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Abstract
Modelling learning objects (LO) within their context enables the learner to advance from a basic, remembering-level, learning objective
to a higher-order one, i.e., a level with an application- and analysis objective. While hierarchical data models are commonly used
in digital learning platforms, using graph-based models enables representing the context of LOs in those platforms. This leads to a
foundation for personalized recommendations of learning paths. In this paper, the transformation of hierarchical data models into
knowledge graph (KG) models of LOs using text mining is introduced and evaluated. We utilize custom text mining pipelines to mine
semantic relations between elements of an expert-curated hierarchical model. We evaluate the KG structure and relation extraction
using graph quality-control metrics and the comparison of algorithmic semantic-similarities to expert-defined ones. The results show
that the relations in the KG are semantically comparable to those defined by domain experts, and that the proposed KG improves
representing and linking the contexts of LOs through increasing graph communities and betweenness centrality
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1. Introduction
The rapid progress of digitalization in education increased
the reachability of learners to online, open educational re-
courses (OER), e.g., through massive open online courses
(MOOCs). While this provides more learning opportuni-
ties, an approach of one-size-fits-all on online learning plat-
forms may not work for the wide spectrum of learners,
their learning goals, and learning contexts. Personalized
learning is proven as an essential requirement for better
educational development and learning performance. More-
over, personalization becomes more essential in situations
like self-learning, on-the-job training, or vocational educa-
tion and training (VET), where initial training that learn-
ers get, e.g., in formal education, is no longer adequate to
the job requirements [1, 2]. This is due to learning taking
place within a context, where not only multiple learning
objectives may overlap based on the job’s requirements, but
also the learner’s background and current state of knowl-
edge might differ considerably. Modern digital learning
platforms need to be more contextualized and personal-
ized environments to realize an educational setting that is
meaningful to learners, related to their domain, and tai-
lored towards their preferences and needs, to enhance their
capacity-development [1, 2]. To account for the learning
context, personalization approaches, such as recommender
systems (RS), have been developed as context-aware algo-
rithms. Their efficiency, however, is also bound to the con-
textual information of learning materials that are being rec-
ommended, not only to the learner profiles. A personalized,
context-aware recommendation is offered when RS algo-
rithms can match a learner’s context to a context of learning
objects (LO) and materials. Digital learning platforms still
often organize learning content into groups of materials that
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deploy a hierarchical nature, e.g., as curricula, which are or-
ganized into courses, lectures, topics, and finally materials.
While this organization is suited to represent the details of a
learning objective, it offers no strategy for learning individu-
alization, or model a cross-domain contextualization, which
may indicate a learning recommendation, e.g., of courses
from different curricula that are required in one application
area or one learning context. To consider this context, data
models need to be designed in a flexible and semantically
enhanced way, which can be realized as a knowledge graph
(KG) structure [3]. Unlike hierarchical data structures, KG
structures offer the potential to consider relations among
LOs. Transferring a hierarchical data model into a KG is
possible by identifying relations between elements, based
on their semantic relatedness and independent of hierar-
chical limitations. This identification can be done by text
mining methods. In KGs, LOs are defined as nodes, and
the relations among them are defined as edges. Relations
in the KG define one or more types of relevancies between
LOs, thus creating a contextual semantic relation based on
e.g., the domain of the LOs or their textual similarity. In
this paper, we extract information about the shared context
of LOs by analyzing their textual semantics. Contextual
information is then integrated into the KG as additional
relations. Groups of contextually related LOs in the KG
may be utilized by a RS, to generate contextual recommen-
dations [4, 5]. We construct the KG utilizing the relations
of a hierarchical data model and the semantic relations be-
tween LOs, representing the context of those objects in the
graph. Semantic relations are extracted with a customized
text mining pipeline (TMP), which is designed to analyze
and capture the similarities between LOs based on their
textual descriptions. A language-dependent similarity algo-
rithm is utilized to mine the semantic similarities between
the two description languages of the input data, namely
English and German. Our contributions in this paper are: 1)
Designing a semantic approach for transferring hierarchical
data models in digital learning platforms to graph models.
2) Developing an approach for capturing and modelling the
context of LOs to realize semantic KG completion based
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on a semantic TMP. With the later contribution, present
hierarchical structures for LOs can be transformed into con-
textualizing KGs. In the following sections, an overview of
the research background is discussed before we describe
the KG construction and semantic relation extraction (RE)
among LOs. Then, the evaluation process and results are
presented before concluding the paper.

