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Abstract—Motor synergies have been investigated since the
1980s as a simplifying paradigm of motor control by the nervous
system. In particular, it is believed that they allow control of
the highly redundant kinematic chain of the human hand by the
central nervous system. Whereas so far the focus has been on
kinematic synergies, that is common patterns in the motion of
the hand and fingers, we hereby also investigate their dynamic
aspect, evaluated through surface electromyography. We espe-
cially show that dynamic motor synergies exist, i.e., that muscles
are activated synergistically; and that these synergies are largely
comparable to one another across human subjects, even though
surface electromyography is usually disturbed by muscle cross-
talk, sweating, anatomical differences and inaccurate electrode
positioning. If confirmed, these results would have applications,
e.g., in control of advanced robotic hands.

I. INTRODUCTION

The human hand has a very complex biomechanical struc-

ture, and a complicated neural architecture to control it. In

order to replicate the functionality of the human hand in

robotic systems, we need to understand, model, and finally

copy the control strategies that underlie the coordination of

digit movement and forces as necessary for a large number

of tasks, including power grasps as well as fine manipulation.

In the analysis of the biomechanical and behavioural aspects

of the hand, one of the most striking aspects is the high

redundancy of its structure, having many more degrees of

freedom than actually necessary to do what it must.

In order to cope with this apparent redundancy, the aspect of

synergies has been used to describe functional dependencies

among degrees of freedom. Bernstein [1] defines the level

responsible for coordinating large muscle groups and different

movement patterns as the level of muscular-articular links or

synergies. Thus the state space of the system can be reduced

to a few dimensions, in order to “simplify the control problem

at hand”. A similar finding is the well-known combination of

motor primitives in frogs by Mussa-Ivaldi et al. [2].

A number of recent experimental studies confirm these

theories for the human hand. As shown by Santello et al. [3],

[4], the simultaneous motion of the fingers is characterized by

coordination and covariation patterns that reduce the number

of independent degrees of freedom to be controlled. Although

some constraints on the musculotendon system, as well as on

the peripheral and central neural system, can be identified, a

clear relationship between the finger kinematic constraints and

the underlying muscular activity remains to be analysed.

The source of such kinematic synergies in the human

hand remains a matter of debate. Indeed, the biomechanical

structure of the hand, in which tendons activate multiple digits

at the same time, while the related muscles share common

bases, is one source for the synergies. But also the spinal

coactivation circuitry, mapped only to a small extent for the

human hand, coactivates muscles and thus defines synergies.

At the highest level, cortical organisation is suspected to play

a dominant but variable role in these.

Muscular activity measured via surface electromyography

(sEMG from now on) relates nearly linearly to the force ex-

erted by the muscles [5]. However, there is no such relationship

between the muscle activity and the finger position. Therefore,

a clear relationship between the finger position synergies as

found in [3] and muscle synergies is not at all obvious. That

means: the existence of kinematic motor synergies does not

necessarily imply the existence of dynamic ones, although it

is quite likely so. In this paper we show that such dynamic

muscle synergies, that is, synergistic muscle activations, can

be clearly identified while grasping 5 objects in 5 accordingly

different ways; moreover, we show that there is considerable

statistical overlapping among dynamic synergies found across

5 human subjects. In other words, all subjects seem to enact

a certain grasp by activating the same muscles (or groups of

motor units) all over.

Muscular activity is gathered using sEMG via 10 commer-

cial prosthetic electrodes placed on the forearm of each of

the subjects, with no anatomically precise positioning. The

fact that common human dynamic synergies can be identified

although sEMG is well-known to be disturbed by a number

of factors (e.g., muscle cross-talk, sweating, anatomical dif-

ferences, inaccurate electrode positioning) makes this result

rather interesting. If confirmed on a larger data set, com-

mon dynamic synergies might be fruitfully employed in bio-

inspired robotics, especially in the control of highly dexterous

robotic hands.

After describing our experimental setup in Sec. II, the

results of our measurements are presented in Sec. III. Here we

show two components of the synergies: (a) the PCA-computed

synergies between the objects, and (b) the (linear!) separability
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of the grasps, when only 3 pincipal components of the EMG

data are used, among all subjects.

