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Visual-inertial SLAM aided estimation of anchor poses and sensor
error model parameters of UWB radio modules

Philipp Lutz1∗, Martin J. Schuster1, Florian Steidle1

Abstract— Local positioning technologies based on ultra-
wideband (UWB) ranging have become broadly available and
accurate enough for various robotic applications. In an infras-
tructure setup with static anchor radio modules one common
problem is to determine their global positions within the world
coordinate frame. Furthermore, issues like the complex radio-
frequency wave propagation properties make it difficult to
design a consistent sensor error model which generalizes well
across different anchor setups and environments. Combining
radio based local positioning systems with a visual-inertial
navigation system (VINS) can provide very accurate pose
estimates for calibration of the radio based localization modules
and at the same time alleviate the inherent drift in visual-
inertial navigation. We propose an approach to utilize a visual-
inertial SLAM system using fish-eye stereo cameras and an IMU
to estimate the anchor 6D poses as well as the parameters of
an UWB module sensor error model on a micro-aerial-vehicle
(MAV). Fiducial markers on all anchor radio modules are used
as artificial landmarks within the SLAM system to get accurate
anchor module pose estimates. Index Terms— MAVs, mobile
robots, SLAM, UWB, radio localization, sensor calibration"

I. INTRODUCTION

Visual-inertial navigation has been employed successfully
on mobile robots and specifically on micro-aerial-vehicles
(MAVs) to navigate in both indoor and outdoor environments
[1], [2]. However, the integration of relative position and
orientation estimation from a progressive stream of noisy
sensor data leads to an unavoidable drift. State-of-the-art
visual-inertial navigation system show a promising absolute
trajectory error (ATE) of lower than 0.5 % in typical scenar-
ios [3]. Coupling an VINS with an absolute sensor based on
radio localization such as global-navigation-satellite-systems
(GNSS) or local positioning systems (LPS) helps to com-
pensate long-range drifts, whereas the VINS provides short-
range accuracy.

In this work we use an VINS together with a LPS and
show how our SLAM backend helps to calibrate both a UWB
sensor measurement error model as well as the static anchor
module positions and orientations.

A. UWB radio based localization

The use of local-positioning-systems (LPS) contrary to
GNSS for navigation of mobile robots is attractive because
they do not have to rely on satellite communication which
can be problematic in scenarios where signal reflections
and shading can severely corrupt position measurements and
hence render them unsuitable for the required application
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Fig. 1. The multicopter ’Ardea’ equipped with its two pairs of fisheye
stereo cameras, an IMU and a UWB radio ranging module with its antenna
coordinate frame visualized.

accuracy. With a LPS one can spread out static beacons
(anchor nodes) at arbitrary locations and therefore actively
influence the node network geometry to ensure line-of-
sight (LOS) conditions and optimize the geometry dependent
dilution of precision (DOP) quality metric [4] for the required
localization accuracy. There are three common ranging meth-
ods: using received signal level (RSL), signal time-of-flight
(ToF) and angle-of-arrival (AoA) utilizing antenna arrays.
ToF based ranging is a good trade-off between achievable
accuracy and equipment complexity, because it requires only
one antenna [5]. After all pair-wise ranging measurements
between the tag and all anchor nodes are obtained, the
set of non-linear equations - the so-called multilateration
equations - have to be solved in order to locate the moving
robot carrying the tag module. Applying a non-linear least-
squares (NLLS) solver to those equations is a straight-
forward method to solve the multilateration problem. How-
ever, also sophisticated algebraic closed-form solutions for
both time-of-arrival [6] as well as hyperbolic time-difference-
of-arrival [7] measurements have been studied. A comparison
between a weighted iterative NLLS solver and common
closed-form solutions is also investigated [6]. Moreover,
various parametric and non-parametric bayesian estimators
such as Kalman and Particle filters have been successfully
used for localization [8]. As for Kalman filters, due to the
highly nonlinear and non-gaussian nature of radio wave
propagation, the linearization used in EKFs as well as the
gaussian error assumption usually lead to higher localization
errors compared to particle filter or NLLS approaches [8]. In
Section III-C we briefly discuss our NLLS based localization



approach using double-sided two-way-ranging (DS-TWR).

