
http://wrap.warwick.ac.uk

Original citation:
Scotton, Joshua D. and Cristea, Alexandra I. (2010) Reusing adaptation strategies in
adaptive educational hypermedia systems. In: 10th IEEE International Conference on
Advanced Learning Technologies (ICALT 2010), Sousse, Tunisia, 5-7 Jul 2010.
Published in: Proceedings of the 2010 10th IEEE International Conference on Advanced
Learning Technologies pp. 528-532.

Permanent WRAP url:
http://wrap.warwick.ac.uk/47477

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Copyright statement:
“© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/47477
mailto:publications@warwick.ac.uk

Reusing Adaptation Strategies in Adaptive Educational Hypermedia Systems

Joshua Scotton, Alexandra I. Cristea

Department of Computer Science

The University of Warwick

Coventry CV4 7AL, UK

{jscotton, acristea}@dcs.warwick.ac.uk

Abstract—Due to the difficulty and thus effort and expenses

involved in creating them, personalization strategies in

learning environments have to demonstrate a higher return-

on-investment (ROI), if they are to be a viable component of

the learning setting of the future. One feature that can increase

this ROI is the reusability of adaptation strategies in Adaptive

Educational Hypermedia Systems. This research looks into

various ways of enhancing this reusability. Using multiple

modular adaptation strategies (MAS) with a controlling meta-

strategy is proposed as a more efficient way of authoring

adaptation strategies. This renders the reuse of adaptation

strategies faster and easier for course authors. A method for

semi-automatically breaking down complex adaptation

strategies into smaller modular adaptation strategies is

described. Potential problems with using multiple strategies

are described and ways to solve them are discussed. Finally,

some evaluation points are illustrated, conclusions are drawn

and further research areas are identified.

Keywords - LAG; Adaptive Educational Hypermedia;

Technology Enhanced Learning; Meta-strategies; Adaptation;

Reusability; Adaptation Strategies

I. INTRODUCTION

A limiting factor with current Adaptive Educational
Hypermedia (AEH) systems is the reusability of the
adaptation strategies applied within the systems. Often, the
adaptation strategies involved are very specific to the course
for which they were written, even though they describe
adaptation behaviors which are applicable to multiple
courses. Course creators may often lack the time or the skills
needed to create new adaptation strategies from scratch, and
therefore any improvement in the reusability of adaptation
strategies is a major help in the authoring process of AEH
courses. Writing functional adaptation strategies is not
trivial, and we don’t expect every teacher or educator to be
able to master it. In previous research, we have advocated the
separation of concerns principle [1] [2], which states,
amongst others, that adaptive behavior of a course and the
content of a course should be able to be authored separately.
Besides the obvious implications of reuse, this separation
also permits the two parts to be authored by different roles,
i.e., by authors of different experience. Whilst subject
knowledge is essential when authoring the course content (as
performed by the content author), for authoring personalized
adaptation strategies, a combination between knowledge of
pedagogy and some elementary programming knowledge is

important. The latter is done by the adaptation author, which
is our primary target in this paper.

Therefore, this paper tackles the challenge of reusable
personalization strategies for learning in AEH systems using
the LAOS authoring framework [3] and the LAG adaptation
strategy language [4] [5] for illustration, and will describe
ways in which the authoring of AEH courses can be made
easier by improving the reusability of adaptation strategies.
The paper then describes potential problems with reusing
adaptation strategies and how these may be avoided. Finally
points for evaluation are described and areas for further
research are identified.

II. A CASE STUDY

The following scenario illustrates the need for reuse of
adaptation strategies in AEH systems:

Professor X creates a new course on Computer Science
for international students and wants to adapt the content to:

• Change the content depending on network
conditions so that those with slow internet
connections will not experience delays in accessing
the course materials. This would be called a Quality
of Service strategy; and

• Slowly present additional information to students,
during their progress in the course. At every revisit,
content is added for each concept they are learning,
but other content parts are removed. This would be
called a RollOut Strategy.

Professor X then writes a large adaptation strategy which
succesfully implements those adaptation behaviours and runs
the course successfully.

Sometime later, Professor Y creates a course on Modern
Art and wants to reuse Professor X’s adaptation strategy, but
only the RollOut adaptation behaviour. Not being from a
Computer Science background, Professor Y finds it very
difficult to extract the code relating to that adaptation
strategy and wishes that the process of authoring and reusing
adaptation strategies was made simpler somehow.

III. RELATED WORK

The creation of AEH courses can be a time-consuming
process, and multiple methods have been proposed to reduce
the amount of time and effort needed to create such courses.

