
Easily-programmable Corobots for Student Use
Zack Butler, Max Bogue, Ravdeep Johar and Balaji Iyer

Department of Computer Science
Rochester Institute of Technology

Abstract—As mobile robots become more prevalent in our
society, there are numerous potential applications for them.
However, current educational opportunities tend to focus on the
robotics aspects rather than higher-level applications. In this
project, we are developing a system that takes care of the robotics
aspects and provides a fully-capable yet fully programmable
platform to allow students with interests in areas outside robotics
can learn the traditional computing concepts within the robot
context. These interactive robots, or “corobots”, will operate
within the department alongside people while performing tasks as
programmed by the students. Here we present the overall system
architecture, in which we solve fairly traditional problems but
in a robust way that will allow for general use, and a student
API which can control the robots at a high level while integrated
with arbitrary other code.

I. INTRODUCTION

In recent years, mobile robots have become more common
in the daily lives of everyday people, at least in certain niche
areas. As they become more capable and less expensive, we
can expect to see them used for a wider variety of personal
applications. The term “corobot” is used to connote this idea
of robots working alongside humans instead of in isolation.
However, the possible applications of such corobots are still
relatively unexplored. In the Computer Science department at
RIT, we are interested in giving all of our students the chance
to interact with and program mobile robots, with the goal that
they can learn about robotics and discover their potential, even
as they learn content from all areas of computer science. That
is, we are developing a system that does not target introductory
programming, which has been well explored using robots, or
robotics education per se. Instead, the robots presented here
offer an easily-programmable system to provide a physical
context in which to explore any topic in computing.

In the overarching project, our goal is to develop a number
of assignments for different courses in which students are
exposed to the robots while they learn and program traditional
computing topics. The goal of the robot system itself is then
that computing students can easily write and execute programs
such as the example shown in Fig. 1. While this particular
instance is clearly simplistic, its successful execution requires
a robot capable of robust navigation. Likewise, when programs
such as this one are possible, robotic actions can be easily
integrated into more complex programs that are trying to
solve other tasks, such as networking, data collection and
management, or other applications yet to be conceived.

In order to create a system that is both very capable in
terms of navigation and interaction, but also inexpensive, we

978-1-4799-2722-7/13/$31.00 c©2013 IEEE

def main():
with Robot("corobot2.rit.edu") as r:
pos = r.get_pos().get()
print(pos)
p = r.nav_to("Vending").wait()
r.request_confirm("Buy me a soda please",\

timeout=50).wait()
r.nav_to_xy(pos[0],pos[1]).wait()

Fig. 1. Simple example of Python code that can be used to control one of
our corobots.

have made several customizing design choices. That is, by
developing a system that is only expected to operate in one
building (albeit one that is over 30×100 m in area) and through
a limited API, we can improve the overall performance under
these specific conditions. The customizations are described in
detail throughout the paper. Also, in general we have chosen
to build a robot that is intended to be fully integrated with
the department. That is, we have engineered the environment
to enable easy localization, but done this in such a way that
humans can also participate easily with the robots. Likewise,
by limiting the way that the robots can be programmed, we can
simplify our software architecture and provide a level of safety
while also lowering the learning curve that might otherwise be
present when programming such a robot.

A. Related work

Recent advances have led to significantly less expensive
mobile robots while hardware such as the Microsoft Kinect has
brought greater capability into more users’ hands. However,
the robots that have been created have been primarily designed
for people interested in robotics per se. One interesting excep-
tion is the Cobot developed at CMU [1], [2]. In this system,
robots wander around the hallways and interact with people
in their environment, much like our system will be able to do.
However, the focus of that project is in fact the interaction,
and the directives given to the robots are not in the form of
programs but rather service requests. Our focus is on delivering
a platform that can be programmed by novice programmers
but that still possesses navigational functionality. We are also
interested in human-robot interactivity and will pursue this
avenue once our system is more mature.

