUI - Evaluation section

2.2.2 Communication Module

Communication between client and server applications is performed by using Web Services.
Web services can be seen as an application programming interfaces (API) exported across
Internet. It lets clients to execute code on the servers, no matter how is developed each part
(client or server).

Web services allow different applications from different sources to communicate with each
other without time-consuming custom coding, and because all communication is in XML,
Web services are not tied to any operating system or programming language. Thus,
software applications written in various programming languages and running on various
platforms can use web services to exchange data over computer networks. For example, a
client application written in Java running on Windows can communicate with a server
application written in C# running on Windows.

The characteristics that define web services are:

e Extensible Markup Language (XML)

e The HTTP standard is allowing more systems to communicate with one another.
Moreover, web services can work through many common firewall security
measures without requiring changes to the firewall filtering rules.

e SOAP (built on XML) standardizes the messaging capability on different systems.

e UDDI standardizes the publishing and finding of Web services.

e WSDL standardizes the description of Web services so providers and requesters
are speaking the same language.

Web Services are the core of M-PLAT communications. All the interfaces that define the
services M-PLAT provides are in the communication module. This module solves any

www.intechopen.com

132 Advances in Learning Processes

subject related with intercommunications issues, leaving the core business to the rest of the
modules.

2.2.3 Expert Module

The expert module is in charge of evaluating the programs written by students during the
online sessions. This is done executing a set of tests for each exercise in order to evaluate the
student solution. The aim of those tests is to check the correctness of a program
implementation.

Software testing, which is the process of analyzing the software to detect the differences
between the real behavior and the required behavior can be one using two techniques: white
box technique and black box technique.

Black box testing ignores the internal mechanism of a system or component and focuses
solely on the outputs generated in response to selected inputs and execution conditions.
With black box testing, the software tester does not have access to the source code itself. The
code is considered to be a “big black box” to the tester who can’t see inside the box. The
tester knows only that information can be input into to the black box, and the black box will
send something back out. Based on the requirements knowledge, the tester knows what to
expect the black box to send out and tests to make sure the black box sends out what it’s
supposed to send out.

White box testing takes into account the internal mechanism of a system or component. White
box testing focuses on the internal structure of the software code. The white box tester knows
what the code looks like and writes test cases by executing methods with certain parameters.
M-PLAT System uses both White box and Black box testing methods. For example, in Java
we use the Reflection API. With this API we are able to inspect the structure of a class at
run-time, thus a method signature can be checked dynamically to check if a program
satisfies the corresponding requirements or not. This is white box testing.

When a program is evaluated, it is not enough to compile the source code and check the
method’s signatures, a set of tests must been checked. All tests are executed using the
programs written by the students and the results are compared with the correct ones. If the
student program passes a corresponding percentage of tests, then the program is considered
correct. Those tests are black box testing.

This module contains all tests corresponding to each programming language supported by
M-PLAT, and also the configuration files to customize the number of tests of each problem.

2.2.4 Online Documentation

This module contains all lessons related to a concrete programming language or a certain
subject (like Operating Systems). Those lessons are hosted in the server machine in HTML
format. Thus, client applications can download the corresponding page to be visualized in
the client machine. Those pages are visualized in the client application, no additional
browser is needed.

2.2.5 Pedagogical Module

This module contains the strategy to adapt the exercises level to each student programming
skills. Thus, an advanced student is supposed to write complex exercises while a novel
student should start solving very basic programs. The major goal of this module is to reduce

www.intechopen.com

M-PLAT: Multi-Programming Language Adaptive tutor 133

the frustration that novice students fell when they try to solve complex programs without
the necessary knowledge. Thus, a novice programmer will not solve complex programs
until (s)he acquires the required level solving basic programs.

We think that the best feature characteristic of M-PLAT is the possibility to dynamically
adapt itself to the learning capacity of each student. In order to perform this adaptation
successfully, our IPT has to learn how the students assimilate the concepts that the teacher
explains in the classroom. One of the main tasks of this module is to calculate which is the
actual level of knowledge of the student and decides the category of next exercises, using
information obtained from the client application.

We analyzed which aspects are relevant in order to study the corresponding learning
capacities. We considered that the three following parameters are the most relevant: Time,
memory, and number of errors. Next we briefly describe how these attributes are treated as
well as their influence in the total computation.