As well as developing more effective authoring tools
(MOT [6], GAT [7], AHA! Graph Author [8] etc.) to
enhance the course creation process, research has focused on

improving the reusability of the content and adaptation
specification of adaptive courses.

This has involved developing multiple adaptation
frameworks including ACE [9], AHAM [10], LAOS [3] and
the GRAPPLE framework

1
.

Reuse of adaptation specifications can also increase the
efficiency of authoring AEH. However, the opportunities for
reuse rely on the type of adaptation representation within an
AEH system [5]. The reuse of adaptation specifications
becomes simpler, as the adaptation representation becomes
more generalised and abstracted from the content domain
[2], due to the fact that less modification of the adaptation
specification is needed to apply it to a new content domain.

‘Assembly-level’ adaptation languages [5] such as those
used in AHA! [11], Interbook [12] and WHURLE [13] are at
a disadvantage in this respect, as the adaptation specification
is closely linked to the content domain. Thus it cannot be
separated from it, nor reused.

Higher-level adaptation languages [5], such as LAG and
LAG-XLS [14], where the adaptation specification can be
completely generic, are in a much better position to be
reused.

However, even though whole adaptation strategies using
these adaptation languages can be reutilized across multiple
content domains, reusing parts of strategies and combining
adaptation strategies is still problematic.

IV. REUSE OF ADAPTATION STRATEGIES

The case study highlights a common problem with
reusing adaptation strategies, where only part of the original
strategy is needed. This is particularly a problem for course
authors who lack the skills or time to write a new adaptation
strategy, and rely on reusing strategies created by others.

Our proposed solution is for strategy authors to create
smaller, modular adaptation strategies (MAS) which can be
combined in different permutations using meta-strategies
within an AEH system, to acheive the desired adaptation
behaviours.

A. Modular Adaptation Strategies and Meta-Strategies

Modular adaptation strategies are strategies that provide
specific adaptation behaviors, which can then be used as
building blocks in the overall pedagogical strategy for an
AEH course. This overall course adaptation strategy would
be described by a meta-strategy, which specifies when and in
which order the modular adaptation strategies are applied to
the course content.

An author wishing to reuse these modular strategies
would only need to create a new meta-strategy, instead of
having to potentially rewrite the whole adaptation strategy.

If modular adaptation strategies are used, then it would
be possible to create a meta-strategy authoring tool which
provides a list of modular and whole adaptation strategies,
from which the author selects the relevant (modular)
adaptation strategies that he or she wishes to use in the AEH
course.

1
 www.grapple-project.org/

B. Creating modular strategies from existing strategies

However, modular adaptation strategies and meta-
strategies don’t solve the problem of reusing parts from pre-
existing adaptation strategies which haven’t been created in
this way.

In order to be able to reuse existing strategies, they would
first need to be ‘broken down’ into smaller modular
adaptation strategies. As adaptation strategies describe
adaptation behaviours, it is logical to identify those and then
create modular strategies for each.

Ideally this would be an automated process, however
research into automatic identification of adaptation
behaviours is still ongoing and hence, to begin with, this
would have to be a semi-automated process.

The proposed method for this consists of the following
steps:

1) Manually add semantic markup to the original
adaptation, to label and describe the adaptation
behaviour.

2) Use this semantic markup to aid software in
automatically creating the reusable modular
strategies from the original strategy.

3) Automatically create the meta-strategies controlling
the created meta-strategies. This creation process is
based on the current author’s needs and goals.

V. MANUAL SEMANTIC MARKUP

In order to aid software in recognizing different
personalization behaviors being described in an adaptation
strategy, semantic markup can be added, to simplify this
process. As shown in the code below, the markup is limited
to describing the adaptation task being carried out by a
section of code using the syntax:

<task name=”Task Name”
 description=”Task Description”>
 Adaptation Code
</task>

The semantics of the markup is to make a piece of code

reusable for other personalization strategies or meta-
strategies. Next time when a strategy is authored, this piece
of annotated code will be directly available, as we shall show
in the following examples.

This markup process can be undertaken using a standard
text editor, or could be carried out using new strategy
authoring tools, or by extending existing tools, such as the
PEAL [5] strategy authoring tool.

A. Markup in a text editor

We first describe the editing directly in a text editor,
which requires a higher level of programming knowledge for
the adaptation author. The proposed syntax can be
demonstrated by a simple example using the following code
from the RollOut adaptation strategy [15].

