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Abstract— This paper proposes a novel approach to automat-
ically generate labeled training data for predicting parallel-jaw
grasps from stereo-matched depth images. We generate realistic
depth images using Semi-Global Matching to compute disparity
maps from synthetic data, which allows producing images that
mimic the typical artifacts from real stereo matching in our
data, thus reducing the gap from simulation to real execu-
tion. Our pipeline automatically generates grasp annotations
for single or multiple objects on the synthetically rendered
scenes, avoiding any manual image pre-processing steps such as
inpainting or denoising. The labeled data is then used to train a
CNN-model that predicts parallel-jaw grasps, even in scenarios
with large amount of unknown depth values. We further show
that scene properties such as the presence of obstacles (a bin,
for instance) can be added to our pipeline, and the training
process results in grasp prediction success rates of up to 90%.

I. INTRODUCTION

A critical goal for current robotic systems is to achieve
the highest possible flexibility for grasping any object, no
matter its shape, size or material. Traditional approaches to
define grasping points rely on significant amounts of a-priori
knowledge (CAD model, center of mass) to analytically
compute the location of fingers on the object surface. Recent
research has focused on using learning algorithms to achieve
the required flexibility for grasping applications. Learning-
based grasp planning is classified according to [1] in three
different categories: learning by human demonstration [2],
learning by trial and error [3], [4] and learning with labeled
training data [5], [6], [7]. Although results of these methods
are just recently being ported to industrial processes, com-
mon success rates of above 80% indicate promising potential
for real use of learning-based grasp planning approaches.

Supervised learning using labeled training data has be-
come popular due to its high grasp success rates. In gen-
eral, a Convolutional Neural Network (CNN) is trained
with suitable data, and its performance is evaluated using
evaluation datasets or images from real scenarios [5]. The
most challenging part is often the acquisition of suitable
training data [7]. Public datasets are available, consisting
mostly of depth images with appropriate annotations for
parallel-jaw grasps. To avoid expensive hand-labeling of
images, utilization of synthetic data has gained traction, and
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(a)

(b)
Fig. 1: Exemplary images annotated with our pipeline: (a) SGM-
based depth image of a spatula (left), and corresponding annotated
image with multiple grasp options (right); (b) annotations for
different objects: Screwdrivers, pliers, hammer, meat cans. The
background is intentionally changed from image to image.

the generalization from synthetic training data to real world
grasping has been demonstrated with certain success [8], [9].
However, common datasets (e.g. [10]) provide in general
lab-like, synthetic or ideal images that would not be found
in real industrial applications where disturbances such as
pose uncertainties of the camera or illumination variance
are present and can greatly affect the quality of visual data
acquired by the sensors. Also, perceptual artifacts that would
normally appear in depth images (uncertainties, regions of
invalid or missing depth values) are not considered in the
training data, but they are effectively eliminated with image
processing techniques (e.g. inpainting). Furthermore, training
images usually contain a single object at a fixed distance
from the camera, without variation of the camera pose.
Dataset augmentation based on image processing (random
zooms, crops) is commonly used to increase data variation
[11], but does not include variations such as different camera
tilts. Training a CNN with images that contain more than one
object is not common, and if so, performance comparisons



to single object training are usually not carried out [9], [12].
Additional obstacles in the image, such as a bin in a typical
bin-picking process, have not been considered so far.

In this paper, we propose a novel software pipeline for au-
tomatic generation of training data for learning parallel-jaw
grasping. The produced training images are automatically
labeled with multiple parallel-jaw grasps using analytical
metrics and without any dependency on a specific gripper
model. Our pipeline provides a higher degree of realism
compared to most traditional synthetic images, both through
the use of the Semi-Global Matching (SGM) algorithm [13]
to obtain depth images, and also because image features
(e.g. unknown depth spots, realistic shadows) and camera
characteristics (e.g. field of view, different camera poses) are
effectively simulated. Simultaneously, our pipeline provides
flexibility for creating multiple training datasets, for instance
images containing multiple objects, bins, or other specific
scene properties, while allowing simultaneous variation of
camera poses. Exemplary images are shown in fig. 1.