In contrast, a variety of educational robots have been used
to teach introductory programming topics in a compelling way.
Examples of this type of work include the work of Matarić
[3], Lauwers et al [4] and the Institute for Personal Robots
in Education [5]. However, the robots used in these projects

Fig. 2. The first two corobot prototypes, which differ only slightly in their
construction. The first prototype (on the left) is facing toward the camera,
while the other is facing away.

tend to be rather simple — in fact, Lego Mindstorms are often
used, though the projects mentioned above involve more robust
hardware — such that they can be easily purchased in large
quantities or by individual students and easily maintained by
novices. Thus, their capabilities are largely limited to local
navigation and (often quite varied) sensing. These robots are
certainly sufficient for the intended purposes, and robotics has
been shown to be an exciting domain for students to learn how
to program [4]. However, we are interested in a more capable
system that lives within, and navigates around, the department
instead of being a more “personal” robot, enabling the students
to explore higher-level applications and computing topics.

B. System Framework

In order to enable the type of programmable robot that we
have in mind, our overall system takes the form of several
independent robots that primarily interact with a central server.
The robots accept connections over the network, but the
connections involve only the very high-level API that we have
designed. User code can then connect to a robot either directly
(for current testing) or via our server (for general student
use) and request navigation, status updates, or perform other
interactions within a general-purpose program of the user’s
design. In the remainder of the paper, we first present the robot
hardware, followed by the software that sits on the robot to
provide general navigation and interaction, and finally the user
API and other code that runs off of the robot platform.

II. HARDWARE DESIGN

The goal for the hardware of the robot is to be relatively
inexpensive (under US $1000), easily reproducible, and capa-
ble of robustly navigating our building while also interacting
conveniently with people in the environment. Overall, our

Fig. 3. Hallway in Golisano Hall of RIT showing QR codes mounted next
to each doorway.

design is quite similar to the popular Turtlebot platform,
though we have made a few different choices in our design.
Like (some forms of) the Turtlebot, we currently use an iRobot
Create as the base, primarily due to its cost and ubiquity. We
also use a Kinect for obstacle detection and avoidance, with the
thought that we can pursue more complex algorithms such as
gesture recognition in future applications. Our first two robot
prototypes, which differ only in the specific models of cameras
and computer used as well as slightly in their construction, are
shown in Fig. 2. This figure shows one difference between our
design and the Turtlebot, in that the computer that controls
the robot is left exposed and open at all times. In addition,
the robot is somewhat taller than the Turtlebot, and future
versions of our robot may be yet taller as long as stability can
be maintained. This allows the robot to show a simple status
monitor to, and request assistance from, any user passing by,
and future versions of this monitor will allow more complex
interactions such as providing tours of the building.

A. Cameras and barcodes

The most significant way in which our hardware differs from
the Turtlebot is in the use of two side-facing cameras to detect
QR codes placed throughout the building. A photo taken in
one of the hallways in our building is shown in Fig. 3. The
barcodes are primarily for assistance with localization, as done
in similar fashion in several previous works. For example, the
well-known SAGE project [6] used colored landmarks visible
at all times to maintain the robot pose for a tour-guide robot
within a museum, while the AprilTag system [7] performs
full 6-DOF localization and has been shown to be very robust
with respect to camera irregularities and lighting, partly due
to its use of simple code images. For our project, we have
specifically chosen QR codes so that they can be used by
humans in the building as well. The work of Lin and Chen
[8] also uses QR codes, but on the ceiling — these have the
advantage of being more often visible, but mounting them

on the walls gives us a system that is more interactive with
passers-by. Also, because our robots’ cameras are at a fixed
height and horizontal, the accuracy of the robot localization is
fairly robust to the mounting of the code on the walls.

In our setup, a QR code outside a faculty office (such
as room 3651, the office of the first author) will corre-
spond to a URL with a well-defined form (in this exam-
ple, http://www.cs.rit.edu/˜robotlab/Office3651).
When a robot detects and decodes the barcode, as described
in detail below, it uses the last portion of the URL as a
lookup into a table of barcode locations and can thus determine
its location. However, when the code is detected by a QR
code reader such as on a smartphone, the URL in question
provides a redirection to the web site of the person in the office
(http://www.cs.rit.edu/˜zjb/). Similar redirections are
in place for research labs, while other barcodes that are in less
distinct locations such as the building atrium currently have a
default web page associated with them.