RollOut adaptation strategy: This strategy slowly rolls
out (and hides) concept fragments, based on how often a
concept has been accessed. Fragments have the label
"showatmost" if they should disappear after a while (with a
weight indicating the number of visits required till

disappearance) and the label "showafter" if they should show
up after another number of visits (again, the weight indicates
the number of visits).

We use for illustration the LAG language [4], although
the annotation mechanism can be used for any other
adaptation language as well. The LAG language uses two
main interaction paradigms: (1) the description of the
concepts and fragments that should be visible to a student the
first time he visits a course (the initialization), and (2) the
description of the adaptive interaction between student and
system, which is run in a continuous loop, as long as the
student is learning (the implementation) .

The code snippet below shows how markup can be added
to existent LAG code (tags describing tasks are added to the
original code). This can be done by Professor X for his
strategy in the case study:

initialization(
while true (

 <task name=”AccessCount” description=”Set a counter

 for each concept, to count accesses to it”>
 UM.GM.Concept.beenthere = 0

 </task>
 <task name=”ShowAll” description=”Show all
concepts”>

 PM.GM.Concept.show = true

 </task>
)

 <task name=”RemoveShowAfter” description=”Remove

 in the initialization concept fragments with label showafter”>
 while GM.Concept.label == showafter (

 if GM.Concept.weight > 1 then (

 PM.GM.Concept.show = false

) else (

 PM.GM.Concept.show = true

)

)

 </task>
)

implementation (

 <task name=”AccessCount” description=”Count Accesses to

concept”>
 if UM.GM.Concept.access == true then (

 UM.GM.Concept.beenthere += 1

)

 </task>

<task name=”ShowAfterShowAtMost” description=”Remove

concepts with label showatmost for which the Accesses to the concept

are above the weight of that concept, and show concepts with label
showafter for which the Accesses to the concept are above the weight of

that concept”>
 if enough(

 UM.GM.Concept.beenthere >= GM.Concept.weight

 GM.Concept.label == showatmost, 2) then (

 PM.GM.Concept.show = false)

 if enough(

 UM.GM.Concept.beenthere >= GM.Concept.weight

 GM.Concept.label == showafter, 2) then (

 PM.GM.Concept.show = true

)
 </task>

 <task name=”NetworkState” description=”Show concepts

 which are appropriate for the current Network state.”>
 if (UM.GM.networkState == GM.Concept.label)

 then (PM.GM.Concept.show = true)

 </task>

)

The markup process has divided the code into five
different reusable tasks, three in the initialization part of the
code and two in the implementation part, each with their own
name, and with description information. As can be seen in
the following, the description information can be used later
on, when reusing that particular code fragment. Please note
that in our example, all code has been marked, but it is
possible that an author only decides to reuse part and not all
of his adaptation code (thus marking only a part of it).

B. Markup in the PEAL adaptation strategy authoring

system

Alternatively, Professor X could use PEAL for the task
markup. The PEAL authoring system can already store
pieces of code for further reuse, as illustrated in Fig. 1.

Figure 1. Saving a code fragment called ‘ShowAll’ in PEAL

As PEAL helps the author with colored syntax
highlighting and hints, it is aimed at adaptation authors with
less programming experience (importantly, however, not
non-programmers). As the figure shows, PEAL has already
saved the task ‘AccessCount’ (available in the right upper
frame, and with a code preview in the lower frame), and the
author is just saving the task ‘ShowAll’, by simply selecting
the desired part of the code and saving it as a code fragment.
Thus, an author can select from all existing fragments of
code stored by himself, or by his colleague. Please note that
this is additional to being able to reuse whole strategies
saved in PEAL by any of his colleagues that used the
common storage space (PEAL uses two types of spaces:
private and common; private is available to the author only,
and common is available to all). PEAL currently does not
add, however, the description information, which makes it
less usable (less readable) by non-programmers (as an author
needs to read and understand the code preview in order to
decide upon including a code fragment or not).

VI. AUTOMATIZING MODULAR STRATEGY CREATION

The RollOut strategy shown above could now be
automatically split up into modular adaptation strategies
(MAS). A new MAS is created for each adaptation task
described, as well as a default MAS, for any unmarked code.