B. UWB radio module measurement error sources and cal-
ibration

Theoretically UWB localization has the potential to pro-
vide centimeter-level accuracy [9], however in practice so-
phisticated sensor error models are required to mitigate the
effect of biases caused by non-deterministic signal propa-
gation, most notably non-line-of-sight (NLOS) conditions.
Typical error sources for UWB radio module based ToF
ranging include
• NLOS conditions due to occlusions between tag and

anchors,
• poor anchor geometry, which is reflected in the DOP

metric [4],
• strongly anisotropic antenna characteristics of small and

cheap antennas [10] and their immediate environment,
• antenna delay due to radio wave propagation through

circuitry (PCB) and antenna before propagating through
air,

• receiver specifics such as ranging biases depending on
received signal level.

Reliably detecting NLOS ranging conditions and compen-
sating for NLOS induced errors is very tricky and involves
detailed knowledge about the underlying radio module’s
physical layer and therefore is not considered within this
manuscript, only simple outlier checks are performed. One
of the other dominant errors is caused by the anisotropic
(i.e. directional) properties of small and cheap antennas used
on common UWB based ranging modules, for example the
used Decawave DWM1000 modules [11]. A model based
approach using the LOS signal entrance and exit angles
between communicating pairs of ranging module antennas as
parameters was presented in [12]. In [10], [13], [14] antenna
orientation dependent errors and errors caused by objects
in the antenna vicinity are estimated without an explicit
model utilizing Gaussian Processes. However assumptions
regarding the anchor orientations have been made because
they were not observable. Hence we would like to motivate
a method for jointly estimating the 6D pose of all anchors as
well as the sensor error model parameters for all tag-anchor
pairs in one calibration run. The estimation of all anchor
antenna poses is done by incorporating our visual-inertial
SLAM system with fiducial markers as artificial landmarks
on all anchor modules, which is briefly described in Sec-
tion III. More emphasis is put on considering aforementioned
error sources for an sensor error model and the error model
which was derived empirically based on our findings, see
Section II.

C. Contributions

The contributions of this paper are:
• Introduction to our novel visual navigation pipeline

coupled with Decawave DWM1000 UWB radio mod-
ules (Section III) on our experimental MAV platform
(Section IV).

• UWB sensor measurement error model, focused on
errors induced by antenna and immediate antenna envi-
ronment properties originating from module mount and
close objects (Section II).

• Joint calibration of a UWB radio sensor error model and
estimating anchor module poses with a SLAM system
using fiducial markers (Section II-D).

II. RANGING ERROR MODEL

A. Considered error sources

As introduced in Section I-B we would like to focus on
the following sources of error: antenna directivity, antenna
delay bias and environment influence around antennas which
leads to NLOS or multipath effects. Influences like deviation
between tag and anchor clock frequency are not explicitly
considered, because they are mostly mitigated already by
using a double-sided two-way ranging scheme [15]. Another
well understood error source is the temperature depended
frequency drift in clock oscillators. The oscillator in the
DWM1000 modules is temperature compensated [11], we
nevertheless measured tag and anchor module temperatures
during several experiments but couldn’t find any significant
influence on the range measurements when all sensors were
exposed to the same ambient temperature. Therefore tem-
perature is not considered in the error model. Small man-
ufacturing and assembly variances can cause deviations in
internal propagation delays, resulting in range measurement
offsets. These offsets can vary from module to module and
are generally identified in a separate calibration routine as
outlined in [16]. Antenna related ranging errors are most
likely caused by non-isotropic radiation patterns [11] influ-
encing gain and group-delay [17]. Ideal antennas are not
directional and therefore exhibit the same properties in all
directions. On our experimental hexacopter platform Ardea
we have components, such as carbon fiber tubes, cameras,
PCBs and motors in the immediate vicinity of the UWB
antenna, see Fig. 1 and Section IV. This leads to strong
directional antenna characteristics for incoming as well as
outgoing radio waves at the tag module in case the LOS
between the tag and its current communication partner is
obscured by robot components. Anchor modules are usually
free-standing, without objects in the direct vicinity of their
antennas, at least one has more control over the anchor
placement compared to mounting the tag module on a robotic
platform, far away from other components.

