
Learning-Based Matching of 3D Submaps from Dense Stereo for
Planetary-Like Environments

Hsuan-Cheng Liao1∗, Riccardo Giubilato1+, Wolfgang Stürzl1+, Rudolph Triebel1+

Abstract— An autonomous robot typically requires a mini-
mum capability of perceiving the surroundings and locating
itself when it is deployed to an unknown environment. Such
a task is generally known as Simultaneous Localization and
Mapping (SLAM), for which pairwise submap matching is
a common foundation for subsequent processes to construct
a global map around the robot. While the task has been
extensively studied and successfully accomplished with dif-
ferent advanced solutions, their applied domains are rather
constrained within indoor or structured regions. In this paper,
we enhance a seminal learning-based approach, 3DFeat-Net,
with more sophisticated architectures, and evaluate them in
extremely unorganized planetary-like environments. Our work
demonstrates that the proposed enhancement performs better
than classical feature-based algorithms, and therefore outlines
a promising direction for future work.

I. INTRODUCTION
To safely navigate and operate in an unknown and un-

structured environment, an autonomous robot has to pos-
sess the capability to perform Simultaneous Localization
and Mapping (SLAM). To solve the problem, one usually
decouples it and starts from submap matching, which essen-
tially refers to the task to compare pairs of local submaps
and predict the relative transformations between them [1].
The submap matching task is substantially related to the
ordinary problem of point cloud registration, which has been
researched extensively in recent years using neural networks
[2], [3], [4]. Yet, the field of point cloud registration tends
to have a focus on organized data. This type of data usually
exhibits stronger details such as corners or edges [5], [6], [7],
and sometimes even only consists of object models without
cluttered backgrounds [8]. On the contrary, we particularly
aim at planetary-like environments. To our understanding, we
are among the very few to apply learning-based approaches
to such challenging domains.

This work is based upon our previous research [9],
[10], [11], [12], in which a 6D SLAM framework with
various loop-closure and relocalization algorithms has been
proposed for perception and navigation tasks in planetary-
like environments. An example of our submap matching
scenarios is presented in Fig. 1. We use stereo cameras on our
autonomous robot, Lightweight Rover Unit (LRU), thanks
to their mechanical simplicity. Nonetheless, they introduce
other challenges such as triangulation noises and arbitrary
point cloud boundaries while producing submaps. Further-
more, from Fig. 1, it can be observed that not only individual
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(a) Our autonomous robot, Lightweight Rover Unit (LRU), and a
rectified view from its stereo cameras at Mount Etna [9].

(b) A submap pair collected at Mount Etna, colored from yellow
(low regions) to blue (high regions).

(c) Point correspondences based on our predicted descriptors.

(d) The submap pair registered by RANSAC.

Fig. 1: An example of our submap matching pipeline.

submaps bear weak visual cues, but the overlapping regions
of two submaps might exhibit even fewer features.

Our previous research, being the state-of-the-art ap-
proaches in these challenging scenarios, has mostly engaged
classical keypoint detectors and feature descriptors, whereas
this work tackles the submap matching task with neural
networks similar to 3DFeat-Net [13]. Specifically, Yew et.
al. [13] innovates a weakly-supervised framework to train
a feature detector and descriptor. Leveraging PointNet [14]
and PointNet++ [15] convolutional operations, 3DFeat-Net
[13] takes raw point clouds as inputs, minimizes a triplet



loss, and outputs a set of salient descriptors for each input
point cloud. Subsequently, given a pair of submaps and
their predicted descriptors, they employ RANdom SAmple
Consensus (RANSAC) [16] to generate the final relative
pose and align the submaps. Although there are more recent
work showcasing end-to-end neural networks for point cloud
registration such as PointNetLK [2], Deep Closest Point
(DCP) [3] and RPM-Net [4], 3DFeat-Net [13] and our work
differ in two ways. First, most of the end-to-end methods
assume explicit ground truths and employ supervised learn-
ing schemes. This is not possible in our case as there is
no annotated data available. Second, there has not been
clear evidence showing their capability to align partially
observed and extremely featureless point clouds. Therefore,
sharing similar assumptions and seeing promising results
from 3DFeat-Net [13], we enhance the framework by first
adapting its original descriptor module and then increasing
the number of the adapted modules across the architecture.
With three different forms of enhancement, we propose
3DFeat-Net-mod, 3DFeat-Net-seq and 3DFeatNet-par. We
show in both qualitative and quantitative experiments that our
adaptations strengthen the original architecture and the im-
proved networks perform better than the classical approaches
in extremely challenging terrains.