2. Background
Historically, learning is founded in “didactic- and lecture-
based methods” which oftentimes are focused only on mem-
orizing content instead of supporting “learning transfer”
and engendering “problem-solving” [6]. Wilcke, Bloem and
de Boer identified a lack of general data models allowing
the representation of more than one domain simultaneously
and are thus unsuitable to incorporate heterogeneous data,
therefore proposing KGs as a default data model [3]. KGs
have been utilized in technology-enhanced learning (TEL)
[7, 8, 9] in recent years. However, the role of the data model
in representing the context of LOs in TEL is still less visited
in literature, in comparison to e.g. user profiling. Here, we
define the context based on situative and subject-oriented
learning theories [2], where context is defined as the situa-
tion in which learning happens. This includes the learner’s
situation (location, previous knowledge, etc.) and the LO’s
situation (type, length, implementation scenario, etc.). Con-
text is described by factors that can relate two or more
LOs to each other if they serve the same learning situation
[8, 10]. Ontologies and KGs have been identified as effec-
tive methods for embedding LO context into knowledge
representation [7, 11]. Furthermore, research shows that
the embedding approaches of contextual information in the
KG model and algorithms enable capturing the complex
relations that learners follow to solve problems [6, 12, 13].
Several approaches have been followed to construct graph
models from LOs [14]. Based on a job-skill hierarchy, au-
thors in [15, 16] utilize the job titles as textual content to
create relations between job representations in the KG. To
link jobs and their corresponding skills, Dave et al. [17]
create three graphs, connecting jobs and skills, using the
textual content and existing hierarchical levels. Similarly, de
Groot et al. [18] create a text-based skill matching, with the
support of the ESCO framework. The previous approaches,
however, do not explicitly address the role of LOs’ context
in the KG and do not go far enough to mine further semantic
and contextualizing relations between LOs.

3. Contextual Knowledge Graph
Construction

We develop a KG as a contextual model that represents the
semantic relations among LOs. We adopt the taxonomical
structure of the digital learning system in [19], eDoer. This
5-level taxonomy is sufficiently simple and semantically
distinctive for the construction of a solid graph data model.
Its levels are 1) Journey: which represents a learning goal,
2) Course: a container that represents one aspect of the
learning goal, 3) Topic: a concrete knowledge element of
a course, 4) Educational Package: a group of related and
ordered OERs, and 5) Educational Content: a concrete OER
that can be studied. Semantic relations in the KG connect
LOs within one or more taxonomical levels. Hereafter, we

use the term LO to represent all levels except the Journey.
The resulting KG enables modelling the context of a LO
through its connections to other objects, which appear in
the same learning scenario.