B. Exploration of real data

The setup shown on the left of Fig. 2 is used for ex-
ploration of typical ranging errors of the used Decawave
DWM1000 UWB modules (see Fig. 8) in a simple exper-
iment where the robot - which carries the tag - is moved
randomly in between 4 anchor modules. Anchors as well as
the robot are equipped with visual markers and are tracked
via a Vicon visual tracking system to provide a ground-truth
for calculating ranging errors.

In Fig. 3 we show how the aforementioned errors are
distributed and that they do not follow a gaussian distribution,
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Fig. 2. Ranging test setup with 4 anchors for measurements with a moving
tag and the respective ranging errors boxplots with whiskers at percentile 2
and 98.
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Fig. 3. Histogram of ranging errors for 4 anchors, also showing their mean
µ, standard deviation σ and median.

which makes radio based ranging hard for estimation meth-
ods which assume gaussian noise. Errors are usually positive
because radio waves can only get delayed by propagating
through a medium with a propagation velocity lower than
the speed of light or by traveling on a multipath when they
are subject to reflections. The high mean ranging error of
0.55 m for anchor 2 can be only explained by module specific
manufacturing tolerances or strong environment influences
which lead to many NLOS measurements. Due to this
asymmetry in the errors (especially for anchor 1, 3 and 4) a
heavy-tailed distribution might be suitable.

Another problem are outliers whose values can be orders
of magnitude higher than their real range value, on the
right side of Fig. 2 it is visible that many outliers fall
outside the 2 to 98 percentile range of the error distributions.
Those outliers are likely caused by multipath effects and
straight forward to filter out by employing a linear first or
second order Kalman filter and thresholding the measure-
ments against the current Mahalanobis distance [18]. For the
sake of simplicity and the lack of additional scope we will
still consider the measurement errors ei of anchor i to be
approximately gaussian distributed (ei ∼ N (µi, σ

2)) , in

which µi will be predicted by the error model for each tag-
anchor pair and σ = 0.35m is considered to be a fixed
ranging measurement noise variance. This value is based on
the ranging statistics found from several test runs, such as
provided in Fig. 3.

C. Sensor error model
The objective is to design a model which predicts sensor

ranging errors originating from the aforementioned error
sources by taking into account the tag pose pt(t), anchor
poses Pa and ranging measurements r(t) as inputs. Direc-
tional antenna properties can be described by the antenna
orientation and the LOS angles between tag and anchor
positions using spherical coordinates, ϕ for the azimuth
angle and θ for the inclination angle against the z-axis of
the antenna frame (see Fig. 4). Because anchor antenna
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Fig. 4. Spherical coordinate parameterization of antenna LOS angles
azimuth ϕt, inclination θt and range r between tag and anchor antenna
coordinate frames, at the tag.

related errors are assumed to be constant and minimal for
a static anchor placement without nearby objects, only the
LOS angles ϕt and θt at the tag module are considered. In
Fig. 4 one could imagine having the robot in Fig. 1 oriented
towards an anchor in such a way that the LOS is blocked
by robot components. An angle parameterization requires the
desired error model to be periodic in those features. Normal
polynomial basis functions such as used in [12] have shown
poor performance because implicitly modelling periodicity
in a given interval is not intuitive and non-trivial. Modelling
arbitrary periodic functions can be accomplished using spline
functions [19] with periodic boundary conditions. Another
common model choice for modelling periodic functions are
Fourier basis functions or trigonometric polynomials [20]
which can be seen as a finite real-valued Fourier series (1),
note that the bias term was removed in our notation.