To summarize, our contributions include:
• A framework to apply learning-based approaches to the

submap matching task in planetary-like environments.
• An extension from an existing powerful framework,

3DFeat-Net [13].
• Thorough experiments to demonstrate the capacity of

the improved architectures against the original model
and selected classical approaches.

The remainder of the paper is organized as follows: in
Section II, an overview of existing work on submap matching
is provided. Our adaptations to the original 3DFeat-Net [13]
are illustrated in Section III, and evaluation results in Section
IV. Finally, several concluding remarks and prospective
research directions are suggested in V.

II. RELATED WORK

Feature-based keypoint detection and description ap-
proaches have been reported to be accurate and robust,
serving as the fundamental blocks in many computer vi-
sion applications such as object recognition [17], tracking
[18] and segmentation [19]. We review in the following
first the handcrafted algorithms and then the learning-based
approaches.

A. Handcrafted Keypoint Detectors

A comprehensive list of classical approaches to detect
keypoints can be found in [20], [21]. To give an example, the
Harris 3D detector [22] is a gradient-based method that finds
keypoints with eigenvalue decomposition and Harris value
filtering. On the other hand, Scale-Invariant Feature Trans-
form (SIFT) [23] establishes a scale-space of the curvature
using the Difference-of-Gaussian (DoG) operator. Although

being strong in recognizing objects in different scales, scale-
invariant methods are often computationally heavier than
others. Moreover, in spite of the reported success in the
above papers, most of them are limited to organized domains
or clear object models. For particularly rough terrains, our
research group at DLR has innovated a curvature-based
approach to locate keypoints [9], [10], [11].

B. Handcrafted Feature Descriptors

Before downstream tasks, a feature descriptor is nor-
mally employed to derive meaningful embeddings from
local regions of detected keypoints. For example, the spatial
distribution-based Spin Image (SI) descriptor [24] constructs
a local reference axis at the keypoints and bins the axis-
perpendicular and axis-parallel distances from the keypoints
to their neighbors into histograms. Apart from the spatial
distribution-based approaches, several papers consolidate ge-
ometric attributes such as normals or curvatures into feature
vectors as well. These include Point Feature Histogram
(PFH) [25], its extension Fast Point Feature Histogram
(FPFH) [26] and Signature of Histograms of Orientations
(SHOT) [27]. More examples can be found in [28].

C. Learned Keypoint Detectors

Despite the prosperity of the learning-based research com-
munity, we find yet not many algorithms dedicated to 3D
keypoint detection. Most of the methods for 3D perception
tasks make use of specific mechanisms to represent input
point clouds instead. For example, VoxelNet [29] partitions
point clouds into voxels before further grouping, random
sampling and feature encoding to achieve object detection.
3DMatch [30] also voxelizes raw point clouds into sub-
regions around keypoints and trains a 3D CNN with a
contrastive loss for matching correspondences between par-
tial object inputs. A common shortcoming of this type of
approaches is that voxelization usually results in a large
destruction of data quality and characteristics.

To the best of our knowledge, 3DFeat-Net [13] and
Unsupervised Stable Interest Point (USIP) [31] are among
the few directly related work. In particular, 3DFeat-Net [13]
contains a detector module that predicts attention weights
for all points, thereby having the ability to highlight interest
points. On the other hand, USIP [31] is trained directly for
locating repeatable and accurate keypoints using a Feature
Proposal Network (FPN). Although the results are shown
promising, their target domains are limited to the rather
organized Oxford RobotCar [5], KITTI [6], ETH [7] and
ModelNet [8] suites.

D. Learned Feature Descriptors

Other than the aforementioned voxelized [29] and point-
direct methods [13], [14], [15], there are also graph-based
[19], multi-view [32] and kd-tree representations [33]. Var-
ious extents of success have been reported, yet usually
at the expense of higher computational effort due to the
more sophisticated feature representation schemes. For more
details, we defer readers to the original papers, in which



multiple downstream tasks such as object classification and
segmentation are performed.