The main contribution of this paper is the creation of a
pipeline for automatic generation of labeled images that 1)
allows generation of data that mimics quite well the visual
perception in real scenarios (including projected textures,
artifacts such as regions with unknown depth values, or
foreign objects such as a bin), thus closing the gap from
simulation to real execution, 2) avoids any manual image
pre-processing steps, 3) allows multiple grasp annotations
per object, with single or multiple objects per scene without
any significant quality loss of the generated grasp labels, and
4) can train a network that generalizes the grasp prediction
to any stereo-based sensor. We evaluate our SGM-based
datasets using the CNN proposed in [11]. Our focus is the
evaluation of the network performance if trained with non-
optimized depth images, i.e. we make the network directly
learn depth invariances and discontinuities. The evaluation
is performed using reference datasets as well as real sensor
data captured with an rc visard1.

II. RELATED WORK

Grasp planning for two-finger, parallel-jaw grippers has
been traditionally based on analytical algorithms. These
algorithms rely mostly on the object shape to define suitable
grasping configurations, and they form the base for today’s
popular learning methods. Comprehensive overviews for
such analytical approaches are provided in [1], [19].

One of the earliest works in grasp learning used a Support-
Vector-Machine (SVM) trained with a set of human-labeled
ranked grasps on RGB-D stereo images [17]. In robot
experiments, they achieve a grasp success rate of up to
87.9% on isolated objects. This work also introduced the
rectangle representation for two-finger grasps, which has
been adopted by many researchers (including us) due to its
simplicity and portability. The SVM was replaced by two
neural networks in [18]: The first one finds a number of
grasp rectangles in the image, and the second one selects

1https://roboception.com/en/rc_visard-en/

the optimal grasp from the output of the first network. As
training data, this work uses the Cornell Grasp Dataset,
consisting of 1280 RGB-D images with human-labeled grasp
rectangles. The images are captured with a Microsoft Kinect,
and a grasp success rate of up to 89% for grasping isolated
objects is achieved. The Cornell Dataset is one of few public
datasets for grasp learning2, thus it has been frequently used
by many researchers [11], [14], [15], [16]. The Generative
Grasping-CNN (GG-CNN) was presented in [11] for pixel-
wise predictions of grasp quality, i.e. the network outputs
a “grasp map” directly, encoding each pixel of the input
depth image with a predicted grasp quality, an angle for the
gripper, and a gripper opening width. Training is performed
on Cornell and Jacquard [10] datasets. From the network
output, the best suited grasp rectangle can be easily computed
with a low inference time (19ms), achieving a grasp success
rate of more than 80% with a real robot.

The learning process can also be entirely based on point
cloud processing. For instance, the work in [7] relies on
the BigBird database [20], a synthetic dataset of pointclouds
obtained from mesh representations. The annotation proce-
dure is based on analytical evaluations. With a final training
dataset of 55 objects and 300k unique scenes, they achieve
a grasp success rate on cluttered scenes of up to 93%. The
mean curvature skeletons [21] of objects from the YCB [22]
and KIT [23] datasets are computed in [8] to analytically
generate hand poses in synthetic depth images as training
data. They use about 5k depth images of 19 different objects,
and evaluate the approach within a simulation by analyzing
force-closure. Their grasp success rates with real robot trials
highly depend on the object shapes (e.g. 90% for spherical
objects, 12% on a bag of chips). Up to now, the largest
training dataset for parallel-jaw grasp prediction and ranking
is Dex-Net [5]. The dataset contains 6.7M unique, synthetic
depth images of about 1500 objects, with one parallel-jaw
grasp labeled per scene. Their learning approach comprises
the sampling of a number of grasps in the depth image and
a subsequent ranking performed by a Grasp Quality-CNN
(GQ-CNN). They achieve grasp success rates of more than
80% (and up to 91%) on real world grasp trials, including
picking from clutter or with adversarial objects.