f(x) =

M∑
m=1

amfc(x,m) + bmfs(x,m) (1)

fc(x,m) = cos

(
2πm

T
x

)
(2)

fs(x,m) = sin

(
2πm

T
x

)
(3)

with am, bm, T ∈ R

Here M denotes the amount of frequency components
and T the period of the first harmonic. For our model



we treat all components of this series as single features
and hence provide them as seperate components in (2) and
(3). Additionally to the LOS angles, the measured distance
r(t) and a bias term are used in the feature matrix Xf

in (5). To allow for higher order terms and interaction
features, Xf is then mapped by p : Xf → Xp into the
polynomial feature matrix Xp, consisting of all polynomial
combinations of the features with degree less than or equal
to P , e.g. mapping [a, b] into degree-2 polynomial features
would give

[
a, b, a2, ab, b2

]
. This function formulation leads

to the following linear regression problem (4):

y =Xpβ+ e, β̂ = arg min
β

‖y −Xpβ‖ (4)

Xf =
[
1, rT ,

fc(ϕt, 1; T = 2π)T , . . . ,fc(ϕt,M ; T = 2π)T ,

fs(ϕt, 1; T = 2π)T , . . . ,fs(ϕt,M ; T = 2π)T ,

fc(θt, 1; T = π)T , . . . ,fc(θt,M ; T = π)T ,

fs(θt, 1; T = π)T , . . . ,fs(θt,M ; T = π)T
]

(5)

Here y are the error values predicted by the sensor error
model, Xp is the polynomial feature matrix and β the model
parameters. After cross-validating models with different M
and P values, the model with M = 2 and P = 2 gave
the best bias-variance trade-off. This model parameterization
produces 55 feature columns in matrix Xp. The fitted sensor
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Fig. 5. Ranging errors and fitted sensor error model for 4 anchors in respect
to only ϕ after removing outliers by comparing ranging measurments with
estimated distances between tag and anchors by SLAM, according to (7).

error model for anchor 1 in Fig. 6 was evaluated between
0 and 360 ◦ for ϕ and between 0 and 150 ◦ for θ. The
left side shows only the function response, the right side
has the ground-truth training data overlayed for comparison,
it’s obvious that the covered training input range is narrow
compared to possible values. However, values outside this
range often are not applicable for most scenarios, where the
θ range is small due to motion constraints in the roll and
pitch axes which have the strongest influence on θ.
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Fig. 6. Fitted sensor error model for anchor 1. Left: Visualized by
evaluating it for 0 ≤ ϕ < 360 ◦ and 0 ≤ θ ≤ 150 ◦. Right: Additionally
overlayed with training samples. It is clearly visible that the training data
only covers a small part of the model input range.

D. Calibration routine

During the calibration run only the visual navigation
component is being used for localization, UWB ranging
measurements are just logged away. Only after calibrating
the sensor error model and estimating the anchor poses in
the first step, ranging measurements are used in the naviga-
tion pipeline(Section III-C). The following steps outline our
calibration routine:

1) Collect ranging measurements r(t) from tag module
and pose estimates P (t) =

[
ptxyz

, qtwxyz

]T
while

moving around in the area around the anchors making
sure to cover many different tag poses for a well
balanced dataset and map the anchor poses Pa =[
paxyz

, qawxyz

]T
via AprilTag detections within the

SLAM graph.
2) Compute pseudo-ranges r̃(t) by calculating the Eu-

clidean norm between estimated tag and anchor posi-
tion estimate: r̃(t) = ‖ptxyz − paxyz‖.

3) Compute ranging error (6) and then select samples
from r(t) into r′(t) by thresholding it by ∆r(t) < 1m
to filter out obvious outlier, see (7).

4) Calculate tag antenna LOS angles ϕ and θ and assem-
ble feature matrix Xp.

5) Normalize feature matrixXp and r′ to have zero mean
and unit variance to improve numerical stability and
convergence of least-square solver in next step.