III. METHODOLOGY

Prompted by the advances in deep learning frameworks for
computer vision tasks, we adopt neural networks to address
the complicated submap matching problem. However, we do
identify several difficulties in our specific case. First, there
are neither sufficient amount of data nor explicit ground-
truth alignments for an end-to-end learning scheme. , as
Tthe approximate ground truths in our datasets are only
calibrated estimates from the LRU SLAM sessions. Second,
such approximate ground truths provide merely model-level
annotations but not point-to-point correspondences. Taking
the difficulties into consideration, we extend our neural
network architectures from 3DFeat-Net [13], which shares
the premises similarly. In this section, we first brief the
original framework, and then detail our adaptations.

A. The 3DFeat-Net Framework

3DFeat-Net [13] adopts a weakly-supervised learning
scheme highlighting a three-branch Siamese architecture.
The Siamese network takes as an input a tuple of one
anchor point cloud, one positive-sample point cloud, and
one negative-sample point cloud. The determination of the
positivity/negativity of a sample is based on the overlapping
ratio between the sample and the anchor. Details can be
found in Section IV-A.

The point clouds in the tuple are processed respectively
by the three branches of the Siamese network sharing the
same weights. Each point cloud goes through a clustering
process, a detector module and a descriptor module. At first,
K clusters are generated from an input point cloud P . For
each of the clusters in {C1, C2, ..., CK}, the detector module
predicts an attention weight wk and an orientation value
θk. Then, the descriptor module rotates the cluster Ck to a
canonical configuration with the calculated orientation value
θk and further extracts a descriptor fk ∈ Rd for the cluster
Ck. In particular, the detector and descriptor make use of the
approximating function from PointNet [14], which is defined
as:

f({x1, x2, ..., xN}) ≈ g(h(x1), h(x2), ..., h(xN )), (1)

where h(.) : Rd → Rd′
is a shared transforming function

operating on each input point xi and g(.) : Rd′×· · ·×Rd′ →
R is a symmetric function taking all transformed elements
as inputs. In practice, h(.) is implemented by multi-layer
perceptrons with 1 × 1 kernels and g(.) by a max-pooling
layer.

Having obtained three sets of K descriptors from the input
tuple, Panc, Ppos and Pneg , the neural network is trained to
optimize the triplet loss, defined as:

Ltriplet = max(0, Danc,pos −Danc,neg + γ), (2)

where γ is the margin to be enforced between the positive
and negative samples, and the difference between two point

(a) The modified descriptor in 3DFeat-Net-mod

(b) An overview of 3DFeat-Net-seq

(c) An overview of 3DFeat-Net-par

Fig. 2: Our adaptations to the original 3DFeat-Net.

clouds P (s) and P (r) is defined as:
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i∑K

l=1 w
(s)
l

. (4)

Essentially, optimizing the triplet loss minimizes the differ-
ence between the anchor and the positive sample, and max-
imizes the difference between the anchor and the negative
sample. Noticeably, the feature alignment step done by min
in (3) naturally mines the hard negatives for Danc,neg .

At inference time, only one branch of the Siamese network
is activated. Additionally, keypoint detection and feature
extraction are done separately in two stages. In the first stage,
for an input point cloud P with N points, all points are
passed to the grouping process as cluster centroids. Instead
of K ×M × d, this results in a tensor of size N ×M × d,
where M is the number of points in each cluster and d the
depth. The tensor is given to the detector module to predict
an attention weight and orientation value for each of the N



Fig. 3: A qualitative comparison of attention allocation and
keypoint detection from 3DFeat-Net (left) and 3DFeat-Net-
mod (right) on a featureless submap. It can be observed
that the modified version has a better capability of locating
salient regions, rendered in yellow, and nominating key-
points, marked as red dots.

points. Then, a non-maximal suppression algorithm with a
fixed radius rnms around each point is performed to retain a
predefined number of points that have gained the strongest
attention. Subsequently, a filtering step is used to reject points
with an attention weight wi < β ∗ max(w1, w2, ..., wN ).
Now, the remaining are the detected keypoints, whose total
number, say Z, depends on β. In the second stage, the de-
scriptor module extracts a feature vector from every detected
keypoint and its local supporting region. Hence, the resulting
tensor of the inference pipeline has the size Z×1×d, where
d is the dimension of the feature vector set at the training
phase.

