
Toward Code Review Notebooks
Juan Carlos Farah∗, Basile Spaenlehauer∗, Marı́a Jesús Rodrı́guez-Triana†, Sandy Ingram‡, and Denis Gillet∗

∗School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Email: {juancarlos.farah,basile.spaenlehauer,denis.gillet}@epfl.ch
†School of Digital Technologies, Tallinn University, Tallinn, Estonia

Email: mjrt@tlu.ee
‡School of Engineering and Architecture of Fribourg, University of Applied Sciences (HES-SO), Fribourg, Switzerland

Email: sandy.ingram@hefr.ch

Abstract—Peer code review has proven to be a valuable tool in
software engineering. However, integrating code reviews into edu-
cational contexts is particularly challenging due to the complexity
of both the process and popular code review tools. We propose
to address this challenge by designing a code review application
(CRA) aimed at teaching the code review process directly within
existing online learning platforms. Using the CRA, instructors
can scaffold online lessons that introduce the code review process
to students through code snippets, following a format resembling
computational notebooks. We refer to this online lesson format
as the code review notebook format. Through a case study
comprising an online lesson on code quality standards completed
by 23 university students, we evaluated the usability of the CRA
and the code review notebook format, obtaining positive results
for both. These results are a first step toward integrating code
review notebooks into software engineering education.

Index Terms—code review, software engineering education,
code quality, online learning, computational notebooks

I. INTRODUCTION

The importance of code reviews in software engineering
education has long been recognized [1]. Nevertheless, teaching
the code review process in an educational setting can be chal-
lenging, given the complexity associated with tools supporting
code reviews. Social coding platforms, for example, have
steep learning curves that can be overwhelming for entry-level
students [2]. Moreover, code reviews are usually integrated
into educational contexts as a peer review exercise through
the use of social coding platforms or bespoke tools [3], [4]
specifically designed for peer code review. Indeed, most tools
used to support code review in education focus on the peer
code review use case, providing features such as automatic
review assignment and anonymous reviews [5]. While peer
code review is particularly useful for students to get practical
experience, fewer tools focus on providing individual students
with a demonstration of the code review process. Examples
include work by (i) Ardıç et al., who proposed a serious game
in which players review predefined code snippets, identifying
lines containing defects in order to advance to the next
level [6], and (ii) Song et al., who developed a tool for
peer code review that could also be used to explain the code
review process by having students review code that had already
been graded [7]. Nevertheless, these tools are often standalone
applications that are not designed to be embedded directly
within an online lesson or lecture. This lack of pedagogical

code review tools that seamlessly integrate with existing online
learning platforms motivates our work.

To address these challenges, we propose a code review
application (CRA) focused on introducing students to the
code review process. This CRA integrates with current online
learning platforms to support lesson formats that have proven
successful in software engineering education. Computational
notebooks, for example, interpolate rich explanations with
short snippets of code and are widely used in educational set-
tings [8]. In this paper, we present the design and evaluation of
both our CRA and its use inside an online lesson resembling a
computational notebook. We refer to online lessons following
this format as code review notebooks.

II. DESIGN

The CRA’s main interface consists of a static code snippet
that can be annotated with comments (see Fig. 1). Through
this interface, the CRA can support two different use cases,
which are based on four contexts in which computational
notebooks can support education: (i) lectures, (ii) flipped
classroom settings, (iii) homework, and (iv) exams [8]. The
first use case is for explanatory purposes, which corresponds
to the use of computational notebooks for lectures and flipped
classroom settings. Instructors can use the CRA to demonstrate
the code review process. This is done by configuring the CRA
so that it displays a code snippet with issues that the instructor
wants to illustrate. These issues can then be explained by
the instructor, who can (i) annotate the code snippet with
comments before sharing the CRA with students—providing
students with a complete example of a code review—or (ii)
create those comments during a lecture, showing students how
to complete the code review live. The second use case aims
to provide students with practical experience reviewing code
and corresponds to the use of computational notebooks for
homework and exams. Instructors can configure the application
with snippets containing issues that students are then required
to identify. If presented as an unmarked exercise, this config-
uration is a way to provide students with practical experience.
The same configuration can also be presented as a quiz or
assessment to evaluate how well students understand the code
review process.