6) Fit model using a well regularized iterative linear least-
square solver to prevent overfitting and RANSAC to
drastically reduce the remaining outliers which passed
the test in (7). We use ridge regression with an iterative
conjugate gradient solver and a RANSAC scheme
selecting at least 5 % samples for hypothesis testing
to solve the linear regression problem in (4), where y
equals r′(t).

In Fig. 5 we show the final fitted error model with respect to
ϕ, while θ and r were kept constant. RANSAC recognized
most of the remaining outliers very well, reducing the
influence of outlier substantially.

∆r(t) = |r(t)− r̃(t)| (6)
r′(t) = {r(ti) | ∆r(ti) < 1m} ,∀ti (7)



III. NAVIGATION PIPELINE

For local and global estimation, we use a loosely coupled
SLAM system [21]. It is split into two parts: The first part
is a local reference filter to fuse high-frequency data for fast
robot state estimation. It is running at a frequency of 200 Hz
to allow for attitude and position control under real-time
constraints as required by highly dynamic systems such as
MAVs. The second part is a global graph-based optimization
that runs online but at a lower frequency, integrating filter
estimates and landmark observations. This decoupled system
allows to separate real-time critical estimation required for
control and stabilization of an aerial system from slower
but online global optimization needed to compensate drift of
locally unobservable states. Our navigation pipeline receives
• gyrometer and accelerometer measurements at 500 Hz,
• delta 6D poses from a keyframe based visual odometry

[22], [23], using 3D features at approx. 8 Hz,
• UWB ranging measurements from all anchors at approx.

30 Hz.

A. Local navigation filter

For high-frequency and jump-free state estimation suitable
for control, we fuse IMU readings and visual odometry
estimates in a local reference filter that is implemented as
an error-state Extended Kalman Filter, described in detail
in [24], [25]. It provides time-delay compensation for the
stereo-based visual odometry, which provides relative trans-
formations between keyframes [22]. The filter itself consists
of two main parts: First a strapdown algorithm, which
integrates angular rates and accelerations from the IMU
and second the filter update step that processes the visual
odometry estimates. Both, IMU measurements and visual
odometry estimates, suffer from translational and rotational
drift. The rotational drift can be partially compensated by
stabilizing the roll and pitch angles. This is based on the
assumption that, at least in the long term, the measured
acceleration is dominated by gravity. Therefore, in a visual-
inertial odometry system, the translation and rotation around
the gravitational vector are globally not observable and the
errors become unlimited over time [26]. This disadvantage
can be compensated by adding sensors that perform an
absolute measurement, such as UWB radio modules which
measure distances between each other. Those distances are
used in the non-linear multilateration equations (see Sec-
tion III-C) for drift-free position estimation in x, y and z
direction relative to a UWB coordinate system (u-frame).
The reason this is not directly done in the Extended Kalman
filter is the high recursive linearization error when dealing
with ranging measurements [8]. The filter estimates the pose
of a robot relative to a earth-fixed coordinate system (n-
frame). In order to use the position measurements in the filter,
the 6-dimensional transformation nTu must be determined.
We assume that at the beginning the UWB position values
are accurate and we can directly set the translation of nTu
to the mean of the initially read UWB position values, while
the system was static. Due to the chosen approach, the

roll and tilt angles of the UWB coordinate system and the
filter coordinate system match and can be set to 0 in the
rotational part of nTu. The only undetermined variable of
the transformation nTu remains the rotation φ around the
gravitational vector. It can be continuously estimated in the
filter and extends the direct state x from [27] by the scalar
quantity nφu

x =
[
n
b p,

n
b v,

n
b q,

bba,
bbω,

nφu
]T

(8)

where n
b p ∈ R3 is the position of the body frame (b-

frame) relative to an earth-fixed, inertial frame (n-frame),
n
b v ∈ R3 is the velocity, n

b q the orientation represented as a
quaternion and bba and bbω are the acceleration and angular
rate biases of the IMU. During the filter propagation the value
of nφu is not modified, but refined during the filter update.
To minimize the influence of outliers in the UWB position
readings a test based on the Mahalanobis distance [28] is
performed and only measurements that passed are used in
the filter.