It is noteworthy that such framework outputting a set of
salient points and descriptors for each raw point cloud bears
a good resemblance to the classical pipelines [21] and differs
from end-to-end learning schemes [2], [3], [4], which usually
require a larger amount of labelled data. Interested readers
are deferred to the original 3DFeat-Net paper for details [13].

B. Our Adaptations

We depict in the following the main enhancement in our
work. As the first step, we modify the structure of the original
descriptor module as shown in Fig. 2a. Precisely, we add one
more shared layer after the concatenation of the contextual
feature and individual point descriptors. This is inspired by
the Universal Approximation Theorem [34], which states that
a neural network with two layers can approximate any well-
behaved function for some bounded inputs. Additionally,
with even more layers, the neural network can still approx-
imate the well-behaved function by using the same weights
in the first layers and converging to the identity function
in the later layers. Nevertheless, to prevent overfitting and
considering the sizes of our datasets, we increment simply
one layer and call the modified network 3DFeat-Net-mod.
Due to space limit, we do not show performance of the
original architecture later in Section IV, but only highlight
the effect of this amendment with Fig. 3.

A further adaptation is inspired by PointNet++ [15], which
suggests that the size of receptive fields plays a critical role
in general perception tasks. The original 3DFeat-Net [13]
allows for only one level of predefined clustering radius, and

by experiments we find it incapable of grasping contextual
information for the planetary-like submaps. Hence, we pro-
pose two forms of further enhancement. For the first form,
we place two enhanced descriptor modules in sequence and
a re-grouping process in between. Such operation resembles
the multi-resolution grouping scheme in [15]. More exactly,
having obtained a set of feature vectors {f1, f2, ...fK} from
the first descriptor module with a smaller base scale, we
pass them to the second descriptor, which re-groups these
K × 1× d feature vectors into K ×M × d clusters using a
larger base scale. Finally, the resulting output for each point
cloud has size K×1×d′. It is noteworthy that we remove the
rotation operation at the second descriptor. This is different
from PointNet [14] and PointNet++ [15], which continuously
predict orientation values and transforms vectors in feature
spaces. We find such transformation unnecessary as these
values are difficult to train and can be approximated by
the kernel operations between the layers. Our sequential
network, called 3DFeat-Net-seq is shown in Fig. 2b.

The second form of enhancement is to perform grouping
of clusters with three different radii in parallel, similar to the
multi-scale grouping scheme in [15]. The parallel network,
3DFeat-Net-par, is depicted in Fig. 2c. Such architecture
returns three attention weights and three feature vectors of
size d, d′ and d′′ for one input point cloud. To compute the
triplet loss at last, we sum the attention weights together
and concatenate the vectors into one final descriptor of size
d+d′+d′′. Similarly, at inference time, the attention weights
are summed and the encoded descriptors are concatenated
to compose the final outputs. With the described techniques,
we achieve at more complete model designs, preserving finer
details and observing larger fields of submaps at the same
time.

IV. EVALUATION RESULTS AND DISCUSSIONS

A. Experiment Datasets and Settings

We evaluate our architectures in ten planetary-like
datasets, including five indoor sets from our laboratory
(Lab1, Lab2, Lab3, Lab4 and Lab5), four outdoor sets
from Mount Etna (Etna1, Etna2, Etna3 and Etna4), and
one outdoor set from Morocco (Morocco1). As introduced,
these datasets are collected throughout our previous work
and detailed in [9], [10], [11], [12]. Fig. 4 exhibits three
sample pairs with their approximate ground-truth alignments.
It gives an impression on the difficulty of our target scenarios
compared to orginary point cloud datasets [5], [6], [7], [8].