Time: The time that a student spends to solve an assignment is indeed very important. If a
student does it very fast then we may conclude that this student understood the concepts
underlying the assignment. Moreover, the student knows a good way to solve it. In contrast,
some other students might take a longer time to solve the very same assignment. This is
mainly the case if this student has written few programs before. Once a student starts to
solve assignments relatively faster, this student is ready to advance to the next level. Thus,
time represents the speed and fluency that the student has to solve problems at his/her
current level of knowledge.

Memory: As we said in the previous section, a student can obtain help from our system
while (s)he is solving an assignment. In particular, that student can have a look at the
corresponding lecture. If a student accesses this help system, we may deduce that that
student did not completely understand the concepts. Thus, the student needs to study them
more thoroughly. If a student solves an assignment without asking M-PLAT for help then
we deduce that (s)he is learning well. Intuitively, this parameter represents the capacity of
the student to retain the concepts presented in the classroom.

Number of errors: First, we have to remark that by this parameter we do not mean the
number of errors that contains a program when a student compiles it. The number of errors
represents the times that a student clicks the checking button until the program is correct.
Let us remind that, as we explained before, the answer to an assignment can be incorrect
either because the program has compilation errors or because it does not preserve the
statement of the assignment. As we might expect, a student with some doubts will increase
the number of tries while the number of errors will decrease when the student improves his
command on the topic. Intuitively, this parameter represents the clarity with which a
student controls the involved concepts.

Let us remark that these three parameters are complementary to each other, that is, in order
to compute the capacity of the student we should not use one of these parameters alone.
Each parameter has a different weight, but the values of these weights can vary when we
change the environment. For example, teachers usually appreciate that students have the
smallest number of errors as possible. In particular, this means that students understand
and learn the programming language that (s)he is teaching. On the contrary, the director of a
company values with more priority the time parameter. This is so because it is not relevant
that the employee has a lot of errors in previous versions of the program as long as the task
is finished soon, and the program works.

www.intechopen.com

134 Advances in Learning Processes

2.2.6 Offline exercises Module

The main purpose of this module is to manage all the issues related to the offline exercises.
This includes submitting, testing, and sending the results. The submission is performed
using a dynamic web page hosted in the M-PLAT server that uses HTPPS secure protocol.
The solutions submitted are stored on the server. Periodically, this module takes the latest
submissions and checks them with the test battery for this exercise. The results are then
mailed to the students.

This module is able to manage:

Students: The system must contain lists of students that have access to the system. Those
students are stored in the database, and need a username and a password to obtain access.
Once a student is registered in the system, the corresponding username and password will
be sent by e-mail to the student’s account. System administrator will link each student with
the corresponding subjects in current academic year.

Subjects: The system can manage subjects for current academic year. Each subject has
associated a list of students and a list of exercises.

Exercises: Each subject can contain one or several exercises to be delivered along the
academic year. The system can configure a list of exercises, each one with the corresponding
testing modules and the corresponding deadlines.

Those data is stored in a data base (see Figure 2). Figure 5 shows the Entity-Relation
datagram that this module performs with the data base.

Once students are registered in the system, they can send the corresponding programs
related to an exercise. By default, the system is configured to evaluate all solutions daily at
the same time. The e-mail sent to each student shows the corresponding qualification and a
list of tests that the corresponding solution passes and does not.

2.2.7 Data Base Module
Our proposed system keeps profiles for each student where the relative information about
the programs written as well as the evaluation of them will be stored. We think that this is a
very useful feature of our system. On one hand, teachers can obtain statistics and evolution
of all students. On the other hand, any student can check its own evolution in the
knowledge of the respective programming language or subject.
Moreover, M-PLAT system is able to load students in the Data Base using lists. Those lists
must contain a set of students where each student is represented with two values: Name
and ID.

Name: Contain the complete name and surname.