During the process, the position of each marked block of
code, and the conditions under which it can be executed,
need to be added. This can be either done automatically by
the system, for instance, by adding from a standard block of
conditions, or by copying the conditions from the
surrounding original code. Alternatively, this can be
manually added by the author. An example of automatic
system deduction is shown for the ‘ShowAll’ task, which is
located in the initialization section of the LAG strategy,
inside a while block with a condition of ‘true’. Hence an
automatic MAS to be created by the system for this task is as
follows:

initialization (
 while true (PM.GM.Concept.show = true)
)
implementation ()

One possible problem with fully automating it in this way

is how far do we go upwards in deducing the higher-level
conditions? Consider the following strategy code fragment:

if (PM.GM.Concept.show == true) then (
 if (GM.Concept.label == ‘beg’) then (
 <task name=”UpdateBegCount”>
 UM.begCount += 1
 </task>
)
)

Do we include both, one or no conditions from the two if
statements in the MAS? All are, arguably, equally useful.
We would recommend that any tool automating the creation
of MAS should warn the author if different options are
available. For simplifying the process for beginner authors, a
default option needs to be proposed.

VII. .AUTOMATIZING META-STRATEGIES

Once the modular adaptation strategies (MAS) have been
created, they can be used in meta-strategies, running the
MAS as pieces of regular code. In particular, if a strategy has
been completely divided into a number of modular
adaptation strategies, an equivalent meta-strategy,
representing the original adaptation strategy, can be
automatically generated.

The proposed meta-strategy LAG code is similar to that
of a normal LAG strategy and indeed can use any standard
LAG constructs (such as ‘if’ and ‘while’ loops). The
command to invoke a Modular Adaptation Strategy inside a
Meta-strategy is as follows:

strategy [MAS name] [Code block to execute from

MAS]

The execution order of the MAS would be determined by
the order of the markup tags from the original strategy. A
meta-strategy has two top-level code blocks (initialization
and implementation) just like a standard LAG strategy, and

the order of execution of the modular strategies can be
different in each. Also, a MAS strategy does not necessarily
need to appear in both code blocks. For instance, the ShowAll
MAS has an empty implementation block and hence will
only be used inside the meta-strategy initialization block.

The meta-strategy equivalent to the RollOut adaptation
strategy example can therefore be extracted from the overall
strategy, for Professor Y, as:

initialization (
 strategy AccessCount initialization
 strategy ShowAll initialization
 strategy RemoveShowAfter initialization
)
implementation (
 strategy AccessCount implementation
 strategy ShowAfterShowAtMost implementation
)

VIII. PROBLEMS WITH REUSING MULTIPLE ADAPTATION

STRATEGIES

Although using multiple strategies can increase the
reusability of the strategy, it can introduce new problems.
Whilst these problems could occur when multiple strategies
are authored concurrently for the same course, they most
commonly occur when strategies are reused from different
sources.

Displaying the desired adaptation behaviors when used in
isolation does not guarantee that multiple adaptation
strategies will not produce unforeseen behaviors when used
together. The following examples illustrate the type of
problems that can occur when using multiple adaptation
strategies:

a) Execution Order: Some combinations of
adaptation strategies will work correctly in one
particular order but not when the order of execution
is reversed or changed.
An example of this can be taken from the case
study: if the Multimedia Mix strategy is run first
and displays a video, then the Quality of Service
strategy may decide to hide the video if the network
connection is poor. This would lead to a blank page
being shown to the student which is an undesirable
result. A solution to this is to have a pre-checking
stage in the adaptation meta-strategy creation, with
some potential (arbitrary) content. If no content is
visible, than the strategy should roll back a step, and
show the previous content. This can be inbuilt in the
strategy creation, or, alternatively, in the delivery
system.

b) Variable Clashes: If multiple adaptation strategies
read and/or write to the same variable, then this
could result in incorrect consequences.
For example consider two strategies that both have
the following line in the strategy file:

 UM.GM.Concept.beenthere += 1

An AEH system using both strategies may report
that the user has accessed the concept six times
when the user has actually visited the concept only
three times. This is incorrect and may impact other

areas of the course. A solution to this is to use a
parameterized MAS, which declare what variables
they are using. In this way, a system can
automatically detect potential clashes.

c) Type Conflicts: Multiple strategies use the same
variable to store different types of value. For
example, consider one strategy which stores a
Boolean using:

 UM.GM.Concept.accessed = True

Another strategy would have a problem as it will
expect an Integer when it accesses the same
variable with the following code:

 if (UM.GM.Concept.accessed > 2) (...

It is possible to highlight some potential problems
from those described above at the strategy
authoring stage. For example, the Type Conflict
problem could be easily spotted by analyzing the
variables within the strategies being used (or with a
parameterized MAS, as previously proposed). The
author could also be warned about some forms of
variable clashes at this stage as well.

IX. EVALUATION

In order to evaluate the ideas from this paper the
following questions need addressing:

• Is it easier to reuse content from modular strategies
than from single, complex strategies?