To foster learning, we split each of our datasets with
a 7:3 ratio for training and inference. To form a tuple of
point clouds for training the Siamese network, we determine
positive and negative samples for each anchor submap in two
steps. First, we exploit the approximate ground-truth relative
poses from the SLAM sessions to transform all submaps
onto a common coordinate system. Second, we make each
submap the anchor and traverse through other submaps to do
the following classification: a submap is a positive sample if
it has an overlapping ratio above 0.3 with the anchor, and a
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Fig. 4: Sample submap pairs and their ground-truth align-
ments from different environments. Individual submaps are
colored from yellow (low regions) to blue (high regions).

submap is a negative sample if the overlapping ratio is below
0.05. We adopt the overlapping ratio defined as:

IoU(P (s), P (r)) =
Area(P (s)) ∩Area(P (r))

Area(P (s)) ∪Area(P (r))
, (5)

where P (s) and P (r) are the two submaps under invesitga-
tion. Although they are essentially 3D point clouds, using
2D area measurements on the x−y plane is still valid given
our assumption that all submaps are oriented upright along
the gravitational direction.

The training of the neural network is conducted with
a batch size of 4 triplets. All input submaps are first
downsampled to N = 4096. Such random input dropout is
shown beneficial for a better generalizability [13]. Then, we
sample K = 512 centroids and group M = 64 neighboring
points around every centroid using various base scales. The
parameters for each neural network architecture is set as
follows:
• 3DFeat-Net-mod (inference time ≈ 0.8 second)

– Base scale: 0.5 m
– Descriptor MLP sizes: [32, 64] | [256, 128] | [32]

• 3DFeat-Net-seq (inference time ≈ 1.2 seconds)
– First base scale: 0.3 m
– First descriptor MLP sizes: [32, 64] | [64, 128] |

None
– Second base scale: 1.0 m
– Second descriptor MLP sizes: [128, 256] | [128,

64] | [32]
• 3DFeat-Net-par (inference time ≈ 1.5 seconds)

– First base scale: 0.3 m
– Second base scale: 1.0 m
– Third base scale: 2.0 m
– All descriptor MLP sizes: [32, 64] | [128, 64] | [32]

The depths of each multi-layer perceptron (MLP) are ex-
pressed within one pair of square brackets. For example, the
descriptor module in 3DFeat-Net-mod has three MLPs, see
2a. The first one has two layers of depth 32 and 64. The
second one has another two layers of depth 256 and 128.
Finally, the third layer serving as a final operator has the
depth 32, which will be the length of the feature vector. For
the first-level descriptor in 3DFeat-Net-seq, we do not need
a third MLP to refine the vectors as the outputs are passed
sequentially to the second-level descriptor. On the contrary,
in 3DFeat-Net-par, all three levels of descriptors require a
refining third MLP because they work in parallel. The three
feature vectors of length 32 will be concatenated to form a
final product of length 96 before being matched and weighed
at the triplet loss.

We fix the discriminating margin γ in the triplet loss to 1.
As [13] suggests, we employ the ADAM optimizer with a
learning rate of 1e-5 and apply further data augmentation
at the training phase, including individual point jittering,
submap shifting and submap 1D rotation. The rotation is
only applied on the z-axis based on our assumption that all
submaps are obtained in an upright orientation using the LRU
on-board sensors. The training took around 16 hours on a
Nvidia GeForce GTX Titan X with the Maxwell architecture.

For inference, we set the non-maximum suppression radius
rnms to 0.5 meter and minimum response ratio β to 1e-6.
Apart form the non-maximum suppression step, we include
512 additional points that have the highest attention weights
to rely more on regions with focused attention. This is found
helpful in the submap matching task as more keypoints are
located at important areas.

B. Keypoint Detection

In Fig. 5, we compare the three networks against three
handcrafted approaches, namely Harris 3D [22], SIFT 3D
[23], and curvature-based detectors [9], [10], [11]. It is
discovered that the keypoints predicted by the Harris 3D and
SIFT 3D detectors are rather unconcentrated. On the other
hand, the curvature-based detector clearly marks down rocks,
craters and regions with high curvatures. However, there
are two drawbacks. First, the keypoints are too focused in
local regions. This might cause an issue later in the submap
matching task because global contexts are greatly neglected.
Second, with an inflexible curvature threshold, the number
of filtered keypoints varies largely in different submaps. This
might also hinder its stability.