III. ROBOT CONTROL SOFTWARE

In the interest of space, we briefly explain those components
which are fairly standard, while giving more detail on those
that are more specific to our project. We have built our system
using the Robot Operating System (ROS), enabling the use
of some existing components, but have also developed many
components on our own that are specific to the particular
environment and robot we have. This simplifies the overall
architecture so that it can be easily maintained and improved
upon without being too large to handle — we are not con-
cerned with having a highly flexible system since we are
building a specific robot for a specific domain. The overall
software architecture present on the robot is shown in Fig. 4.
Several nodes were used directly from the ROS libraries,
namely those that interact directly with the robot hardware and
with the Kinect. Data sharing between nodes was done using
ROS topics; most topics use predefined message types but for
the *pose topics we created our own simplified planar pose
message type. The discussion of our custom nodes follows.

A. Manager

The main job of the manager is to accept connections from
user code and then to take the commands given in the user
programs and turn them into appropriate values of ROS topics
for the remainder of the nodes. It also subscribes to the relevant
ROS topics so that the user code can be informed of the robot’s
progress (e.g. whether a goal has been reached, or whether
the request to humans in the area has been acknowledged).
This is overall fairly simple, but by making it a separate node
we can easily add more functionality to the API by giving
the manager access to other topics as necessary. The one
challenge here is that the other end of the network connection
is being maintained by arbitrary student code, which could
easily include infinite loops and so on. Thus, we need to
make sure the manager does not hang up waiting for the other
end of the connection to terminate. The asyncore library
in Python allows us to easily handle asynchronous network

corobot_manager

corobot_navigation

 goals

pointcloud_to_laserscan

corobot_laserloc

 scan

corobot_obstacle_avoidance

 scan

openni_launch

 camera/depth/points

waypoints

 goals_reached

corobot_localization

 laser_pose

corobot_qrcode x2

qrcode_pose

pose

pose

turtlebot_node

 cmd_vel

 waypoints_reached odom

API

Kinect

 Webcam 1 Webcam 2

Robot Base

Fig. 4. Software architecture on the robot itself. Each oval is a ROS node —
nodes that start with “corobot” were made for this project, whereas other
nodes are provided by ROS. (A few ROS-provided nodes as well as the
corobot_map and corobot_monitor omitted for clarity.) Lowercase-
named edges are ROS topics. Edges are color coded for visual clarity only:
red for commands, green for notifications, purple for range sensor data, orange
for pose data. The API edge refers to commands coming across the network
from the client..

communication with timeouts, and as such we have written
this node in Python to take advantage of this library.

B. Navigation

For navigation through the building, we wish to provide the
ability to plan and execute a path to any reachable location
(i.e. office and classroom doorways, though perhaps not inside
offices). Rather than perform an A* search over a dense map
of the environment, we have used our prior knowledge to
construct a waypoint graph. The waypoints are named, and
their location and neighbor information is stored on board each
robot. In this way, student programmers can easily specify
destinations (such as in Fig. 1); each doorway has a waypoint
with a meaningful name. In addition, we put waypoints down
the center of each hallway so that the robot can always move
in a straight line to at least one waypoint.

In the context of the robot software, we use a simple node
called corobot_map to load the waypoint data from a file
and provide a ROS service to provide the map to other nodes,
thus avoiding having to reload the map multiple times. The
nodes requiring map data (currently just the navigator, but
future Kinect-based localization may use it as well) can query
individual components or the entire map data structure.

When a navigation command is given to the robot, the
search process looks for waypoints near the start and goal

locations. In the case of navigation to a waypoint, clearly the
goal is itself already on the roadmap, but the start will always
be the robot’s current position and thus not on the roadmap,
and the goal can likewise be specified by arbitrary coordinates.
To connect the start point to the graph, we do a line trace
through the floor plan of the building to find all waypoints
that are directly visible. The closest few of those are taken as
the start “zone” (if none are within a maximum radius, just the
closest is taken). A similar search is done for non-waypoint
goal location. The A* search is then given a modified waypoint
graph in which these extra edges are present. The result of this
search, a sequence of waypoints, is published for the obstacle
avoidance node to attempt to reach in turn.

C. Localization

Localization is a standard problem in robotics. Especially
for a simple robot platform such as the Create, odometry can
be very unreliable and the external sensors are of paramount
importance. In the Turtlebot platform, EKF-based localization
is provided that uses a small IMU and/or visual odometry to
compensate for odometric error. In our robots, we have found
(as have others) that the rotational odometry of the Create is
especially poor when carrying a significant payload. However,
here we can again take advantage of being able to constrain our
problem space. Specifically, the obstacle avoidance code that
actually drives the robot produces only a small set of rotational
velocities, and so we calibrate the odometry specifically for
those values within the localization node itself.