While all of the approaches above use simple and struc-
tured training data for learning grasp prediction, [9] creates a
set of more diverse training images using random scenes in
a simulation with up to 5 out of 381 3DNet objects [24]
simultaneously present. For each scene, 40 depth images
are rendered from different camera perspectives. They use
their training set to make a network learn a visuomotor
controller for grasping, i.e. besides force-closure grasps they
associate each annotation with Euclidean distances to the
camera frame in order to learn stable gripper movements
in dynamic environments. For evaluation, they compare the
performance of their approach to [25] in dynamic scenarios,
i.e. the objects to be grasped are moved while computing a
grasp location. They significantly outperform the network

2https://www.kaggle.com/oneoneliu/cornell-grasp



TABLE I: Overview of previous work in learning-based grasping.

Work Hand Training Data Network characteristics Grasp Representation Success rate
2-finger Multi-finger Synthetic Real Network Inference Input Dataset Robot
gripper gripper parameters time Experiments

[5]
√

-
√

- 18M 1-3s Depth Other 85.7% 80±11%
[7]

√
-

√
- N/A N/A Point Cloud Other 90% 93%

[14]
√

(
√

) -
√

N/A 20ms RGB Circle 96.5% -
[11]

√
-

√ √
62k 20ms Depth Rectangle 80% 81±8-100%

[15]
√

- -
√

N/A 0.5s RGB Rectangle 88.7% -
[16]

√
- -

√
RGB 20ms RGB Rectangle 99.2% 93.8%

[9]
√ √ √

- ∼ 125k 0.2s Depth Other - 77.3-97.5%
[8] -

√ √
- 61.5M N/A Depth Other - 12-90%

[17]
√

- -
√

N/A N/A RGBD Rectangle 96.8% 87.9%
[18]

√
- -

√
∼ 5k 13.5s RGBD Rectangle - 84-89%

[3]
√

- -
√

∼1M 0.2-0.5s RGB 5D vector - ∼ 80%

described in [25] (77.3% vs. 22.5% grasp success rate).
Another approach using camera variations is presented in
[26], however, they are focused on learning the 3D shape of
the object and use a random exploration for generating the
grasp annotations, while we are interested in generating high
quality grasp annotations for any object shape.

Table I provides an overview of previous work in learning-
based grasping. In general, we observed a lack of diversity
in the training sets in most published works, which restricts
its subsequent applicability. Except for [9], all authors used
images of single objects with static camera poses, and do
not consider real effects in depth images (e.g. artifacts or
discontinuities) when they are used in the training phase. The
most frequently used training dataset is Cornell, potentially
due to its availability and easily adaptable grasp annotations,
although some other datasets are also publicly available.
Also, the presence of obstacles such as bins in training
images and how this affects the grasp learning capabilities
has not been addressed so far. Note also that the evaluation
results highly depend on the setup used by the authors, mak-
ing the numbers shown in the table only partially comparable.

III. DATASET GENERATION PIPELINE

Synthetically rendered images are a feasible alternative for
generating the large amounts of training data required for
learning-based approaches that can seamlessly generalize to
real world scenarios. However, the gap between simulation
and reality can degrade the performance in real world appli-
cations. Here, we propose generation of annotated synthetic
data based on mimicked realistic output of a stereo camera.
Depth images (or disparity maps) coming from these sensors
typically have areas of unmatchable pixels, which we will
refer to as stereo discontinuities. These appear for instance
at blind spots (i.e. areas that cannot be observed by both cam-
eras of the stereo system), surfaces with light reflections, or
textureless areas. Our software pipeline, represented in fig. 2,
consists of three parts: Raw data rendering, computation of
grasp points, and adjustment to the required data format, i.e.
transformation of grasp points in 3D Cartesian coordinates
to grasp rectangles in 2D image coordinates.