The outputs from 3DFeat-Net-mod show a certain degree
of success, exhibiting groups of keypoints around the holes in
the point clouds and distributing a small portion of focus over
the submaps. However, their are also clusters of keypoints
on the submap boundaries, which might be misleading for
the subsequent feature descriptor and registration estimator.
Above all, 3DFeat-Net-seq and 3DFeat-Net-par not only
successfully identify distinctive areas as the curvature-based
method does, but also suggest keypoints across the entire
point clouds. Therefore, we speculate that 3DFeat-Net-seq
and 3DFeatNet-par have a better potential to recognize finer
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Fig. 5: Qualitative results of keypoint detection on a submap pair from Etna1. The learning-based approaches presents better
balances between repeatable points in salient regions and scattered points across entire submaps.
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Fig. 6: Qualitative results of submap matching on three submap pairs from Lab1, Etna1, and Morocco1 respectively. 3DFeat-
Net-seq and 3DFeat-Net-par have the closest solutions to the ground truths.
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Fig. 7: Quantitative results of submap matching validation on various datasets. Despite subtle differences for the level of
difficulty, the Precision− Recall curves of the learning-based approaches generally lie at the top right from those of the
classical approaches.

structures and associate them with larger contexts within a
submap. Based on our analysis on the keypoints detection
task, we bring forth the curvature-based detector and three
learning-based approaches for further investigation.

C. Feature Description and Submap Matching

1) Qualitative Results: In Fig. 6, we show three sets of
submap matching results given by six approaches, alongside
with the approximate ground-truth alignments. In terms of
submap properties, the easiest pair from Lab1 bears the
most noticeable and substantially shared structures. The
intermediate pair from Etna1 also contains a handful of rocks

in common, whereas the hardest pair from Morocco1 exhibits
rather plain surfaces and obscure characteristics.

We find all approaches align the Lab1 pair rather well
except for the CSHOT descriptor. In fact, the descriptor
struggles to align any of the three target pairs accurately.
It is presumed that since most of our original submaps
are not abundant in colors, the lengthy CSHOT descriptor
having an additional operation in the CIELab color space
may negatively affect the expressiveness and conciseness
of the feature output. On the contrary, its simpler variant,
the SHOT descriptor, aligns the easy Lab1 pair nicely. The



performance is similar to that of the FPFH descriptor. Both
SHOT and FPFH succeeds in the first pair, but fails in the
other two. Such results are consistent with [13], in which the
authors find common handcrafted approaches occasionally
work well in easier scenarios yet not in most of the harder
cases.

We find the learning-based methods more capable of
handling tricky submaps. For example, 3DFeat-Net-mod
matches the Etna1 pair much better than the above descrip-
tors. We can see the registered pair has a coinciding hole and
the result orients similarly to the approximate ground truth.
However, for the hardest Morocco1 pair, 3DFeat-Net-mod
still lacks the ability to extract representative features that
enclose both local and contextual information. In contrast,
it is solved by 3DFeat-Net-seq and 3DFeat-Net-par to a
satisfactory extent. Although the submap registration results
are not identical to the approximate ground truth, they
are considered rather successful and can be refined by the
Iterative Closest Point (ICP) algorithm for further optimizing
the registration result [10].

2) Quantitative Comparisons: In this section, we conduct
a quantitative study to provide more scientific evidence
regarding the submap matching task. To such end, we use the
Precision-Recall metric for examining the capability of the
proposed approaches to classify submap pairs into two cate-
gories, validated or not validated groups. Specifically, having
obtained two sets of feature vectors from a submap pair, we
perform correspondence matching and execute RANSAC. To
classify a submap pair as a validated match, we require that
the inlier proportion of the found correspondences calculated
by RANSAC is larger than a certain threshold. We set the
inlier proportion threshold as 0.3 for Etna1, Etna2, Etna3 and
Etna4, 0.2 for Morocco1, and 0.15 for the indoor datasets.

Mathematically, the Precision-Recall metric is defined as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (6)

where TP is the count of validated submap matches being
correct, FP is the count of incorrect validated matches,
and FN is the count of true matches not being validated.
To form the set of correct ground truths, we transform
pairs of submaps onto a common coordinate system and
include the submap pairs with an overlapping ratio above
0.3. In addition, we use distance ratio matching to find
correspondences as suggested by [23]. For each descriptor
kind, we apply distance ratios of 0.85, 0.9 and 0.95. This
is different from [13], which uses a one-directional nearest
neighbor matching scheme. Our matching process has higher
standards so that the subsequent RANSAC results are more
stable and eligible.