We can also include traditional Monte Carlo localization
using the Kinect, however the floor plans that we have avail-
able do not include a significant amount of furniture around
the building that is of similar height to the robot. As such the
utility of such an approach is limited until (as we have plans
to implement) the robots supplement the map with sensor data
as they work. However, the combination of the QR codes and
calibrated odometry is generally effective for our current use,
and we are also developing a recovery protocol that will enable
the robot to recover its position if it becomes lost by wandering
until it locates a barcode.

D. Barcode-based localization

As mentioned, we use QR codes located throughout the
building to provide absolute localization whenever one code
is in view of the robot’s cameras. However, we do not simply
use the barcodes to give the general location, but use the size
and shape of the code within the image to pinpoint the robot’s
location. In order to do this, we need to know how the code
will appear as the relative location of the camera changes.
We have used the open-source ZBar library [9] to detect and
decode the barcodes, and written code that uses the results of
this image processing to locate the robot.

In the most basic case, we can determine the distance of
the camera By assuming pinhole camera model, this is given
as z = f ∗ d/w where f is the focal length of the camera,
d is the size of the actual barcode and w the width of the
barcode in the image. In our case, we fix d at 5 inches for

Fig. 5. Geometry of the camera relative to a barcode on the wall (two
top views). The left diagram shows the distances to the two edges of the
barcode used to compute the relative angle θ, while the right diagram shows
the computations for the pose of the camera (C) relative to the coordinate
frame located at the center of the barcode (B).

all barcodes (we use English units so that a 1000 pixel wide
code can be printed at 200 dpi and be confident in the exact
size of the code). With our current cameras, this allows us
to reliably detect barcodes from approximately 20 centimeters
up to 2 meters away from the robot. Rather than relying on
the camera specifications to determine f , we simply capture
images at known z values to determine f empirically.

However, the robot (and thus the camera) may of course
be located at any planar pose relative to the barcode, and this
information can be determined from the image as well. We do
assume that the barcodes are placed vertically and the cameras
are likewise well-placed on the robot, but again our system
allows these assumptions to be easily enforced. The effect of
the robot’s pose is that the barcode will be off-center in the
image and have a perspective projection. These factors can be
used to compute the location of the camera with respect to
the barcode (BC), as shown in Fig. 5. When the barcode is
not perpendicular to the camera, the left and right sides of the
barcode will be at different distances from the camera. With
these distances (determined by the pinhole model as above),
we first determine the rotation of the barcode with respect to
the camera axis as

θ = arcsin((zr − zl)/d).

We can then compute the pose of the camera relative to the
coordinate frame B located at the barcode as shown:

BCx = z sin θ + o cos θ
BCy = z cos θ − o sin θ
BCθ = π − θ

where o is the offset of the barcode within the image, converted
into real-world dimensions.

Once the location of the camera relative to the barcode
is known, the robot looks up the absolute location of the
barcode in a lookup table that we have created. Again, we
take advantage of the opportunity to engineer the environment
to produce this table. We transform the local position of the
camera (after adding the offset of the camera with respect to
the center of the robot) to a global coordinate which is fed
to the EKF for localization. Using inexpensive webcams, we
are able to achieve localization accuracy and repeatability to

approximately 2 cm and 0.02 radians (1σ) when the robot is
75 cm away from the barcode and 10 cm and 0.07 radians
when the robot is 1.5 m away. Beyond this range the barcode
becomes too small to detect reliably, but the nature of the
localization is such that any detection will be helpful.

E. Obstacle avoidance
Once a path has been planned and the robot’s pose de-

termined, the path must be executed. For navigation we
use a fairly standard artificial potential field approach. The
waypoints in our system have been placed such that the robot
should always be able to travel to its next waypoint in a
straight line in the absence of unmapped obstacles, so the usual
issues of static local minima are not particularly problematic.
When people are present interfering with the robot’s desired
path, generally this type of reactive approach will work well,
moving around the person or waiting until the path is clear.
To detect obstacles, we use the Kinect as a planar range
sensor (much like a standard laser rangefinder). We then use
clustering techniques to turn the individual points into coherent
obstacles that apply repulsive virtual forces on the robot while
the robot’s next waypoint provides an attractive virtual force.