1) Raw data rendering: The first part of the pipeline
produces raw data with a simulated stereo sensor using the
SGM algorithm [13]. We use Blender with its Python API
and the Cycles engine to render synthetic scenes. Mesh

models from [22], [24] and Roboception’s internal database
of objects serve as inputs. The object models are loaded
into a physics simulation and are dropped from a certain
height to a solid plane. After a predefined time, the sensor
captures the scene, illuminated with a random dot projector,
from a number of viewpoints. The projector is simulated
as it is commonly used in real installations to increase
the structure in the image, thus allowing higher quality of
stereo data. For each scene, we extract the object poses
with respect to the camera frame. For higher realism, and
to increase the diversity of the data, a random material is
assigned to each object. This step ensures varying amounts of
discontinuities in the depth images, which better mimics real
world scenarios. The full output of our raw data generation
step for one object comprises a left and right stereo image
pair (Il, Ir), an image mask Im, an SGM-based depth image
Iz , and a text file containing relevant scene information
including camera and object poses.

In order to get raw depth images, we use the SGM
algorithm [13]. As SGM produces a disparity map from
the left and right intensity image of the stereo system, we
compute the real depth z using

z =
bfl
D
, (1)

where b is the camera’s baseline, fl its focal length, and D
the computed disparity at any given pixel. In disparity maps
created with SGM, unmatched pixels receive an assigned
value of infinity (i.e. the corresponding pixel is right in front
of the image sensor). To retain this relation in the computed
depth images, we assign to those pixels a real depth of 0.

2) Generic Grasp Point Detection: We recreate the ren-
dered raw scenes with a pointcloud representation of the
corresponding object meshes (fig. 3). Our approach to find
grasp points for 2-finger grippers relies on the principle of
antipodal contact points, i.e. points pc such that the line
lc connecting them lies inside both friction cones, using a
friction coefficient µ [27] (fig. 4). Such grasp is force-closure,
i.e. the gripper can apply opposite and co-linear forces to
the object to be grasped at these points, so that any force or
torque perturbation is compensated by the applied forces.

We start by computing the principal curvature vector ~p at
each point. Using their z-component, we find points whose
normal is perpendicular (within a threshold) to the camera’s



Fig. 2: Overview of the complete training data generation pipeline. We use mainly household object meshes from [22] or [24] (I.a) to
generate appropriate point clouds (I.b). A simulated rc visard stereo sensor is used to generate raw data, shown here for a banana with
an arbitrary background: left and right images (II.a), depth image using a projected pattern (II.b top), and object binary mask obtained
directly from Blender (II.b bottom). The rendering omniscience is used to create generic grasp point pairs based on antipodality. The raw
scenes are re-created, surface normals and principal curvature are estimated, and points of high probability of being antipodal are selected
(II.c). Finally, grasp rectangles are generated and synthetic datasets for network training (using the Cornell format) are produced (III).

(a) (b)
Fig. 3: Rendered RGB image (a) and corresponding recreation of
the scene with point clouds (b). Dark blue areas indicate areas of
high probability for finding antipodal point pairs.

z-axis (i.e. the axis pointing towards the objects). On areas of
points with relatively high ~pz-values, we uniformly sample N
points. We then evaluate the antipodality for all possible pairs
of points, as represented in Fig. 4, where n̂ is the estimated
surface normal at a given contact point pc. The angles ϕlc

formed between lc and n̂ at both pc, are compared to the
opening angle ϕ = arctan(µ) of the friction cones.

We define a grasp G as a set of two antipodal contact points
pc. Each pc ∈ (x, y, z) has an associated ϕlc, which could be
interpreted as the “degree of antipodality” as the estimated
quality of the grasp increases when ϕlc(pc)→ 0. We define a
grasp rectangle GR that corresponds to a 2D representation
in image coordinates of G, GR := {c̃i, i ∈ [1, 4]}, where
c̃i is the i-th corner of GR. With c̃i, any other property of
GR can be easily obtained, such as its orientation θ or its
width w̃ and height h̃. The transformation from a grasp in
3D to a grasp in image space is performed with a function
g : G → GR given by

g = f(pc, fl, Ih, Iw). (2)

where fl is the focal length of the camera, and Ih, Iw
correspond to the image resolution (i.e. height and width).