II. EXPERIMENT DESCRIPTION

A. Data gathering

1) Hand motion: An 18-sensor right-handed Cyberglove

(Cyberglove Systems, www.cyberglovesystems.com, see also

Figure 1, left panel) is used to gather the finger positions. The

Cyberglove is a light fabric, rather elastic glove, onto which 18
strain gauges are sewn; the sewing sheaths are chosen carefully

by the manufacturer, so that the gauges exhibit a resistance

which is proportionally related to the angles between pairs of

hand joints of interest. The device can then return 18 8-bit

values, proportional to these angles, for an average resolution

of less than one degree, depending on the size of the subject’s

hand, a careful wearing of the glove and the rotation range of

the considered joint. (For practical reasons the subject must

wear a cotton glove below the Cyberglove; an initial round of

data gathering revealed that this would not limit the precision

of the device.) We hereby consider all sensor values of the

glove, that is, 18 8-bit values. Figure 1, center panel shows

the placement of the sensors on the 22-sensors glove, which

has 4 additional sensors at the distal phalanxes.

2) EMG and pressure: Muscular activity is gathered using

OttoBock MyoBock 13E200 surface EMG electrodes (www.

ottobock.com). The electrodes already provide an amplified,

bandpass-filtered and rectified signal, eliminating the need of

further processing onboard the card and/or the computer (their

usefulness was already demonstrated at least in [5], [6]). They

are connected to a DAQ card sampling the EMG signals at

100Hz.

We use two sets of five electrodes each. Electrodes in each

set are tied to a velcro strap using elastic bands; two electrodes

lie on the dorsal side and three on the ventral side of the

forearm (see Figure 1, right panel). The first set is placed on

the subject’s forearm, just below the elbow; the second, on the

forearm again, midway between the elbow and the wrist. This

placement is intentionally largely irrespective of the (internal)

anatomy of the human forearm: namely, no search for relevant

muscles is performed before the straps are secured. On the

other hand, rough uniform spacing around the forearm, and

the use of two sets of five, are supposed to give a fair global

picture of the muscular activity of the forearm. (Notice that

uniform placement, irrespective of anatomy, has already been

demonstrated effective, even on amputees [6].)

In order to have an indication of when the grasp was

enforced, an Interlink Standard 400 FSR force-sensing resis-

tor (see www.interlinkelectronics.com) is used. The standard

amplification circuit connected to the FSR returns a voltage

signal which is univocally (logarithmically) related to the force

applied to its surface. The above DAQ card is used to digitise

this signal, too.

B. Experimental protocol

The human subjects involved in the experiment would sit

comfortably in front of a desk; then their right hand and

forearm would be fitted with the electrode sets and the glove.

The pressure sensor was given to the subjects to be held with

the left hand. The subjects would then be instructed to initially

lie their right arm relaxedly on the chair’s arm, in a position

such that ventral side of the right forearm would be parallel to

the sagittal plane, as if to grasp cylindrically an object placed

vertically (see Figure 3 to get an idea).

Under the strict request to never pronate and/or supinate

the right forearm then, the subjects would be instructed to

perform a reach / grasp / carry / drop / rest sequence of

an object placed onto the desk lying in such a position that

it would be comfortably grasped without pronating and/or

supinating the forearm. Two spots would be indicated on the

desk, and the subject would indifferently carry the object

from one spot to the other and vice-versa. The requirement

to avoid the pronation/supination movement is due to the

necessity of keeping as much as possible constant the position

of the electrodes with respect to the muscles of the forearm.

It is easy to ascertain by palpation, actually, that the forearm

skin moves dramatically with respect to the muscles, when

pronating/supinating. Such an uncontrolled movement would

have probably introduced too much noise in the gathered data.

The subjects were also required to press the pressure sensor

with their left hand accordingly to the force employed for the

grasp with the right hand.

This sequence was repeated for 20 times for each object; 5
objects were in turn used, each one to be grasped in a different

way. Since 6 subjects joined in the experiment, it was expected

that at the end some 600 sequences would be gathered.