We have made a few customizations to the general approach
for better functionality within our application. First of all, since
the Kinect has a small horizontal field of view, obstacles can
easily “disappear” as the robot turns to avoid them. Thus, we
maintain a set of obstacle objects that are used to generate
forces — obstacles are added to the set when first encountered
and removed when the robot is more than one meter away from
them (one meter is also the current threshold beyond which an
obstacle produces no force on the robot). We also have added
state to the APF technique to determine if the current goal
location is blocked: if the APF suggests a near-zero velocity
for ten seconds, it reports that it has failed to reach a waypoint.
If this was an intermediate waypoint, it will try to reach the
next waypoint using the APF; otherwise, it will simply report
failure back to the manager.

F. Monitor
Since the robots are designed to be an interactive part of

the department, it is important that they display a public face
during their travels. The corobot_monitor node takes the
form of a Python GUI that runs at all times. ROS subscriptions
are used to give the monitor access to relevant data, though
we do not plan to show low-level data but rather higher
level things like current position and goal. The monitor also
communicates with the manager over ROS topics to request
human interaction and reply as necessary. Future projects will
add more features to this monitor such as video and the option
of giving tours of the building when otherwise idle.

IV. OFF-BOARD SOFTWARE

The robots are designed to be autonomous entities within
an overall team of corobots. However, their commands will
come from user code that is developed and executed off board.
Here we discuss the various important components that face
the general users of the system.

def succ():
print("Made it!")

def fail():
print("Failed!")

def main():
with Robot("corobot1.rit.edu") as r:
f = r.nav_to("Office3651").then(succ, fail)
parallel computation can be done here
then wait for arrival/failure:
f.wait()

Fig. 6. Example of callbacks using the Python API that allow asynchronous
computation while the robot moves.

A. Client APIs

Since the overall goal of the project is to provide an easily-
programmable team of robots for student use, the client APIs
are built to enable users to incorporate robot commands with
any other programming. The simple program of Fig. 1 shows
some of the commands available in our Python API. We have
also developed a Java API but here we describe the Python
version as it has greater functionality at present.

By and large, the effect of the API is simply to open
a network connection to a robot and convert function calls
into messages sent (and received) over that connection. The
interesting issue here is how to handle the time that the robot
takes to execute certain actions. For example, the nav_to
function takes a named waypoint and executes a plan through
the building, an action which can easily take a couple of
minutes. Should the student code block during that action?
If the student code wants to execute other non-robotic actions
during that time, then it should not block, but certain actions
could be triggered by arrival at a destination as well. Rather
than requiring knowledge of multi-threaded programs, we have
provided an API that enables both types of operation seam-
lessly. In the Python API, each call into the robot class returns
a Future object. Ignoring this object (that is, simply making
a call like robot.nav_to("Vending")) will produce
non-blocking behavior — execution will continue on the next
line while the robot begins moving. On the other hand, if
blocking behavior is desired, this can be accomplished simply
by calling the wait() method on the returned Future object
(i.e. robot.nav_to("Vending").wait()). Finally, the
Future class also allows callbacks to be passed in using its
then() method so that certain code can be executed upon
completion. A small example of this is shown in Fig. 6.

The current API is quite limited so that we can better
understand how the robot will behave under a limited set of
circumstances. Users can navigate the robot to named locations
or arbitrary (x,y) locations and request confirmation and robot
status as in Fig. 1. We will extend the API gradually to enable
more complex user interaction as specific projects demand.

B. Web-based access

For internal use and testing, the robots are accessed as
shown in the various code examples by specifying an IP

address to connect to. However, once the robots are used by
the general student population, we need to provide a more
seamless way of interaction. This is especially the case when
we will have a team of robots and the user code will not
necessarily use the same robot from one occasion to the
next. We have developed a simple web server to mediate the
interaction of the user and the corobots. It uses an HTTP-
Request protocol to receive status updates from all active
robots and display and maintain information about the overall
system. Web sockets are used so that the user’s connection to
the web server is maintained over time and updates from the
robots are seen live without having to refresh the page.

From the user’s point of view, the workflow is such that
they will log in and upload their code to the server. They can
then request deployment of the code relative to a robot. The
server then starts their code in its own process by giving it the
IP address of a currently idle robot or putting the deployment
request in a queue until a robot becomes available. This allows
us to have control over where the code runs and force all
interaction with the robots to go through the API discussed
above. We are currently undertaking improvements to the web
server that will increase user-friendliness in preparation for
full deployment to students. In particular, the usability of the
web site in terms of ease of uploading and deploying code,
the logging of the results of user code, and more interactive
display of robot status are all under development.