To prototype our proposed code review notebook format,
we integrated our CRA with Graasp, an open digital education

Juan Carlos Farah
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Fig. 1. The code snippet can be annotated with rich text and images.

platform that allows instructors to create online lessons that
support interactive applications [9]. Using Graasp, instructors
can scaffold the CRA within an online lesson comprising
multiple phases that a student can explore. Each phase can
include text, images, and other media that serve to support
the code review activity. Some phases can provide context
(e.g., a phase introducing the lesson), while others can feature
the CRA for its explanatory use case (e.g., a phase showing
examples alongside explanations) or for its practical use case
(e.g., an exercise). Once the instructors have set up the code
review notebook, they can share it with students via a link.

III. EVALUATION

As students are often the main actors in educational code re-
view exercises, our focus was on evaluating the CRA’s student
interface and how well it can support software engineering
education within an online lesson. To frame our evaluation,
we conducted an instrumental case study [10]. Specifically,
we assessed the usability of our CRA and the code review
notebook format. An additional exploratory aspect consisted
of feature requests to identify the functionalities that students
would like to see in the CRA.

A. Context

To provide an ecologically valid environment for our case
study, we created an online lesson following our proposed
code review notebook format. The lesson introduced students
to code linting in JavaScript. Code linting refers to the use of
tools to detect bugs and other issues in software [11] and is
often used to enforce code quality standards. Linting is thus a
particularly fitting subject for our case study, as code review
has been suggested as an effective pedagogical tool to teach
code quality standards [12].

The lesson (shown in Fig. 2) was structured into seven
phases. Two phases served to explain code linting. Three
phases exploited the explanatory use case of the CRA to walk
students through how code reviews work in practice. Finally,
two phases focused on the practical use case. Following the
Fixer Upper pedagogical pattern [13], students were presented
with two exercises. Each exercise comprised a code snippet
containing code quality issues that students were asked to
identify. Issues included (i) not following naming conventions,
(ii) mixing spaces and tabs, (iii) not declaring constants with
const, and other violations of JavaScript best practices.

Fig. 2. The code review notebook comprised a lesson on code linting.

B. Methodology

We distributed our online lesson in January 2022 as an
optional, 30-minute, ungraded exercise to students currently
pursuing a degree at the École Polytechnique Fédérale de
Lausanne and the School of Engineering and Architecture
of Fribourg in Switzerland. Students contacted were asked
to share the lesson with their peers. A total of 23 students
consented to participate, completed the lesson presented in
Section III-A, and responded to a post-questionnaire asking
them to report on the usability of both the CRA and the code
review notebook format, as well as to rate a list of features
that they would like to see implemented in the CRA, and op-
tionally provide demographic information about themselves.1

Usability was measured using two standard instruments. For
the CRA, we used the short version of the User Experience
Questionnaire (UEQ-S) [14]. For the usability of the code
review notebook format, we used the System Usability Scale
(SUS) [15]. For the exploratory aspect we asked students to
rate 10 features that could be added to the CRA on a scale
of one (not interested) to five (very interested). Features were
selected based on functionalities available on computational
notebooks (e.g., Executing Code), social coding platforms
(e.g., Bots), and intelligent tutoring systems (e.g., Hints).

1) Automated Feedback: Provide information about code quality.
2) Peer Code Review: Comment and edit other students’ code.
3) Bots: Interact with bots within the application to get feedback.
4) Code Editing: Edit, save, and compare code versions.
5) Hints: Provide hints without giving away the answer.
6) Heat Map: Show which lines received comments from others.
7) Executing Code: Execute code within the browser.
8) Fill In The Blanks: Finish an incomplete code snippet.
9) Dashboard: Visualize one’s activity against that of one’s peers.