The objects and grasps selected are: a DVD (flat grasp), a

pen (pinch grip), a small plastic container (tripodal grip), a

dry wipe marker (small power grasp) and a mug (large power

grasp). Figure 2 depicts the objects and the ways to grasp

them.

Fig. 3. Bird’s eye view of the experimental setup.
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Fig. 1. Data capturing devices: (left to right) the Cyberglove; the location of its sensors (22-sensors version); 5 EMG electrodes arranged with rubber bands
on a velcro strap.

Fig. 2. The five objects, as grasped by a subject: (left to right) flat grasp, pinch grip, tripodal grip, small power grasp and large power grasp.

C. Data synchronisation and preprocessing

Data synchronisation is enforced on a Windows PC

equipped with a multi-core processor, by gathering data from

each device asynchronously and accurately timestamping each

received datum. Timestamping is enforced by the HRT library

[7], giving a precision of up to 1.9µs. Sample-and-hold inter-

polation is used to find synchronised values for the electrodes,

pressure sensor and glove sensors. All data are collected in

batches, each one labelled with a corresponding subject and

grasp index.

Initial visual inspection of the data revealed that the pressure

sensor values did not correspond precisely enough to the

lifting periods; therefore, a manual procedure was enforced

offline, by which, for each subject and grasp sequence, the

experimenter would be presented with the value of the index

finger and the sum of the squares of the EMG electrodes;

the experimenter would then visually identify and note the

intervals corresponding to the grasps, that is the times during

which the subjects were lifting the objects from one spot to

the other.

Fig. 4. Typical ”good” grasping sequence (subject 1, flat grasp); correlation
is apparent between the EMG power and the index finger position.

An example sequence (subject 1 doing a flat grasp) is

shown in Figure 4. Correlation is apparent between the two

signals; the high-valued periods denote the carrying phase,

when muscle activity was maximum and the index finger

would be flexed over the object, as opposed to the resting

periods, characterised by low muscle activity and the index

standing in the resting position (low values). It must be noted

that in other cases the correlation is not apparent and that is

why this process had to be manually enforced. For instance,

in the large-power grasp case, the index finger would assume

a lower value during lifting than in the resting phase.

Moreover, some of the lifting periods were not characterised

by enough muscle activity or by the expected kinematic

postures, due to local failure of the sensors. The experimenter

excluded these sequences from the analysis. As well, subject

4 exhibited little or no measured muscle activity, so these data

were removed from the analysis, too.

Using this procedure, 97.4% of the original data, that is

487 lifting intervals out of the expected 500, were identified: 5
subjects repeating each of the 5 grasps for 20 times. Data were

then normalised by subtracting the mean values and dividing

by the standard deviations, dimension-wise. This normalisation

was done per-subject, in order to remove the intra-subject

differences due to the hand size and the level of muscle fitness.

All in all then, two sets of features were obtained: the 18-

dimensional kinematic features obtained from the glove, and

the 10-dimensional EMG features obtained from the EMG

electrodes. Occasionally, the 5-dimensional EMG features for

the forearm and elbow were considered separately. Two sets

of labels were obtained, one according to the subjects (1, 2, 3,

5, 6) and one according to the grasps, (1, 2, 3, 4, 5 denoting

in turn the flat grasp, pinch grip, tripodal grip, small power

grasp and large power grasp).

III. EXPERIMENTAL RESULTS

A. Synergies

Principal Component Analysis (PCA), a very basic dimen-

sionality reduction technique (see, e.g., [8]), was first applied
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Fig. 5. Principal Component Analysis of EMG features (left) and kinematic features (right). The plots show the normalised cumulative sum of the PCA
eigenvalues; markers denote the average percentage values over all subjects, and error bars are plus/minus one standard error of the mean.

to the dataset in order to check that a small number of

linear combinations of kinematic and/or EMG features would

account for a reasonable amount of variability in the data set.

