
A lean constraint-based system to support intelligent tutoring

Claus Zinn

Department of Computer Science, University of Konstanz, Germany
Email: claus.zinn@uni-konstanz.de

Abstract—We present a lean, glass-box engine for constraint-
based intelligent tutoring. It has a concise and elegant em-
bedding in Prolog, and offers an easy-to-use but expressive
constraint language. It can serve as a formal playground to
investigate the nature of constraint-based tutoring.

Keywords-cognitive diagnosis; constraint-based tutoring

I. INTRODUCTION

The intelligent behaviour of a tutoring system (ITS) is

usually implemented in one of the two prominent paradigms:

production rules [1] or constraints [4]. To help clarify

the pending controversy about the nature and potential of

constraint-based tutoring [3], [2], we have implemented a

lean and inspectable constraint engine in Prolog. Its ex-

pressive constraint language supports the specification of

constraints to diagnose whether a learner action is correct or

not, to give error-specific feedback on an incorrect step, and

to generate hints on the next step. We propagate the use of

four types of constraints to realize such feedback repertoire,

which we demonstrate with an example model.

II. CONSTRAINT-BASED MODELING

A. Cognitive Diagnosis

Constraint-based tutoring diagnoses the correctness of

learner input in terms of a problem state, given a set of

constraints that test whether relevant aspects of the state

are satisfied or not. Following [4], a constraint is a pair

< Cr, Cs >, where Cr is the relevance condition, identify-

ing “the class of problem states for which the constraint is

relevant”, and Cs the satisfaction condition, identifying “the

class of (relevant) states in which the constraint is satisfied”.

The following example constraint encodes the principle

that only fractions with equal denominators can be added: If
the problem is n1

d1
+ n2

d2
and if n = n1+n2, then it had better

be the case that d1 = d2 (or else something is wrong).
Each relevant, unsatisfied constraint signals an error.

B. Domain of Instruction: Adding Fractions

Given two fractions n1/d1 and n2/d2, compute their

sum. When the two input fractions do not share a common

denominator, it must be computed. Once the lowest common

denominator d for d1 and d2 is determined, the numerators

must be rewritten in terms of d1, n1 and d, and d2, n2 and

d (yielding d11, d22, n11 and n22, with d11 = d22 = d).

The converted fractions are then added by adding their

numerators. When the resulting fraction n/d is improper,

it must be reduced to a proper one: the greatest common

divisor g of n and d is computed, and a reduced fraction

returned where n and d are both divided by g (yielding nr

and dr). We capture the problem state as

n1

d1
+

n2

d2
=c n11

d11
+

n22

d22
=

n

d
=r nr

dr
.

C. A Prolog-based Constraint System

We define the problem state as a Prolog fact cur-

rent_state/2 with two argument terms: given/1 encodes

the list of givens and sought/1 encodes a list of values for

learners to determine. The fact problem_context(_N1/

_D1+_N2/_D2) encodes the general task to be solved, here

the addition of two arbitrarily given fractions.

Constraints are represented by 5-ary Prolog facts

constraint(Name, State, Relevance, Satisfaction, Feedback).

The first argument identifies the constraint with a name,

for testing and debugging. Its second parameter is used for

passing on the current problem state to the constraint. A

constraint’s third and fourth argument encode the relevance

and satisfaction conditions as a Prolog goal structure. The

last argument associates a feedback string with a list of state

variables affected by the constraint.

constraint engine(Satisfied , UnSatisfied) ←
current state(Given, Sought),
findall(constraint(Name, Sat , Feedback),

(constraint(Name,
state(Given, Sought),
relevance cond(Rel),
satisfaction cond(Sat),
Feedback),

call(Rel)), RelConstraints),
test constraints(RelConstraints, Satisfied , UnSatisfied).

test constraints([], [], []).
test constraints([constraint(Name, Sat , Fb)|OtherC],

[Name|OtherSatisC], UnSatisC) ←
call(Sat), !,
test constraints(OtherC , OtherSatisC , UnSatisC).

test constraints([constraint(Name, Sat , Fb)|OtherC],
SatisC ,
[(Name,Fb)|OtherUnSatisC]) ←

test constraints(OtherC , SatisC , OtherUnSatisC).

Figure 1. A Constraint Engine in Prolog.

A constraint engine examines all constraints, filters out

those that are relevant for a given state, and then checks

52

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-295789

Erschienen in: IEEE 14th International Conference on Advanced Learning Technologies : ICALT 2014 ; proceedings / . -
Piscataway, NJ : IEEE, 2014. - S. 52-53. - ISBN 978-1-4799-4038-7

http://nbn-resolving.de/urn:nbn:de:bsz:352-0-295789

whether the relevant ones are satisfiable or not. Fig. 1

depicts the full implementation of our constraint engine. The

main clause constraint_engine/2 returns as result all

satisfiable relevant constraints and all non-satisfiable relevant

constraints. First, the current problem state is retrieved.