10) Overview: Summarize activity across all snippets in a lesson.

A total of 22 students (95.7%) responded to the demo-
graphic questions. Of these students, 5 (22.7%) were com-
pleting a bachelor’s degree and 17 (77.3%) were completing
a master’s, while 9 (40.9%) were female and 13 (59.1%)
were male. Furthermore, the mean self-reported overall pro-
gramming experience on a scale of 1 to 5—with 1 being
Beginner and 5 being Expert—was x̄ = 3.18 (Mode = 4). For
JavaScript specifically, the mean was x̄ = 1.95 (Mode = 1).

Data were analyzed using descriptive statistics. Specifically,
we report the sample mean (x̄), median (x̃), and standard devi-
ation (s). Responses from the UEQ-S were further processed

1The lesson and the questionnaire are available here: bit.ly/3kJwZbM.

0 20 40 60 80 100
Percentage of Responses

Dashboard

Bots

Heat Map

Peer Code Review

Fill In The Blanks

Executing Code

Overview

Hints

Automated Feedback

Code Editing

9%

17%

13%

9%

9%

13%

9%

13%

*

*

30%

*

9%

13%

9%

*

13%

22%

9%

13%

*

*

*

9%

*

17%

22%

22%

17%

17%

*

13%

*

22%

9%

22%

39%

30%

26%

26%

30%

13%

30%

43%

22%

13%

9%

17%

35%

48%

43%

61%

43%

48%

Features Requested for the Code Review Application

Not Interested
 |
 |
 |
Very Interested

Not Sure

* < 5%

Fig. 3. Features requested for the CRA ordered by mean score (top to bottom).

using its standard data analysis tool, which compares results
to benchmark data [14].

C. Results

The code review notebook format was evaluated using the
SUS and received a mean score of x̄ = 84.35 (x̃ = 85, s =
12.46), a usability score that can be described as excellent [16].
The CRA—evaluated using the UEQ-S—received a mean
overall score of 1.29 (x̃ = 1.25, s = 0.81), which is consid-
ered positive and above average (25% of results better, 50%
of results worse) when compared to the benchmark. When
considering pragmatic and hedonic qualities separately, the
CRA achieved mean scores of x̄ = 1.76 (x̃ = 2.00, s = 0.91)
and x̄ = 0.82 (x̃ = 0.75, s = 1.01), respectively. While both
of these results are considered positive, the pragmatic score
corresponds to an excellent result (top 10%) when compared
to the benchmark, while the hedonic score is below average
(50% of results better, 25% of results worse).

The three most requested features were Code Editing (x̄ =
4.22, x̃ = 4, s = 1.17), Automated Feedback (x̄ = 4.04, x̃ =
4, s = 1.19), and Hints (x̄ = 3.87, x̃ = 5, s = 1.79). Results
for the full set of features requested are shown in Fig. 3.

IV. DISCUSSION

The results of our study show that the overall usability
scores for both the CRA and the code review notebook format
were excellent and above average, respectively. These scores
suggest that the CRA and the code review notebook format
lead to positive user experiences (UXs) within an educational
context. Additionally, the CRA received an excellent score—
top 10% when compared to the benchmark—with respect to
its pragmatic qualities. That is, users perceive its design as
well-suited for a task-oriented UX. Results for the feature
request aspect of our study provide key insights into how
we can improve our CRA to support functionalities that
students will find useful. The three most requested features
(Code Editing, Automated Feedback, and Hints) illustrate how
students perceive the CRA’s potential. Code Editing, on the

one hand, would enhance the CRA to more closely resemble
the development process supported by social coding platforms.
Automated Feedback and Hints, on the other hand, focus on
the educational aspect of the CRA, expanding support for
more pedagogical scenarios, such as those typically supported
by intelligent tutoring systems intended for programming
education [17]. Integrating these features could also make
the CRA a more novel and engaging tool, thus improving its
usability score with respect to its hedonic qualities, which were
rated as below average in the current implementation.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this study, we presented the design and evaluation of
a CRA aimed at integrating the code review process into
software engineering education. Nevertheless, our study has
limitations worth addressing. Specifically, even though our use
of Graasp is suitable for a proof-of-concept, it is important
to show how the CRA can be incorporated into other online
learning platforms to highlight its portability. Furthermore, we
plan to complement these results by evaluating the impact the
CRA has on learning gains and student engagement. We aim
to address these limitations and integrate the results of our
exploratory findings in future work.