Figure 5 shows the results. For each single subject all his

grasps are considered, and PCA is applied to the resulting data

subset, split according to the different features considered. The

Figure shows the percentage of data variance as more princi-

pal components are considered, as a cumulative normalised

sum; markers denote the average percentage values over all

subjects, and error bars are placed at plus/minus one standard

error of the mean. The principal components represent linear

combinations of features, which in turn represent the kinematic

or dynamic (EMG) activity of the subjects; therefore we will

denote them, from now on, as (kinematic,dynamic) synergies

as is customary. Therefore, for example, 5 EMG synergies give

almost exactly 95% of the signal variance.

As is apparent from the Figure, 3 EMG synergies account

for 90% to 95% of the signal variance in the forearm and

elbow electrodes independently considered; and for about

86% when all electrodes are taken into account. Given the

simplicity of the tasks at hand, that is, grasping in five

different, very standard ways, this is in line with results found

in literature (see, e.g., [3]). In the kinematic case, 4 synergies

are needed when all 18 glove sensors are considered in order to

reach 85% signal variance, whereas 2 of them suffice when the

six calibrated values are used. This indicates that restricting the

attention to the six values is actually losing much information.

This results overall means that, for all subjects indepen-

dently considered, 3 EMG synergies account for most of the

muscle activity; in other words, most of the grasps considered

can be dynamically described using 3 numbers. This holds for

each subject.

B. Common synergy features

We now consider a subset of three grasps (pinch, small

power grasp and large power grasp) as performed by all

subjects. The choice of these grasps stems from a very initial

analysis which revealed that they are very different from each

other from both a kinematic and a dynamic point of view.

This is quite intuitive, and is also reflected in their distance

in standard grasp taxonomies (examples can be found in [9],

[10]). In this case too, data were normalised per-subject and

then PCA was applied in order to be able to consider 3 EMG

synergies; for visualisation purposes, we will also consider 3
kinematic synergies, although they account only for 77% of

the variance.

Consider first Figure 6, depicting the grasps in 3 dimensions

(first, second and third synergy) in the kinematic (left) and

EMG (right) spaces. It is apparent that the grasps are well

clustered, to the point that a linear classifier (i.e., a plane in 3D)

could separate them perfectly from one another in kinematic

space, and almost perfectly in EMG space. As opposed to

this, consider now Figure 7 which depicts the same data, but

associating a colour to each subject (rather than to each grasp):

separability of subjects is much less clear in this case, each of

them participating in each of the 3 clusters associated with the

grasps. In other words, from visual inspection of the Figures,

it seems that grasps are quite similar to each other in both

spaces, whereas it is hard to tell one subject from another.

In order to numerically check this impression, for each

of the above described settings we ran a multi-class linear

classifier and considered the balanced error rate (BER) as a

measure of separability. Linear classification is a statistical

technique which can be used, at a very basic level such as

this, to check how separated N classes of objects are (see,

e.g., the classic [8] again); in particular, a linear classifier will

here find a set of 3D planes such that all samples belonging to

a category will be on one side of the plane, whereas sample

belonging to all other categories will be on the other side.

As a linear classifier we chose to use a Support Vector

Machine (SVM) with linear kernel. SVMs [11], [12] are

a machine learning method which will find the separating

(hyper)plane between two sets of labelled sample, such that the

margin between the categories is maximised. By margin here it

is meant, twice the distance between the separating plane and

the closest sample in either category. The plane thus found

enjoys maximum robustness against noise in the sampling

procedure [13]; in this sense, it is the optimal separating plane.

Since the dataset consists of a relatively small number of
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Fig. 6. 3D visualisation of 3 of the grasps as performed by all subjects; colours denote grasps. (left) Kinematic synergies, (right) EMG synergies.

Fig. 7. 3D visualisation of 3 of the grasps as performed by all subjects; colours denote subjects. (left) Kinematic synergies, (right) EMG synergies.

samples (487), we employed 2-fold cross-validation and grid

search to find the optimal SVM C parameter, and then ran

the procedure for 50 times, averaging then out the means and

standard deviations of the errors so obtained. Table I shows

the results.