B. Global pose and map estimation

We employ a graph SLAM system for global optimization
of poses and 3D maps, which is based on the architecture
presented in [29], [30], [21]. The online 3D mapping of
the environment is based on the navigation filter estimates
and dense depth data from Ardea’s fisheye camera system
described in [27]. Local maps of limited size and uncertainty,
so-called submaps, are created by aggregating the merged
depth data computed from four virtual pinhole stereo camera
pairs along the trajectory estimated by the local reference
filter. This is based on the assumption that the filter state
estimates are locally stable but unobservable components
such as position and the yaw angle can globally be subject to
drift. The navigation filter being a local reference filter allows
us to always switch its frame of reference into the origin
of the current submap. This helps to maintain numerical
stability and long-term consistency in the filter even in
case of globally unbounded drift. It further allows for a
better integration of the filter’s estimates into the overlying
SLAM graph according to its estimated uncertainties and
probabilistic dependency structure without exposing filter-
internal states to the overlying SLAM graph [29]. Submap
origins are represented as nodes in the SLAM graph and
connect via filter estimates as edges weighted by their
respective Gaussian uncertainty. Artificial landmarks, in our
case AprilTag markers [31] are attached to UWB anchors
(see Fig. 8), constitute additional nodes. The detection and
pose estimation of such landmarks result in 6D loop closure
constraints, represented in the graph by edges between robot
poses and landmarks, as visualized in Fig. 7. We then use
incremental non-linear least-squares methods to compute
global pose estimates for all nodes based on the sparse
optimization problem defined by the SLAM graph.

C. UWB radio based localization

We employ the ToF based symmetric double-sided two-
way-ranging (SDS-TWR) [15] scheme in order to not have
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to synchronize the clocks of all individual radio modules.
Let d1, · · · , dN be the measured distances with associated
errors e1, · · · , eN ∼ N (µ, σ2) estimated within the sensor
error model in Section II. We are estimating the position
of the tag p̂t(t) at time t, given the previously measured
static anchor positions PA = [pa1, · · · ,pa1]

T . Also those
quantities are assumed to be Gaussian random variables. The
multilateration equations are defined in (9) as

d1(t1) = ‖pa1 − p̂t(t1)‖+ e1

d2(t1) = ‖pa2 − p̂t(t1)‖+ e2

...
...

dN (t1) = ‖paN − p̂t(t1)‖+ eN

(9)

Those equations are non-linear in the distance calculation
between the tag pt and the individual anchors pai using the
Euclidean norm ‖ · ‖2. As already mentioned in Section I-
A and for the sake of brevity within the scope of this
paper, using a non-linear least-squares solver is used as
a universal and simple approach for solving such a non-
linear estimation problem. In (10) the non-linear optimization
objective function is given. Because squaring error terms
containing outlier measurements strongly emphasize their
influence on the optimization result, we use a loss function
ρ(z) which acts as a weighting function on the squared
residuals to minimize the influence of outliers. We chose
ρ(z) to be the Cauchy loss function (11) which is considered
to cope well with outliers [32].

p̂t = arg min
pt

N∑
i=1

ρ
(
(di − ‖pAi − pt‖)2

)
(10)

ρ(z) = ln (z + 1) (11)

The estimated tag position pt and its uncertainty σpt (prop-
agated from constant σ = 0.35m) is then used in the update
step of the local reference filter, described in Section III-A.

IV. EXPERIMENTAL SYSTEM SETUP

Our experimental MAV platform Ardea (see Fig. 1) is
a hexacopter based on a triangular hexacopter frame con-
struction propelled by 10 ” coaxial rotor pairs providing a

maximum thrust of 3.6 kg. It is designed to carry two pairs
of fisheye stereo cameras without having any parts of the
MAV in the field-of-view [27], [33]. The individual cameras
have a field-of-view of approximately 80° horizontally and
125° vertically. Together the stereo camera setups have a
240° vertical field-of-view, which covers ground and ceiling
and make it suitable for indoor environments where feature
tracking on those surfaces provide a robust robot pose-
estimate. The widely-used Decawave DWM1000 UWB mod-

TABLE I
DECAWAVE DWM1000 UWB RANGING MODULE SETTINGS.