(a) (b)
Fig. 4: Exemplary evaluation of antipodality: a) antipodality is
fulfilled if ϕ ≥ ϕlc for both contact points, b) pc 1 is antipodal to
pc 2, but not to pc 3.

Note that this method can be used for the synthetic data
generation, as we have full object knowledge. However,
computation of antipodal points on partial (real) views of the
object is not straightforward due to the lack of information
especially in the regions of interest for antipodality (fig. 3).

At this stage we consider each object separately, so no
grasp points are found that would attempt to grasp multiple
objects at the same time. However, potential grasp points
could be located in areas of low probability of success, e.g.
areas where objects are in contact. We catch these problem-
atic situations with the last part of the software pipeline.

3) Grasp Rectangle Generation: This part converts the
generic grasp point pairs to grasp rectangles, following the
format of the Cornell dataset [6]. For each scene of raw data
for a given object with computed antipodal grasp points, all
grasp rectangles are generated at first by mapping the point
pairs onto the raw images. Next, unwanted rectangles are
pruned. We verified empirically that this step is the most
important in order to achieve high quality grasp annotations.
To influence the number and distribution of grasp rectangles
per scene, we use a pruning algorithm based on image tiles.
We split the image in N ×M tiles T and allow only one



rectangle’s center point cR to be present in each T . As a
quality measure, a scoring function S is used to locally rank
GR, as follows:

S = w1d̃C + w2ϕ,

where the distance d̃C to the object’s center of mass and
the average degree of antipodality ϕ of GRi

are combined
with suitable weights w1 and w2. The ideal rectangle would
minimize S, i.e. it would correspond to a grasp at the
object’s center of mass and with ϕ → 0. A specific gripper
model is not defined; however, the maximum width of GR is
adjusted dynamically depending on the shape of the object
to be grasped. This approach preserves the quality of the
annotations and simultaneously grants flexibility in terms of
the gripper model that will be used for real world grasping.
Additionally, if more than one object is present in a scene,
using a pruning based on the image mask Im prevents our
pipeline from annotating grasps that would be in collision
with other objects.

4) Performance: Our pipeline effectively provides anno-
tations for a large number of objects. The generic nature
of our grasp point detection together with the flexibility
due to variable gripper openings allows us to annotate
thin, spherical, cylindrical, polyhedral or bulky objects. The
quality of the annotations is visually comparable to other
publicly available datasets, e.g. Cornell and Jacquard. On
the other hand, some irregularly shaped objects and hollowed
objects (e.g. a bowl) were found to be problematic for the
pipeline. This behavior is directly related to the computation
of point features (point normal, principal curvature), which
might lead to errors for those types of surfaces.

The pipeline’s execution time for one scene is dominated
by the raw image rendering when using Blender with full
details (about 25s, roughly 80% of the total time). The
creation of the depth image Iz (matching and conversion)
takes another 5s, the annotation process normally takes less
than 2s. All in all, the computation of a single data point
(depth image and corresponding grasp annotations) requires
about 32s. Rendering time measurements were performed on
a Xeon 3GHz CPU system with four cores, 16GB RAM and
a GeForce 1080 GPU with 8GB RAM; the remaining times
were obtained on a system with a 3.4GHz CPU with four
cores, 8GB RAM and no GPU. Note however that we did not
focus on the optimization of these computational times, as
the generation of training data is mainly an offline process.

Our approach is completely independent of scene proper-
ties such as camera pose, number of objects in the scenes,
presence of bins or load carriers, or light conditions, depth
image quality or other disturbances, making it extremely
flexible and robust compared to other approaches.