As is clear from the Table, trying to separate subjects from

one another is pointless, as all error rates approach chance

level (80%, since there are 5 subjects). As opposed to that,

discerning grasps is accomplished quite well. In particular,

kinematic synergies in this case can be perfectly discriminated

(see Figure 6 (left) again—there is no error in that case) or

with a high accuracy in the other cases. Particularly, using

the 10 EMG electrodes altogether we achieve an error rate of

4.70%± 1.39%.

The same trend is visible when considering Table II, in

which all grasps are considered. Results here are uniformly

worse, as one would expect, since the flat grasp, pinch grip

and tripodal grip are quite similar to each other, both from

a kinematic and dynamic point of view. Still, adding this

information does not help when trying to distinguish subjects

from one another.

Notice, anyway, that correct classification of EMG patterns

is out of the scope of this paper — that has already been done

with greater success, e.g., using SVMs with Gaussian kernels.

The interest of this result lies in the statistically significant

separability of one or more set(s) of samples, and in this case

an error rate below chance level is already meaningful. Linear
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TABLE I
BALANCED ERROR RATES OBTAINED WHILE APPLYING A LINEAR CLASSIFIER TO THE DATASETS AND LABELS SHOWN IN FIGURES 6 AND 7.

CONSIDERING THREE GRASPS: PINCH GRIP, SMALL POWER GRASP AND LARGE POWER GRASP.

kinematic EMG, elbow EMG, forearm EMG, all

grasps no errors 11.62%± 2.42% 17.19%± 2.56% 4.70%± 1.39%
subjects 76.37%± 5.20% 57.72%± 4.76% 74.82%± 4.51% 69.25%± 5.40%

TABLE II
BALANCED ERROR RATES OBTAINED WHILE APPLYING A LINEAR CLASSIFIER TO THE DATASETS AND LABELS SHOWN IN FIGURES 6 AND 7.

CONSIDERING ALL GRASPS.

kinematic EMG, elbow EMG, forearm EMG, all

grasps 17.88%± 2.01% 35.56%± 3.05% 45.58%± 2.91% 36.08%± 2.30%
subjects 79.85%± 2.59% 58.93%± 3.60% 70.85%± 3.23% 64.13%± 4.08%

separability here points at the common pattern underlying a

certain class; for instance, the fact that a plane can separate

the large power grasp from the pinch grip irrespective of the

subjects means that an easy procedure can be found to tell

which grasp is being enacted (for instance, evaluating the

sample distance from the plane itself).

IV. CONCLUSIONS AND DISCUSSION

This experiment mainly shows that EMG data gathered

from 5 human subjects during a grasping task can be easily

clustered on a per-grasping basis, but not on a per-subject

basis. Per-subject data normalisation is carefully conthrived

in order to only remove size and activation level differences

among subjects, without compromising the (possible) intra-

subject differences in the muscle activation patterns. By ”easily

clustered” here, we mean that a simple linear classifier is

able to discriminate grasps, but not subjects. From this we

conclude that as few as 3 dynamic synergies are sufficient

to characterise one among 5 grasps, with a precision which

obviously depends on the (muscular) similarity among grasps,

but that anyway largely surpasses the corresponding precision

when trying to discriminate humans. In one word, dynamic

synergies are characterstic of grasp types and are robust across

subjects.

The concept of synergies has long been established in

the kinematic description of the human hand. Indeed, when

taking a large number of every-day grasps into account, the

movement of the fingers of the hand can be described with

a very limited number of principle components (i.e., 3–5 [3],

considerably less than the number of degrees of freedom of

all fingers combined, i.e., 24 [14]). The novelty of our result

lies in the fact that it is not clear that these synergies are also

present at the level of exerted grasp force and, consequently,

the EMG signal of the forearm muscles that activate the

fingers. Our experiment seems to confirm that this is the case.

Potential applications of this result are mainly in force- and

impedance-based control of dexterous mechanical hands; in

such a case, the control system cannot probably proficiently

control all the degrees of freedom of the robotic artifact,

and dynamic synergies could be used to simplify the task.

This would proficiently apply, as well, to hand prosthetics,

especially since muscular activation level are one of the most

used control methods of hand prostheses by amputees. The

method can in principle be extended to any muscle complex

involved in human movement, walking, manipulation.
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