Then, the all-solutions predicate findall/3 identifies all

constraints that are relevant in the given state. Here, note

the passing on of the values Given and Sought to con-

straint/5, and the use of call/1 to execute the goal

structure Rel. The relevant constraints are collected with

their names, their satisfaction conditions, and their feedback

terms. Then, test_constraints/3 checks each relevant

constraint whether it is satisfied (call/1 succeeds), or not.

After each learner step, the tutoring system updates the

world state, calls the constraint engine, and uses its output of

(un-)satisfied constraints to construct the system’s response.

D. Four Types of Constraints for Adding Fractions

A state constraint specifies certain conditions that must be

satisfied by all correct solutions. Only all state constraints

taken together test the learner solution for correctness in

all relevant aspects. Fig. 2 depicts the previous example

constraint. Its second argument is used to establish bindings

constraint(check denom when n equals n11 and n22,
state(given([N1 ,D1 ,N2 ,D2]),

sought([N11 ,D11 ,N22 ,D22 ,N , D , NR, DR])),
relevance cond((problem context(N1/D1 + N2/D2),

integers([N ,N11 ,N22 ,D11 ,D22]),
N is N11 +N22)),

satisfaction cond((D11 == D22)),
(['Only add the numerators', N11 , 'and', N22 ,
'when they share a common denominator'],
[n,d11,d22])).

constraint(hint find lcd,
state(given([N1 ,D1 ,N2 ,D2]),

sought([N11 ,D11 ,N22 ,D22 ,N ,D ,NR,DR])),
relevance cond((problem context(N1/D1 + N2/D2),

vars([N11 ,D11 ,N22 ,D22 ,N ,D ,NR,DR])),
satisfaction cond((fail)),
(['Seek common denom of', D1 , 'and', D2], [])).

constraint(remedial sum reduced partially nr,
state(given([N1 ,D1 ,N2 ,D2]),

sought([N11 ,D11 ,N22 ,D22 ,N ,D ,NR, DR])),
relevance cond((problem context(N1/D1 + N2/D2),

integers([N11 ,D11 ,N22 ,D22 ,N ,D ,NR]),
gcd(N , D , G), (�� NR is N / G),
get multiple(NR, N))),

satisfaction cond((fail)),
(['Answer numerator only partially reduced.',
'The GCD of', N , 'and', D , 'is', G, '.'], [nr])).

Figure 2. Three Constraints for Adding Fractions.

for the input variables N1, D1, N2 and D2, and the output

variables N11, D11, N22, D22, and N. Its relevancy condition

specifies that (i) we are in a task context where fractions

are being added; (ii) the relevant cells all have been given

integer values; and (iii) the value of the n cell equals the

sum of adding n11 and n22. The constraint’s satisfaction

condition then checks whether the converted fractions share

a common denominator, i.e., whether d11 equals d22. The

fifth argument is used for constructing a feedback string.

Next-Step Help Constraints help learners that are stuck.

All the learner’s problem state advances are correct – all

relevant state constraints are satisfied – but some values

are missing. For learners stuck in the initial state, we add

the constraint hint_find_lcd. It is relevant if none of

the fields has a value. The constraint’s feedback gives-

away process-related information by eliciting the task’s

goal structure. The definition of next-step help constraints

follows a pattern: their relevancy conditions test whether

some sought cells are still variable, and they have a single

satisfaction condition fail, which is bound to fail.

Path constraints (not shown here) check whether learners

perform steps in the correct order. They are related to next-

step help constraints because they also check for gaps.

Buggy Constraints check whether a problem state is in-

correct in a certain way; they provide remediation specific to

the nature of the error. Consider a state where the learner is

only partially reducing a fraction (e.g., the fraction 16
24 is only

reduced to 8
12 rather than 2

3). The constraint remedial_

sum_reduced_partially_nr captures this situation.

Multiple errors will cause the constraint engine to re-

turn multiple unsatisfied constraints. When learners commit

an erroneous partial solution, unsatisfied state constraints

will be joined by unsatisfied next-step help and buggy

constraints. Here, the tutoring system may want to attack

erroneous behaviour in a configurable manner, e.g., if a

buggy constraint “fired”, then address the captured learner’s

misconception first, before addressing next-step help and

state constraints. To support such heuristics, we extend our

constraint language by a sixth argument to specify the type

of the constraint: state, hint, path, and buggy.

III. CONCLUSION

We have built an easy-to-use tutoring engine that supports

four types of constraints. We invite researchers to use our

software as a formal playground to further investigate the

nature of constraint-based tutoring.

REFERENCES

[1] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pel-
letier. Cognitive tutors: Lessons learned. Journal of the
Learning Sciences, 4(2):167–207, 1995.

[2] V. Kodaganallur, R. Weitz, and D. Rosenthal. A compari-
son of model-tracing and constraint-based intelligent tutoring
paradigms. Int. J. of Artif. Intell. in Educ., 15:117–144, 2005.

[3] A. Mitrovic, K. R. Koedinger, and B. Martin. A comparative
analysis of cognitive tutoring and constraint-based modeling.
In Proc. of the Ninth Int’l Conf. on User Modeling, pages 313–
322. Springer, 2003.

[4] S. Ohlsson. Constraint-based student modeling. Int J. of Artif.
Intell. in Educ., 3(4):429–447, 1992.

53