Fig. 7 gives the Precision-Recall curves of all descriptors
in several environments. It is observed that the learning-
based approaches deliver generally a better performance than
the handcrafted ones. The Precision-Recall curves of the
learning-based approaches are located either above or on
the right of the others, indicating they are more accurate
in validating true submap matches and more robust against

seemingly false submap matches.
We now inquire further the set of true positives from the

above quantitative experiment and calculate the numerical
errors between the predicted registration and the approximate
ground truths. Clearly, taking our challenging scenarios into
consideration, the errors will be much larger than those in
[13], [26], [30]. However, we aim at making a numerical
comparison among the proposed descriptors in complicated
planetary-like environments. The performances are evaluated
with two metrics, namely the Relative Translational Error
(RTE) [35] and Relative Rotational Error (RRE) [36]. The
RTE is calculated using the Euclidean distance between
the predicted translational vector Test and the ground-truth
translation vector Tgt:

RTE = ||Tgt − Test||2. (7)

The RRE is defined by the sum of the absolute differences
in three rotational Euler angles:

RRE = |α|+ |β|+ |γ|, (8)

α, β, γ = F (R−1gt Rest), (9)

where F (.) denotes the transformation from a rotation matrix
to Euler angles, Rest and Rgt are the estimated and ground-
truth rotation matrices respectively.

We highlight in Table I the numerical errors of two data
sequences, from indoor and outdoor domains respectively.
We report the best, the mean and the standard deviation of
each method. The values are obtained with the distance ratio
matching scheme using a ratio threshold of 0.95. We draw
two observations from the outcome. First, there is a great
performance distinction between the handcrafted approaches
and the learning-based approaches. We find that in the chal-
lenging outdoor environments, the learning-based approaches
achieve much better best and mean scores. Although the
performance superiority is not as distinct in the indoor
domain, we spot the second observation that either 3DFeat-
Net-seq or 3DFeat-Net-par has the best scores in general.
The above observations raise our confidence in the learning-
based approaches.

V. CONCLUSION
In this work, we have extended 3DFeat-Net, an

weakly-supervised learning framework, into 3DFeat-Net-
mod, 3DFeat-Net-seq and 3DFeat-Net-par, and conducted
experiments in planetary-like environments. Similar to
3DFeat-Net, our networks do not explicitly regress trans-
formation matrices, but predict salient keypoints and extract
expressive features from raw point clouds. Evaluation results
have shown positive effects of our adaptations. Given the
promising outcome, we name two directions for future work.
First, tuning the clustering radius as a trainable parameter
presumably make the receptive fields more flexible and
robust against noisy and uneven point clouds. Second, with
more data collected in the future, we aspire to design an
end-to-end submap matching framework that has an even
greater power to perceive challenging submaps and perform
the matching task more effectively and efficiently.



TABLE I: Numerical errors of submap matching on Lab1 and Etna2.

Method Lab1 Etna2
RTE (m) RRE (◦) RTE (m) RRE (◦)

Curv. + FPFH 0.128, 2.877 ± 2.491 1.038, 125.275 ± 138.205 0.482, 4.985 ± 2.565 53.938, 212.261 ± 92.142
Curv. + SHOT 0.996, 5.467 ± 3.269 3.769, 149.769 ± 158.523 2.890, 5.404 ± 1.308 48.164, 157.297 ± 84.687
Curv. + CSHOT 0.063, 2.491 ± 2.381 1.310, 60.394 ± 89.755 2.928, 5.821 ± 2.364 102.963, 226.862 ± 64.616
3DFeat-Net-mod 0.241, 2.496 ± 2.401 2.263, 107.951 ± 138.469 0.495, 1.768 ± 0.948 5.422, 53.221 ± 88.728
3DFeat-Net-seq 0.104, 3.847 ± 2.701 4.349, 109.648 ± 93.178 0.428, 1.723 ± 0.981 2.755, 43.477 ± 32.109
3DFeat-Net-par 0.173, 2.401 ± 2.372 1.091, 52.634 ± 79.636 0.471, 1.991 ± 1.084 0.679, 10.171 ± 9.300
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