• Does using meta-strategies and modular strategies
provide a less error prone way to author strategies
than using a single, complex strategy?

• Is the authoring process faster when reusing content
from modular adaptation strategies than from a
single strategy?

• Can the method be expanded to include tools
supporting the authoring of strategies?

X. CONCLUSION AND FURTHER RESEARCH

The case study illustrates the need for an easier way to
reuse adaptation strategies in the authoring process of AEH
courses. A number of ideas and methods have been
discussed in this paper which will simplify and speed up this
process. We have discussed possible issues with MAS
combinations, such as variable clashes and type conflicts,
and have given some suggestions on how to deal with these
issues.

An interesting research area is that of how these
problems can be automatically identified and avoided, either
in the AEH systems or during the authoring process.

While modular adaptation strategies and meta-strategies
simplify the reuse of adaptation strategies, it would be
useful, additionally, to research authoring tools that simplify
the creation of meta-strategies for authors without prior
programming experience. For example, an authoring tool
where authors drag and drop from a pool of modular

adaptation strategies, to create the meta-strategy could
potentially make it easier for such authors.

Furthermore, research is needed in the semantic markup
of adaptation behaviours within adaptation strategies,
including the extension and evaluation of authoring tools that
allow for such semantic markup to be added. After this is
completed research will be needed into automating this
process, so that adaptation strategies can be broken down
into modular adaptation strategies automatically.

REFERENCES

[1] H. Wu, G. J. Houben, and P. De Bra, "Supporting User Adaptation in
Adaptive Hypermedia Applications," in Proceedings InfWet2000,

Rotterdam, The Netherlands, 2000.

[2] A. I. Cristea, "What can the Semantic Web do for Adaptive
Educational Hypermedia?," Educational Technology & Society, vol.

7, no. 4, 2004.

[3] A. I. Cristea and A. de Mooij, "LAOS: Layered WWW AHS
Authoring Model and their corresponding Algebraic Operators," in

Proceedings of the WWW 2003 Conference, 2003.

[4] A. I. Cristea, D. Smits, and P. De Bra, "Towards a generic adaptive
hypermedia platform: a conversion case study," Journal of Digital

Information (JoDI), Special Issue on Personalisation of Computing

& Services, vol. 8, no. 3.

[5] A. I. Cristea, D. Smits, J. Bevan, and M. Hendrix, "LAG 2.0:
Refining a reusable Adaptation Language and Improving on its

Authoring," in Proceedings of Fourth European Conference on
Technology Enhanced Learning ECTEL 2009, Nice, France, 2009.

[6] A. I. Cristea and A. De Mooij, "Adaptive Course Authoring: MOT,
My Online Teacher," in Proceedings of ICT-2003, IEEE LTTF
International Conference on Telecommunications,

"Telecommunications + Education" Workshop, Tahiti Island in

Papetee - French Polynesia, 2003.

[7] E. L. M. Ploum, "Authoring of Adaptation in the GRAPPLE
Project," TECHNISCHE UNIVERSITEIT EINDHOVEN, 2009.

[8] P. De Bra, N. Stash, and B. De Lange, "AHA! Adding adaptive
behavior to websites," in Proc. of the NLUUG2003 Conference, Ede,

The Netherlands, 2003.

[9] M. Specht and R. Oppermann, "ACE - Adaptive Courseware
Environment," The New Review of Hypermedia and Multimedia, vol.

4, 1998.

[10] P. De Bra, G. J. Houben, and H. Wu, "AHAM: A Dexter-based
Reference Model for Adaptive Hypermedia," in Proceedings of the
ACM Conference on Hypertext and Hypermedia, 1999, pp. 147-156.

[11] P. De Bra, D. Smits, and N. Stash, "The Design of AHA!," in
Proceedings of the ACM Hypertext Conference, Odense, Denmark,

2006.

[12] J. Eklund and P. Brusilovsky, "InterBook: An Adaptive Tutoring
System," UniServe Science News, vol. 12, no. March 1999.

[13] A. Moore, C. D. Stewart, M. R. Zakaria, and T. J. Brailsford,
"WHURLE - an adaptive remote learning framework," in

International Conference on Engineering Education (ICEE-2003),

Valencia, Spain, 2003.

[14] N. Stash, "Learning Styles Adaptation Language for Adaptive
Hypermedia," in Proceedings of AH'2006 Conference, Dublin,

Ireland, 2006.

[15] Adaptation Strategies. [Online].
http://prolearn.dcs.warwick.ac.uk/strategies.html