Channel number 2
Channel bandwidth 500 MHz
Pulse repetition frequency 64 MHz
Preamble length 1024 symbols
Data rate 6.8 Mbit/s
Output power 41.3 dBm/MHz

ules [11] are used for all ranging experiments and configured
as provided in Table I. The tag module is mounted between
the cameras at the front of the MAV as shown in Fig. 1. All
anchor radio modules are equipped with AprilTag markers
as shown in Fig. 8.

Z

X

Y

X
Z

Y

Fig. 8. UWB radio modules used by Bitcraze and coordinate frame
conventions of AprilTags and UWB module antennas. Left: Backside with
AprilTag. Right: Coordinate frame in UWB antenna frame.

V. EXPERIMENTS

In order to validate how well the anchor pose estimation
and the sensor error model performs across different envi-
ronment scenarios, experiments with two deviating anchor
setups are conducted, see Fig. 10. Especially in regard to
validating the sensor error model, those setups with different
anchor positions and orientations were used as a means to
provide different surroundings around the anchor antennas
which alter the incoming and outgoing signals in a different
way. The sensor ranging error, predicted by the sensor error
model, and the anchor poses, estimated within the SLAM
graph, are compared against ground-truth provided by a
Vicon optical tracking system mounted on the ceiling of the
lab. All anchor nodes as well as the multirotor platform are
equipped with markers, see Fig. 8 and Fig. 1 respectively.
Due to the complex experiment setup with the necessity to
get a high variation of robot pose across the environment,
the multirotor platform was carried around instead of putting
effort into the generation of suitable trajectories.



The following three experiments are conducted:
1) Setup A with N = 5 anchors and a random path for

calibration of anchor poses and the error model.
2) Anchor setup A as in 1 but a different path for

evaluation how good the sensor error model performs
at different tag positions. Therefore the error model
parameters remain the same as in experiment 1.

3) Anchor setup B with N = 5 anchors, while only an-
chor poses are calibrated and updated again, the sensor
error model still remains the same as in experiment 1.
This experiment should show how well the error model
generalizes across different anchor setups.

Anchor2
Anchor1

Anchor4 Anchor3

Anchor5

Anchor4

Anchor3

Anchor5
Anchor2

Anchor1

Fig. 9. Left: Anchor setup A. Right: Anchor setup B. Note that not only
the positions, but also orientations changed between both setups.

After processing the logged dataset, the anchor poses esti-
mated by the SLAM system can be extracted instantly. In
Fig. 10 the anchor mapping result for experiment 1 is shown
and Table II lists the associated anchor position errors for all
3 experiments, in which anchor positions were re-calculated
every time. Those errors are mainly caused by the inherent
drift of the VINS, however due to regular occurring SLAM
loop closures upon re-visiting AprilTag landmarks, this drift
is reduced substantially. The AprilTag pose estimation accu-
racy itself as well as the complexity of the randomly chosen
robot trajectories have an impact on this error too. Faster
robot movements might have lead to noticeable motion blur
and therefore degraded accuracy in the feature tracking of
the VINS. The trajectory in experiment 1 resulted in the
highest anchor pose estimation error of 11.4 cm root-mean-
square error (RMSE), which is however still below anchor
localization errors of 59.2 cm and 15.2 cm mentioned in
[34] and [35] respectively, which are solely based on range
measurements.