ID: Identity National Document number.
Our University (Universidad Carlos III de Madrid) provides a system to export list of
students in two formats: plain text and excel format. Thus, M-PLAT system can import those
lists using whatever of those two formats.

www.intechopen.com

M-PLAT: Multi-Programming Language Adaptive tutor 135

Student Subject
<—send—— <—perform—
Exercise identify Delivery

Fig. 5. Entity-Relation schema

3. Performance Evaluation

In order to check the performance of the proposed system, a performance test simulating the
learning style of a group of students has been made. The main objective of this performance
evaluation test is to obtain the maximum number of students that can use the system
simultaneously, maintaining a reasonable performance of the system. When several
students using the system send programs to the server side, the system will compile and
evaluate all those programs simultaneously. The response time of each student logically will
increase when the number of students grows. The features of each machine that contains the
service (server) are:

e Intel Pentium 4 CPU 3.20 GHz.

e 2 GB of RAM. Cache size of 1024 KB.

e Seagate Disk (300 GB)
Those machines are connected to Internet through an Ethernet Gigabyte network. All
programs sent by students are written in Java Language. The Java compiler version used is
1.5.0_07.
The performance test consists of several students making a M-PLAT-Java exam. An exam in
M-PLAT consists of 10 problems where students have to write a program for each problem.
Each one of those programs is sent to server side to be compiled and evaluated, and then the
results are sent to client side. A student has 10 tries to write a correct program for each
problem.
Because it is very difficult to get enough students to make a real test, we have decided to
simulate the student’s behavior. The students have been grouped, depending of the learning
style, in three categories: novice programmers, intermediate programmers and advance
programmers.
Figure 5 shows the simulated learning style of each category. The x axis shows the number
of times that a student has sent a program to the server to be evaluated. The y axis shows
the probability that the program sent will be correct. If a program is not correct, the
simulated behavior of each student waits, depending of the student category, an amount of
time (between 2 and 5 minutes) after send again the program to server.

www.intechopen.com

136 Advances in Learning Processes

Novice student behavior has been modeled with a normal distribution with parameters
p=6,5 and 0=2,5. This model reflects that the probability of a program written by a novice
programmer to be correct is very limited the first times. This kind of students tends to send
several times an incorrect program and debug it with the feedback provided by the server,
where several error and advices messages are shown. This category of students needs to
send a program 7 times to reach the 50% of probability of the sent program to be correct.
Intermediate student behavior has been modeled with a normal distribution with
parameters p=5 and 0=3. This kind of students corrects faster an incorrect program than
novice programmers. Thus, those students send a smaller number of programs to the server.
To reach the 50% of probability that the sent program is correct those users need to send a
program 5 times.

Advanced student behavior has been modeled with a normal distribution with parameters
p=2 and 0=5. This kind of students learns fast. At the 2nd try, this kind of students reach the
probability of 50% that the sent program is correct.

Figure 6 shows the results when several simulated students make a M-PLAT Java exam.
Based on the qualifications of last year, the category student ratio is: 30% of novice students,
50% of intermediate students and 20% of advanced students.

1
0,8
or / / /
Z 06 — -
$ oe — =t
8 oa /‘ /
o 0,3 / /
0,2 / /
0,1 p—
0 T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Number of tries
‘+Novioe —=— |ntermediate —— Advanced

Fig. 6. Modeling of student learning style

1000

100

Time (s) (Logarithmic scale)
3

1 10 100 250 500 1000
Students

‘+ 1 Server —o—2 Servers ——4 Servers

Fig. 7. Average response time of a Java exam

www.intechopen.com

M-PLAT: Multi-Programming Language Adaptive tutor 137

With only one student, the response time is 0,494 seconds. When we increase the number of
students, we can observe that response time increases.

We want to obtain a response time not superior than 5 seconds. With only one server, we
reach that limit with 250 students, and that limit is really exceeded with 500 students (46,7
seconds). When we use 2 servers, we can support 500 students obtaining a response time
approximately of 5 seconds (4.88 seconds). Finally, using 4 servers, we can support up to
1000 students with a response time of 5,005 seconds. In general, analyzing those results we
can conclude that our system has a great scalability. In fact we can assume that each one of
the used server here can support up to 250 students simultaneously.

4. Conclusions and Future Work

In this paper we have presented an intelligent adaptive tutor for allowing students to
overcome learning difficulties of programming languages. Moreover, the proposed system
adapts itself dynamically to each student learning style. The tutor can be easily customized
to deal not only with different programming languages but also with different approaches
to teach them.

The evaluation includes a scalability and performance test that was made by simulating the
learning style of several students while they were learning several programming languages
using the intelligent tutor.

As future works we plan upgrade M-PLAT to support more programming languages like C,
C++, Lisp, Pascal, etc. Finally a new feature that we have in mind is to provide a non
interactive automatic correction system for a great number of students, which will be
notified via e-mail with the corresponding qualification.