3.1. Text Mining for Semantic Relation
Extraction

When creating new Journeys and their content, content-
creators provide detailed textual descriptions of each object.
These descriptions offer the potential to mine semantic simi-
larities between the objects [5]. Capturing textual semantics
requires text-mining algorithms to consider word meanings
and sentence structures. We designed a customized TPM,
shown in Fig.1, to maximize the use of LO’s textual metadata.
The TMP handles objects’ titles (short texts) and descrip-
tions (long texts), written in two languages (English and
German). To detect the language, we use a pre-trained model
for language detection [20], with a precision of 99% over
53 languages. A text-cleaning step then removes special
characters and strings that can affect the text similarity al-
gorithm. The structure of the sentences is kept intact, since
text similarities are calculated on a semantic level, not as
a bag-of-words (BOW). Titles and descriptions follow two
processing paths in the TMP, due to the higher volume of
description texts, which may include multiple topics. Such
topics provide information about potential relevancies to
other LOs. Therefore, the next step for titles is creating
title embeddings, while descriptions have an additional step
of extracting the integrated topics before the embeddings
are created for each extracted topic. To generate title em-
beddings that are accurate in English and German, we use
the Sentence-BERT model [21] and the Spacy library [22]
for natural language processing (NLP) in Python. Title em-
beddings are used to calculate semantic textual similarities
between titles using a cosine similarity algorithm [6]. Titles
with different languages have embeddings created in differ-
ent corpus spaces. Therefore, we translate German titles
before calculating the cosine similarity. The translation is
done automatically using DeepL API translation service [23].
After extracting the main topics from the description using
the KeyBERT model [24], text embeddings are created. To
compare two descriptions, an intersection matrix is created
to determine which topic-pairs from the two topic sets are
compared. The final similarity average is then calculated
across all topics of both LOs. The resulting scores from titles
and descriptions are used to determine if a semantic relation
is created between the two LOs, based on similarity thresh-
olds, which are defined experimentally and then fine-tuned
through expert validation.

3.2. Knowledge Graph Construction
The structure of our KG includes the original hierarchical
model and extends it with semantic relations calculated by
the TMP, see Fig.2. We preserve the hierarchical relations
since they are created by the content creators, and we add
the “has_semantic_relation_to” type to them. In the KG,
node types represent taxonomy levels. The new relation
type creates direct and indirect connections between learn-
ing goals (Journeys) and the LOs. For example, although the
Journey “Dementia in elderly care” is not directly connected
with the Journey “Communication in elderly care", several
indirect paths were semantically found through connected



Figure 1: Text mining pipeline (TMP) and semantic similarity
calculation for title and description properties of the learning
objects.

Figure 2: First three levels of the KG structure, representing the
role of semantic relations in creating the KG from the hierarchical
one.

Courses and Topics that appear in a similar learning con-
text. This context appears in Fig.2 in the form of a densely
connected partial network of Topics (area A), whose tex-
tual descriptions revealed that they serve the same scenario.
As discussed in [4], such a network can enable a learner
to achieve a higher knowledge level that enables compre-
hension, inferencing, and problem-solving. This is accom-
plished by learning LOs within their context, in contrast to
learning isolated LOs that may only enable remembering.

4. Evaluation and Results
The evaluation of KG’s quality utilizes a wide range of met-
rics, which may have different indications in different do-
mains. In TEL and VET, it is important to consider the
metrics, whose indications can reflect the role of the KG
in the learning process. KG evaluation should also address
the quality of the extracted relations, as a foundation for
evaluating the quality of the KG structure. Therefore, our
evaluation strategy is implemented quantitatively and qual-
itatively. Qualitative evaluation is conducted with domain
experts to validate the relation-extraction process and re-
sults, as well as the KG’s role in contextualizing the learn-
ing recommendations. Quantitative evaluation is designed
two-fold: The first part evaluates the quality of extracted
relations in the KG. It focuses on the TMP and evaluates
its ability to connect LOs semantically in comparison to
expert-created links. The second part considers network
metrics [25] and quality-control methods, as surveyed in
[26], where those are classified in the domain of linked open
data (LOD) into six dimensions: representation, accessibil-
ity, intrinsic, dataset dynamicity, contextual, and trust. To
select the metrics that are relevant and meaningful in the
scope of this research, we utilize [6, 27, 13]. They show that
effective evaluation of KG’s ability to represent learning con-

text and the learner’s mental model can be accomplished
through metrics that correspond to contextual dimension
(relevancy and completeness) and intrinsic dimension (inter-
linking, density, average degree). We build on those findings
and use the metrics of average degree centrality, clustering
coefficient, weakly connected components, and betweenness
centrality.