Table III shows how the sensor error model performed
across the experiments. For brevity only results for 4 anchors
are shown. As result metrics we used the R2 score and
the RMSE. The R2 score, or also known as coefficient of
determination, which ranges from 0 to 1, 0 being the worst
and 1 indicating that the regression predictions perfectly fit
the data. It is a suitable indicator of how well variance
is explained by the model and well it generalizes to new
inputs. The RMSE is provided for the experiments without
applying the error model calibration and with the calibration
applied by subtracting the predicted error by the real error
measured by the optical tracking system ground-truth. It is
not surprising that the first experiment, which was used for
fitting the error model, showed the best results. Interestingly
the R2 score of anchor 1 in experiment 1 is slightly lower

Anchor 4

Anchor 3

Anchor 1

Anchor 2

Anchor 5

Fig. 10. Estimated anchor poses of setup A in SLAM graph visualization.
Coordinate frames represent ground-truth measurements by the optical
tracking system, the error are listed in Table II. The short green lines
visualize the 6D pose constraint edges between tag and landmark positions
at tag positions where AprilTag detections were made. The remaining purple
lines are SLAM graph edges connecting those tag positions with the current
submap origin and also between submaps, all the way to the map world
frame.

TABLE II
RESULTING ERRORS OF ESTIMATED ANCHOR POSITIONS BY THE SLAM

SYSTEM FOR 4 ANCHORS AND ALL 3 EXPERIMENTS.

1 2 3
Anchor 1 x [mm] 24 54 -58

y [mm] -68 15 -140
z [mm] -33 -47 -66

Anchor 2 x [mm] -116 -4 -17
y [mm] -106 146 -21
z [mm] -50 -9 -14

Anchor 3 x [mm] 206 65 32
y [mm] 133 91 -132
z [mm] 3 -32 -68

Anchor 4 x [mm] 120 56 92
y [mm] 210 77 -125
z [mm] 62 -39 2

Total RMSE [mm] 114 70 79

than in the other experiments, which might be an indicator
of robot and anchor poses which are not well captured by
the sensor error model. The sensor error model also shows
good performance in experiment 2. In experiment 3, where
the anchors have been placed in different locations the error
model still makes reasonable predictions which proves that
the main influence on the total error seems to originate from
the immediate environment of the tag antenna and less from
the anchor antennas.

VI. CONCLUSION AND FUTURE WORK

In our experiments we have shown an elegant workflow
how to jointly calibrate anchor poses as well as an efficient
linear sensor error model in one calibration data collection
run. The SLAM system estimates the anchor poses already
during the data collection online, in a second offline step
the sensor error model parameters are estimated. Because
visual navigation is very accurate over short distances it
proved to be suitable for anchor position and sensor error
model calibration of UWB ranging modules which improved
the ranging error substantially. Moreover, using AprilTags as
artificial landmarks on the UWB anchors helps getting many
loop-closures, which reduces the drift in the VINS. In future
work we want to investigate and compare more elaborate



TABLE III
SENSOR ERROR MODEL RESIDUAL ERRORS FROM 4 ANCHORS AND 3

EXPERIMENTS. THE RMSE VALUES ARE GIVEN WITHOUT SENSOR

ERROR MODEL CALIBRATION AND WITH CORRECTIONS APPLIED.

1* 2 3
Anchor 1 R2 score 0.74 0.81 0.81

RMSE w/o [mm] 132 109 151
RMSE with [mm] 11 14 16

Anchor 2 R2 score 0.63 0.34 0.23
RMSE w/o [mm] 307 315 332
RMSE with [mm] 33 54 55

Anchor 3 R2 score 0.79 0.67 0.74
RMSE w/o [mm] 143 240 139
RMSE with [mm] 14 24 17

Anchor 4 R2 score 0.79 0.73 0.42
RMSE w/o [mm] 143 127 204
RMSE with [mm] 14 17 40

* dataset used for fitting the sensor error model

sensor error models which benefit from the estimated anchor
orientations and also predict a meaningful error variance
for a complete uncertainty propagation into the navigation
framework. It would also be beneficial to omit this additional
calibration step and instead have an online joint estimation
scheme for both, sensor error model as well as anchor poses,
which then only activates ranging based localization once
anchor poses as well as sensor error models are considered
sufficiently accurate by a calibration quality metric.
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