5) Final Dataset: We used the described pipeline to
obtain a dataset of around 15k unique depth images created
with SGM and annotated with grasp rectangles. The set,
hereafter called rc 49, is publicly available. It consists of
49 unique objects of different shapes and sizes. We cover
variation of the training images in terms of object pose,
camera pose (distances to the object between 30 and 80

cm, and camera tilt of up to 35◦) and the amount of
discontinuities in the depth image. Note that this basic set
provides only images with one object present in each scene.

IV. EVALUATION

To verify the benefits of our data generation, we use
our synthetic SGM datasets to train a GG-CNN, and we
evaluate its performance with synthetic and real images of
novel objects captured with the rc visard. The performance
is compared with the same network trained on the Cornell
and Jacquard datasets.

A. Network Training

We train the GG-CNN for 30 epochs, with the same basic
parameters described in [11]. However, some changes are
applied: First, random zooms, crops and rotations of the
training images are disabled; they are not required, as our
data already provides enough variation of images. Second,
we adjust the depth normalization for stereo depth images
with discontinuities: instead of subtracting the mean depth
from the input image, pixels with 0-value are not considered,
i.e. they are ignored for depth normalization. At the end of
each epoch, the Intersection-over-Union (IoU) score ([10],
[11]) is evaluated against a random set of the training images.
The highest achieved score is called training performance.

B. Initial evaluation

We randomly select 10 of the 49 objects from rc 49 and
exclude their scenes from the dataset. The network is trained
subsequently on scenes of the remaining 39 objects, i.e.
12k images. The scenes of the excluded objects serve as
evaluation test datasets. We run the experiment 5 times, and
results are given in table II. A grasp prediction is considered
successful if the area of overlapping of the predicted and the
ground-truth rectangle is 25% or greater with respect to their
area of union, and the rotation angle difference is smaller or
equal to 30◦ [11]. The GG-CNN trained on our synthetic
SGM data is able to predict a correct grasp rectangle in
an average of 81.8% of the cases. The performance drop
in run 2 can be traced to the particular split of the objects
used for training and evaluation. The results indicate that our
data can be effectively used for training the desired network,
endowing it with a good generalization capability.

C. Cross-evaluation

A cross comparison of test performance while trained on
a different data set, as proposed in [10], is performed for
the GG-CNN using Jacquard, Cornell and rc 49 training.
Table III summarizes the results, and indicates the average

TABLE II: Initial evaluation using rc 49 training data.

Run Correctly predicted grasps [%]
1 2636/3080 85
2 2051/2777 73
3 2388/2790 85
4 2545/3080 82
5 2525/2984 84

Average 81.8



TABLE III: Grasp prediction success rate (in percentage) using
cross-evaluation among the three available datasets.

Training Dataset Evaluation dataset
Cornell Jacquard rc 49 Mean

Cornell 73 67.6 64.3 68.3
Jacquard 21.6 90 48.6 53.4

rc 49 34.3 42.5 87 54.6
Mean 42.9 66.7 66.6

(a) (b)
Fig. 5: Test object set, which includes objects that have been
presented to the model during training (a) and novel objects (b).

IoU scores of the differently trained datasets on three subsets
of the evaluation datasets with 100 images each. The num-
bers on the diagonal correspond to the networks’ training
performances, a first indicator for the expected performance.
We find that training on Cornell data leads to best prediction
results in average, while the GG-CNN with Jacquard training
has the weakest performance.

D. Evaluation with real datasets

To compare the grasp prediction performances of the
differently trained networks on real stereo data, we create
a new set with 25 objects, shown in Fig. 5. The set includes
objects from the rc 49, and objects that are novel for all
datasets, trying to cover many different shapes, sizes and
surfaces. The final evaluation dataset consists of 132 real
scenes of isolated objects (including 56 of “known” objects)
with varying object poses (2-7 images per object). As our
annotation pipeline requires explicit knowledge of the object
pose in camera coordinates for annotations, we cannot use it
to label and evaluate these images. Therefore, we evaluate the
predicted grasp rectangles by visual inspection. To minimize
bias introduced by the human evaluation, we follow a strict
protocol for this procedure. It requires to label with “fail” if
uncertain or unsure that the prediction will lead to success,
in order to minimize false positives.