4.1. Evaluation Dataset
For the evaluation, we use a dataset of expert-curated OERs.
The data set is provided by Tavakoli et al. [19]. Expert-
curated content provides a high level of credibility to the
baseline model, which is essential for a fair evaluation. Af-
ter data exploratory analysis (DEA), we filter out LOs that
do not have educational content associated with them and
remove the duplicated and isolated ones. The resulting hi-
erarchical model we use for creating the KG features 122
Journeys, 432 Courses, 767 Topics, 2565 Educational pack-
ages, and 7358 OERs.

4.2. Evaluation of the Semantic Relation
Extraction

The goal of semantic relation extraction is to connect LOs
that appear in the same or a similar learning context. This
goal aligns with the best practices of content creators, who
connect an LO to another one if both are needed in the
same learning situation. We utilize this logic to evaluate the
semantic similarity scores that our TMP calculates among
Courses and Topics. We first calculate the average of text
cosine similarity scores among the LOs in each Journey (i):
𝐽𝑠𝑖𝑚
𝑖 , by comparing each LO to all other LOs in Journey

i. Then, we compare the similarity score of each semantic
relation 𝑆𝑅𝑠𝑖𝑚

𝑖,𝑗 , to the average similarity of the journeys i,j

that it connects 𝐽𝑎𝑣𝑔𝑠𝑖𝑚
𝑖,𝑗 =

𝐽𝑠𝑖𝑚
𝑖 +𝐽𝑠𝑖𝑚

𝑗

2
.

If the TMP is able to extract semantic relations with simi-
larity scores that are comparable to the expert-curated rela-
tions, we assume that the new semantic relation is meaning-
ful. We define comparability here as being within the same
range of both Journeys’ similarity 𝐽𝑠𝑖𝑚. This means that
𝑆𝑅𝑠𝑖𝑚

𝑖,𝑗 >= 𝐽𝑎𝑣𝑔𝑠𝑖𝑚
𝑖,𝑗 . Fig.3 shows the scores of a random

sample of 240 semantic relations in the KG, alongside the
semantic similarity of each Journey-pair they connect. From
the results, we can conclude: 1) the similarity scores calcu-
lated within each Journey range between 86% and around
90%. This confirms the basic assumption that expert-curated
LOs in Journeys are semantically similar. 2) 79% of our se-
mantic similarity scores are either equal or higher than
score averages calculated within Journeys, while the re-
maining 21% is slightly below the average. This indicates
that the semantic relations between different Journeys are
as meaningful as the relations that experts created within
each Journey.

4.3. KG Evaluation Metrics
From the wide range of graph quality metrics, our selection
is based on the meaning of each metric in the scope of TEL
and VET. Selected metrics reflect certain aspects of our KG,
when interpreted from a pedagogical point of view in TEL
and VET. The comparison here is conducted between the
hierarchical structure and the proposed KG, in the light of



Figure 3: Semantic-relation textual-similarity scores (Purple),
compared to the Journeys (Blue and Orange) connected by those
relations through the TMP.

the value-added that KG structure offers based on the inter-
pretation of each graph quality metric. In the following, we
elaborate on the selected metrics and their domain interpre-
tation. Table 1 shows our KG results in comparison to the
original hierarchical model.

4.3.1. Average Degree Centrality (ADC)

Degree centrality (DC) measures a node’s popularity in a
graph [28]. It evaluates the connectedness of a node through
its incoming and outgoing relations. In an educational use-
case, ADC reflects LO’s connectedness to other objects that
take place in the learning scenario. The reason is that LOs
are either connected by experts, or through a semantic rela-
tion. While DC in a hierarchical model represents the LO’s
relation to other LOs from the same Journey, the increase
of that object’s DC in the graph model shows that new rela-
tions have been found to other Journeys, meaning that the
LO may appear in more learning contexts. After calculating
the DC for all graph nodes, the average (ADC) is determined,
which has doubled for our KG.