C. Robot Simulator

In order to speed up development time, we have also created
a simple simulator that can interact with the API in much
the same way that the robots do. While we are inspired in
this idea by ROS’s Gazebo and other platforms that allow
interchangeable hardware and simulation, we do not aspire to
a high level of fidelity. In fact, for the goals of the overall
project we want to encourage people to work with hardware,
so we have explicitly designed the simulator to be at best
kinematically accurate. We do not simulate sensing, localiza-
tion or obstacle avoidance, rather simply a robot that obeys
the given commands by moving to the requested destinations
and responding with the same asynchronous messages as the
real hardware. Since the users of the API do not currently
have access to sensor data, this does not present a significant
limitation, and when it comes to real-world behavior, we have
chosen to require real-world operation.

V. DISCUSSION / FUTURE WORK

As of the time of writing, our robots are able to successfully
navigate most of the third floor of Golisano Hall via the student
API using code substantially similar to that shown in Fig. 1.
The barcode localization and the calibrated odometry are
sufficient to maintain pose information as long as the barcodes
are sufficiently dense around the building (since we have put
barcodes next to all doors to provide interactivity for humans,
this is generally not an issue, though we have placed some
additional barcodes around open spaces and a fairly empty
hallway as well). Our current focus is to make the overall

system more robust and user-friendly in preparation for student
use in the fall of 2013. In particular, we look to improve the
quality of real-time and post-hoc feedback through the use of
better monitoring, a cleaner web site, and more streamlined
logging facilities for user code. As we develop our code,
we will continue to make all of the code, design documents
and supporting information available online through Github
(http://www.github.com/corobotics).

More importantly, as the main focus of our project, we are
developing assignments for different classes that will use our
robots so that students can develop programs that utilize the
robots outside the specific context of a robotics course. For
example, we plan to introduce an assignment in a second-
semester course where students plan a path for the robot
(effectively taking the place of the navigation by using the
waypoint graph) and see the robot execute it in real life. An
assignment in a database course will require the students to
have robots collect information from around the building and
build a distributed database of that information. Finally, we
expect that the system will provide a base for students to
pursue independent studies, MS projects and so on. A current
independent study is focused on an Android app that uses the
barcodes and server connections to display robot positions and
interact with nearby robots, and future projects can develop a
wide variety of new and exciting robotics applications.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Award No. IIS-1208566. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. Karl
Berger worked on early versions of the robot code. Kumar
Chandan and Pavan Nutalpallati assisted with robot testing.

REFERENCES

[1] S. Rosenthal, J. Biswas, and M. Veloso, “An effective personal mobile
robot agent through symbiotic human-robot interaction,” in Proc. of
Autonomous Agents and Multiagent Systems (AAMAS), 2010.

[2] B. Coltin, M. Veloso, and R. Ventura, “Dynamic user task scheduling
for mobile robots,” in Proceedings of the AAAI Workshop on Automated
Action Planning for Autonomous Mobile Robots, 2011.

[3] M. J. Matarić, N. Koenig, and D. Feil-Seifer, “Materials for enabling
hands-on robotics and STEM education,” in AAAI Spring Symposium on
Robots and Robot Venues: Resources for AI Education, Palo Alto, CA,
March 2007.

[4] T. Lauwers and I. Nourbakhsh, “Designing the finch: Creating a robot
aligned to computer science concepts,” in Proceedings of AAAI, 2010,
pp. 1902–7.

[5] “Institute for Personal Robots in Education (IPRE),”
http://wiki.roboteducation.org.

[6] I. Nourbakhsh, C. Kunz, and T. Willeke, “The mobot museum robot
installations: A five year experiment,” in Proc. of the International
Conference on Intelligent Robots and Systems, 2003, pp. 3636–41.

[7] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in Proc.
of IEEE Internation Conf. on Robotics and Automation (ICRA), May
2011, pp. 3400 –3407.

[8] G. Lin and X. Chen, “A robot indoor position and orientation method
based on 2d barcode landmark,” Journal of Computers, vol. 6, no. 6, pp.
1191–7, 2011.

[9] J. Brown, “Zbar bar code reader,” http://zbar.sourceforge.net/.