REFERENCES

[1] M. Towhidnejad and A. Salimi, “Incorporating a Disciplined Software
Development Process in to Introductory Computer Science Programming
Courses: Initial Results,” in FIE 1996, vol. 2. IEEE, 1996, pp. 497–500.

[2] A. Zagalsky, J. Feliciano, M.-A. Storey, Y. Zhao, and W. Wang, “The
Emergence of GitHub as a Collaborative Platform for Education,” in
CSCW 2015. ACM, 2015, pp. 1906–1917.

[3] J. G. Politz, S. Krishnamurthi, and K. Fisler, “CaptainTeach: A Platform
for In-Flow Peer Review of Programming Assignments,” in ITiCSE
2014). ACM, 2014, p. 332.

[4] M. Tang, “Caesar: A Social Code Review Tool for Programming
Education,” Master’s Thesis, MIT, 2011.

[5] T. D. Indriasari, A. Luxton-Reilly, and P. Denny, “A Review of Peer
Code Review in Higher Education,” ACM Transactions on Computing
Education, vol. 20, no. 3, 2020.

[6] B. Ardıç, İ. Yurdakul, and E. Tüzün, “Creation of a Serious Game
for Teaching Code Review: An Experience Report,” in CSEE&T 2020.
IEEE, 2020, pp. 204–208.

[7] X. Song, S. C. Goldstein, and M. Sakr, “Using Peer Code Review as
an Educational Tool,” in ITiCSE 2020. ACM, 2020, pp. 173–179.

[8] K. J. O’Hara, D. Blank, and J. Marshall, “Computational Notebooks for
AI Education,” in FLAIRS 2015. AAAI, 2015, pp. 263–268.

[9] D. Gillet, I. Vonèche-Cardia, J. C. Farah, K. L. Phan Hoang, and
M. J. Rodrı́guez-Triana, “Integrated Model for Comprehensive Digital
Education Platforms,” in EDUCON 2022. IEEE, 2022, pp. 1586–1592.

[10] R. E. Stake, The Art of Case Study Research. Sage, 1995.
[11] S. C. Johnson, “Lint, A C Program Checker,” 1978.
[12] X. Li and C. Prasad, “Effectively Teaching Coding Standards in Pro-

gramming,” in SIGITE 2005. ACM Press, 2005, p. 239.
[13] J. Bergin, “Fourteen Pedagogical Patterns,” in EuroPLoP 2000, M. De-

vos and A. Rüping, Eds. Universitaetsverlag Konstanz, 2000, pp. 1–19.
[14] M. Schrepp, A. Hinderks, and J. Thomaschewski, “Design and Evalua-

tion of a Short Version of the User Experience Questionnaire (UEQ-S),”
International Journal of Interactive Multimedia and Artificial Intelli-
gence, vol. 4, no. 6, pp. 103–108, 2017.

[15] J. Brooke, “SUS: A ‘Quick and Dirty’ Usability Scale,” in Usability
Evaluation In Industry, 1st ed. CRC Press, 1996.

[16] A. Bangor, P. Kortum, and J. Miller, “Determining What Individual SUS
Scores Mean: Adding an Adjective Rating Scale,” Journal of Usability
Studies, vol. 4, no. 3, pp. 114–123, 2009.

[17] T. Crow, A. Luxton-Reilly, and B. Wuensche, “Intelligent Tutoring
Systems for Programming Education: A Systematic Review,” in ACE
2018. ACM, 2018, pp. 53–62.

Juan Carlos Farah
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