Table IV displays the evaluated prediction performance of
the GG-CNN trained on Cornell, Jacquard and rc 49 on the
dataset of real SGM data captured with an rc visard65, with
65mm baseline. We also use a combined dataset with Cornell
and rc 49, as both use the same format. The CNN trained
on our synthetic, SGM-based dataset rc 49 significantly
outperforms the other networks. Especially for bulky objects
like the milk carton, the networks without adequate training
data appeared to have significant problems to provide a good
grasp prediction. Fig. 6 displays one exemplary comparison

TABLE IV: Grasp prediction success rate (in percentage) of the
differently trained network models.

Training dataset Known objects (Fig. 5a) Novel objects (Fig. 5b)
Cornell 51.8 60.5

Jacquard 41.1 51.3
rc 49 94.6 84.2

rc 49 & Cornell 87.5 71

(a)

(b)

(c)
Fig. 6: Predictions of the trained CNNs on a scene of a milk carton.
The left column shows the monochrome images with the predicted
grasp rectangle, the right column shows the predicted pixel-wise
grasp quality. Training on Cornell (a), Jacquard (b), rc 49 (c).

of such predictions on one scene of the milk carton. Overall,
most failure cases have been detected for the glue bottle
object, potentially caused by light reflections on its surface.

We further evaluate the robustness of the GG-CNN trained
on our SGM data, considering now changing camera poses
(i.e. tilts and distance to objects) and increasing amounts
of invalid pixels (discontinuities). We consider the latter
aspect of high interest for real world grasping using stereo
perception, as every image contains a strip of unmatchable
pixels due to the stereo system itself (i.e. the right camera
cannot observe the far left, when the left camera is used
as reference). Therefore, we want to explore the network’s
behavior if objects of interest are placed close to that “invalid
strip”. We generally find a high robustness to camera tilts and
heights even outside the range of the training data. Also for
thin objects like the clothespin, the CNN is able to predict
good grasps independently of the camera height (with our



(a) (b)
Fig. 7: Scene of a shampoo bottle placed close to the edge of the
table, on a scene with large amounts of unmatched pixels (a). The
CNN trained on our SGM dataset is still able to predict good grasp
rectangles with reasonable grasp quality (b).

(a)

(b)

(c)
Fig. 8: Predicted grasp quality on a scene with a marker in a load
carrier (a). (b): CNN prediction with training data that includes the
bin. (c): CNN prediction with regular training data, which leads to
collisions with the bin wall.

physical setup we changed the height in a range from 40 to
87cm). Moreover, with variation of the amount of unmatched
pixels to a very high level (of about 50%, of the image), the
CNN was still able to predict high quality grasps (fig. 7).

E. Presence of a load carrier

We created a training dataset with scenes containing a load
carrier, which is critical for realistic bin-picking applications.
Our load carrier dataset contains 10k scenes. The variations
in height are the same as stated above, but the tilt variations
are now limited to 15◦, otherwise the sensor would not be
able to see the objects inside the bin. We observed that the
new scenes do not cause quality loss of the labels that our
annotation pipeline produces. The most relevant change is the
increase in rendering time, as ray-tracing intensifies because
of the presence of the load carrier.

For evaluation, a new test setup with an rc visard160 (160
mm baseline) is used. We capture a small dataset with 10
of the objects from fig. 5, and vary the objects’ distances to
the walls of the load carrier. We find that the GG-CNN with
regular rc 49 training is completely unable to predict good
grasp rectangles due to the presence of the carrier walls,
which distract the network, as they are processed as if they
were an additional object. An example can be seen in fig. 8.
With our load carrier training data, the CNN was able to
predict 100% good grasp rectangles on objects at the load
carrier’s center and 90% on objects close to its walls (76%
and 0% for the network with regular rc 49 training). The

Fig. 9: Exemplary multiple grasp predictions for a scene with
multiple objects using the GG-CNN trained on rc 49. Intensity
image (a) and predicted grasp quality (b).