4.3.2. Clustering Coefficient (CC)

CC reflects how strongly a node belongs to a community in
a graph. Communities are clusters of nodes that are densely
inter-connected. A community is considered more modular
if it is easy to separate from other communities. Communi-
ties of LOs in our KG represent their context. Therefore, the
higher the community count is, the more contexts are repre-
sented. Modularity, on the other hand, reflects the potential
to separate a learning context from another. Therefore, a
lower modularity score is preferred, since it means that
learning contexts are well connected to each other. Evalua-
tion results show that our KG increased the detected com-
munities, due to the semantic relations, and decreased graph
modularity.

4.3.3. Weakly Connected Components (WCC)

WCC detects sets of nodes in the graph that are loosely
connected to other graph parts. Therefore, a high WCC
score reflects poor connectedness of LO groups in the data
model. Using Monge and Elkan’s algorithm [29], we find an
effective reduction of the loosely connected node groups in
our KG.

4.3.4. Betweenness Centrality (BC)

BC describes the impact of a node on the flow of information
within that graph. It is especially relevant to VET and TEL,
since LOs with high BC work as bridges that link individual

learning goals to each other, to solve a more complex prob-
lem [4]. Using Brandes and Pich’s algorithm [30], our results
show that the KG has an average BC value of 15.1, which
is about 10 times the BC score of the original hierarchical
model.

4.4. Qualitative expert-evaluation
We also evaluated our KG construction and contextualiza-
tion approach with domain experts in two focus groups.
The groups included experts in VET and researcher-training
programs. A total of nine experts participated and answered
three questions on 1) The role of connecting learning goals
in learning contexts, 2) KGs as contextual data models in
their domain, and 3) Using LO’s textual description to mine
contextual relations. All participants emphasized the need
for connecting individual learning goals for solving real-
life, job-related problems. Six participants pointed out that
highly connected nodes in the graph can represent trans-
ferrable skills among different domains. Three experts found
a direct use of connecting multi-lingual LOs in their daily
work. They also pointed out that a recommendation of
multi-lingual content should avoid repetition of the same
content written in different languages. Experts also agreed
that textual content and description of LOs are important
sources for contextual information. They indicated that
content creators should roughly understand the way algo-
rithms extract semantic relations, so that they can enrich
the descriptions of their LO content with useful contextual
information, allowing better connectivity in the KG. The
pedagogical experts also addressed the dynamic change of
the learner’s context, and the development of the learning
domain, which requires a continuous update of the KG.

5. Conclusion
In this paper, we introduced a semantic approach for KG
completion to enhance the contextual representation of LOs
for personalized learning systems. A concept and a text-
mining pipeline for relation extraction are proposed, to
transfer hierarchical data models into graph ones, thus en-
hancing the structural and contextual quality of the data
model. Our findings from the TMP and KG evaluation sug-
gest that the KG was able to enhance LOs connectivity on
a semantic level. Increased connectivity allowed the KG
to represent a context around an LO, through its relations
to other similar LOs, which appear in the same or similar
learning contexts. Proposed TMP can be used with differ-
ent hierarchical structures of LOs, such as those generated
from other digital learning platforms, since it utilizes the
commonly used title- and description properties of LOs. A
limitation here is the dependency of our TMP on the volume
and quality of LO’s textual metadata. The multilingualism
of the proposed solution corresponded to a real-world chal-
lenge in VET, but it also raised the concern about repetitive
content in a KG-based RS. Although our solution is not re-
sponsible for the decision-making process in that scenario,
it can still be further developed to expand the similarity de-
scription, reflecting potential identical content in multiple
languages. Further steps of this research aim to increase
the robustness of TMP against textual data sparsity and en-
rich LOs contextualization with additional domain-specific
features.



Table 1
KG Quality Evaluation Against Hierarchical Model. Preferred Value-Trends in VET and TEL Use-Case are Explained

Evaluation Metric Hierarchical data model KG Preferred value trends

Average Degree Centrality 1.079 2.262 increasing
Clustering Coefficient (Number of communities) 253 541 increasing
Clustering Coefficient (Average modularity score) 0.779 0.636 decreasing
Weakly Connected Components 63 35 decreasing
Betweenness Centrality 1.57 15.1 increasing
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