5. References

Aguilar, G & Kaijiri, K. (2002). Personalization Approach of a Web Based Java Programming
Tutorial, Proceedings of Computer and Advanced Technology in Education, ISBN:
0-88986-332-6, Cancun (México), May, 2002.

Aase, Magnus & Kurfess, Franz. (2004). Utilizing Learning Styles for Interactive Tutorials,
Proceedings of the IEEE International Conference on Advanced Learning
Technologies (ICALT'04), pp. 828-830, ISBN: 0-7695-2181-9, 2004, September.

J. Woods, Pamela & R. Warren, James. (1995). Rapid Prototyping of an Intelligent Tutorial
System. http:/ /www.ascilite.org.au/conference/melbourne95/smtu/ papers/

woods.pdf. 1995.

K. Proulx, Viera. (2000). Programming Patterns and Design Patterns in the Introductory
Computer Science Course, SIGCSE Bulletin: Conference Proceedings of the Thirty
First SIGCSE Symposium on Computer Science Education, Vol. 32, No. 1, 2000, pp.
80-84, ISSN:0097-8418.

Lewis Johnson, William. (1990). Understanding and Debugging Novice Programs, Artificial
Intelligence and Learning Environments, Vol. 42, No 1, 1990, pp. 51-97, ISSN 0004-
3702

Park Woolf, Beverly; Beck, Joseph; Elliot, Christopher & Stern, Mia. (2001). Growth and
maturity of intelligent tutoring systems: a status report, In: Smart Machines in
Education, AAAI Press/The MIT Press, pp. 99-144, ISBN:0-262-56141-7.

www.intechopen.com

138 Advances in Learning Processes

Pillay, Nelishia. (2003). Developing Intelligent Programming Tutors for Novice
Programmers, ACM SIGCSE Bulletin. Vol. 35, No 2, June, 2003.

S. R, Alpert & M. K, Singley & J. M, Carroll. (1995). Multiple Multimodal Mentors,
Delivering Computer-Based Instruction via Specialized Anthropomorphic
Advisors, Behaviour and Information Technology, Vol. 14, No. 2, pp. 69-79, Taylor
& Francis, Ltd, 1995.

Ueno H., A Generalized Knowledge-Based Approach to Comprehend Pascal and C
Programs, IEICE Transactions on Information Systems, Vol. E81-D, No.12, pp.1323-
1329, I0S Press, 2000.

Valdés Salmerén, Verénica. (1999). Estilos de Aprendizaje, Manual del ITESM, Campus
Chiapas. 1999.

Xu S. & Y. S.,, Chee (1999). SIPLES-II: An Automatic Program Diagnoses System for
Programming Learning Environments, Proceedings of AI-ED 99: 9th International
Conference on Artificial Intelligence in Education, pp. 397 - 404, Le Mans, France,
July 1999, IOS Press.

Y. S, Chee & S. Xu. (1997). SIPLeS: Supporting Intermediate Smalltalk Programming
Through Goal-based Learning Scenarios, Proceedings of AI-ED 97: 8th World
Conference on Artificial Intelligence in Education, pp. 95-102, Kobe, Japan, 1997.

www.intechopen.com

Advances in Learning Processes
Edited by Mary Beth Rosson

Advances in
Learning Processes

ety Adary Bt Rmsasey

ISBN 978-953-7619-56-5

Hard cover, 284 pages

Publisher InTech

Published online 01, January, 2010
Published in print edition January, 2010

Readers will find several papers that address high-level issues in the use of technology in education, for
example architecture and design frameworks for building online education materials or tools. Several other
chapters report novel approaches to intelligent tutors or adaptive systems in educational settings. A number of
chapters consider many roles for social computing in education, from simple computer-mediated
communication support to more extensive community-building frameworks and tools. Finally, several chapters
report state-of-the-art results in tools that can be used to assist educators in critical tasks such as content
presentation and grading.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alberto Nunez, Javier Fernandez and Jesus Carretero (2010). M-PLAT: Multi-Programming Language
Adaptive Tutor, Advances in Learning Processes, Mary Beth Rosson (Ed.), ISBN: 978-953-7619-56-5, InTech,
Available from: http://www.intechopen.com/books/advances-in-learning-processes/m-plat-multi-programming-
language-adaptive-tutor

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE EiathIEREiEe5S _LinEr B EAIREH L4058 T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