(a)

(b)

(c)
Fig. 10: Different grasp predictions for the same scene with
multiple objects. Monochrome sensor image (a), (b) inference result
of the CNN trained on single objects only, (c) inference result of the
CNN trained on 50% single object and 50% multi-object scenes.
Note that adequate training data prevents the gripper jaws from
being in collision with other objects.

only failed predictions appeared due to collisions with the
load carrier walls in real grasp trial, i.e. gripper jaws would
collide with the load carrier. Note that the synthetic dataset is
generated with an rc visard65, i.e. 65mm of baseline, while
the evaluation dataset is obtained with a sensor of 160mm
baseline. This implies that our pipeline is generic enough to
allow application to different stereo sensors.

F. Multi-object grasp detection

Most deep learning approaches use as a prior that every
image contains a single object, and provide a single grasp
target. In general, this assumption does not hold in practice,
as a scene might contain multiple objects and require mul-
tiple grasp options to choose from during execution time.
The network trained with rc 49 was also able to predict
good grasp rectangles in scenes with multiple objects (fig. 9).
However, collisions of the gripper jaws with other objects in
the scene eventually appear in a real execution. To improve
this, we also evaluated the performance when scenes of
multiple objects are included in the training dataset (fig. 10),
in a combination of 7.5k images with single and 7.5k images
with max. 3 objects each. Our pipeline produced the required
annotated data without a problem. Our results showed a
decrease of about 30% of predicted grasps with potential
collisions with other objects.



V. DISCUSSION

This paper presented a pipeline that is able to compute
and label parallel-jaw grasps in point cloud representations
of synthetic images. These images are gathered in a synthetic
data set (rc 49) that is employed for analyzing the influence
of training data variations on the performance of a CNN
for grasp learning. For depth computation, we use the SGM
algorithm that runs also on the rc visard stereo sensors,
which allows us to obtain synthetic images that mimic real
images obtained with the sensor, thus closing the sim to real
gap, and allowing a direct grasp execution with the robot. Our
pipeline contains elements from [10] (e.g. Blender Cycles,
same grasp representation, stereo depth computation, input
meshes from [24]) and we use a computation of the generic
grasp points similar to [25].

The proposed approach allows the generation of annotated
synthetic images for training a grasp CNN, fully avoiding
any pre-processing step or the addition of artificial noise in
the images before the inference. The generated images mimic
real sensor images (while other datasets include mainly ideal
depth images) thanks to the use of the SGM algorithm with
different camera poses (tilts and distance to objects). Thus,
our method allows a network to learn image disturbances
directly as they naturally appear on real stereo sensor data.
Using images with large discontinuities in other methods
requires some pre-processing such as noise removal or in-
painting, which can be computationally expensive as iteration
over image pixels is necessary, and might lead to image
errors. Our experiments show that learning discontinuities
directly can lead to robust grasp predictions even when a very
high amount of unmatched pixels is used. Furthermore, the
network trained on synthetic images generated for one stereo
sensor can be applicable to real images coming from any
other stereo sensor thanks to the use of the SGM algorithm
for image processing in the generation of training data.

The pipeline also provides high quality annotations even
if multiple objects or load carriers are present in the scenes.
We used our automatic labeling pipeline to train a CNN
for robust prediction of grasp rectangles under stereo dis-
continuities, varying camera poses, inclusion of multiple
objects, and even presence of load carriers in the scenes.
The predicted grasps are directly executable on a real robotic
system without loss of performance.

Our datasets are publicly available3 for further training
and comparison with other learning approaches. As a next
step, we want to evaluate the prediction performance with
real data coming from vision sensors with different sensing
principles, to verify the network’s generalization capabilities
using our synthetically generated training data.
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