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Abstract— This work is aimed at extending the standard
dynamic movement primitives (DMP) framework to adapt to
real-time changes in the task execution time while preserving
its style characteristics. We propose an alternative polynomial
canonical system and an adaptive law allowing a higher degree
of control over the execution time. The extended framework
has a potential application in robotic manipulation tasks that
involve moving objects demanding real-time control over the
task execution time. The existing methods require a com-
putationally expensive forward simulation of DMP at every
time step which makes it undesirable for integration in real-
time control systems. To address this deficiency, the behaviour
of the canonical system has been adapted according to the
changes in the desired execution time of the task performed. An
alternative polynomial canonical system is proposed to provide
increased real-time control on the temporal scaling of DMP
system compared to the standard exponential canonical system.
The developed method was evaluated on scenarios of tracking
a moving target where the desired tracking time is varied in
real-time. The results presented show that the extended version
of DMP provide better control over the temporal scaling during
the execution of the task. We have evaluated our approach on
a UR5 robotic manipulator for tracking a moving object.

I. INTRODUCTION

The problem of targeting and manipulating a moving
object by a robotic arm is of great importance in numerous
industrial applications. Up until now, researchers mainly
focused on the problem of static manipulation. However, in
order to achieve higher levels of dexterity in robotic manip-
ulators, moving target scenarios need to be addressed. For
example, grasping moving objects is challenging as opposed
to picking up a stationary object, such as the adaption of
the motion plan, efficient trajectory tracking, modelling and
estimating the motion of the object and so on. Learning
from demonstration (LfD) has been widely deployed in many
robotic manipulation tasks, but similarly it mainly involves
static targets. Among the various LfD methods that exist,
the Dynamic movement primitives (DMP) framework [1]–[5]
is predominantly used for motion planning in manipulation
tasks in order to learn from human demonstrations [6], [7].

The DMP framework offers a simple way to learn a
complex motion trajectory from a single human demon-
stration without the need of any complex modelling. DMP
framework encodes an arbitrary motion pattern using a
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second-order nonlinear system consisting of a linear point
attractor modulated by a learned nonlinear forcing function.
Additionally, the DMP system is capable of generalizing
to different goal positions and task execution speeds using
spatial and temporal scaling properties respectively. The
DMP framework can be used for both point-to-point as
well as rhythmic movements. The robustness to perturbations
and collision avoidance capabilities can be incorporated into
DMP [8]–[10], making it a highly useful framework for
learning robotic manipulations skills. The DMP framework
is further improved with the possibility of learning from
multiple demonstrations [11]–[13]. To facilitate a singularity-
free representation of orientation in Cartesian coordinates,
DMP is represented using unit quaternions [14], [15].

There has been limited work conducted regarding DMP
systems naturally adapting to a moving target. A bio-inspired
formulation was developed for human-robot interaction by
including a velocity feedback term into the DMP system in
[16]. In [17], an interactive movement primitive is formulated
to reach a moving target in a leader-follower configura-
tion. Other approaches involve reaching a moving object
by predicting the target trajectory in advance, as presented
in [18], [19], based on a dynamic model of the moving
target. However, in many robotic tasks, including human-
robot interaction, it is difficult to model the movement of
the target object and thereby generate an accurate predefined
DMP. Such tasks, demand real-time adaptation of the DMP
to continuously change the target/goal position and desired
execution time. Consider the example of a human to robot
object handover task, where the object’s velocity depends
on the human individual’s movement. In such a scenario,
the DMP system needs to slow down or speed up based
on the human behaviour, while adapting to a moving target.
Another example is a robotic grasping task where the target
object is moving continuously, but the motion pattern of the
object is unknown. In [20], an approach to achieve real-
time control over the execution time by forward simulating
the entire DMP execution at each time step was proposed.
This approach is computationally expensive and thus less
desirable for higher control frequencies.

In this paper, we propose an extension of the standard
DMP framework for adaption to real-time changes in the
task execution time. We define real-time control of the
execution time as, how the DMP system is adapting to real-
time changes in its desired execution time during the task.
In order to achieve this, we only manipulate the temporal
scaling of DMP system while preserving its spatial prop-
erties. We formulate two methods to achieve efficient real-
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time temporal scaling, (i) a control law to vary the temporal
scaling term of the standard exponential canonical system
and (ii) an alternate polynomial based canonical system with
a suitable control law for temporal scaling. This is useful
in a manipulation task with an underlying DMP planner,
where the task execution time needs to be changed during
the execution phase. Additionally, in case of moving targets,
a velocity feedback of the target and a simple estimate of the
goal position based on the current target position and velocity
are included into the DMP system. The proposed approach is
tested on simulation and experimental setups with a moving
object, with the use of a UR5 robotic manipulator.

II. DYNAMIC MOVEMENT PRIMITIVES

DMP framework provides an elegant way to encode any
arbitrary spatial trajectory as a stable second-order nonlinear
system, which is well suited and widely utilized controlling
for robotic systems [21]. The standard DMP system consists
of a point attractor formulated as a second-order ordinary
differential equation (ODE) with a nonlinear forcing term. In
the DMP framework this is called the transformation system,
each degree of freedom (DOF) in the operation space will
be denoted by a separate transformation system,

τ ẋ = v ,
τ v̇ = K(xg − x)−Dv + (xg − x0) f(s) .

(1)

Here, x, v ∈ R are the position and velocity of the system
at time t respectively. The initial position and the goal/target
are given by x0, xg ∈ R respectively. K,D ∈ R+ represents
the stiffness and damping coefficient terms of the second-
order system. f denotes the nonlinear forcing term, which is
a function of a phase variable s. If f = 0, these equations
represent a globally stable second-order linear system with
(x, v) = (xg, 0) being a point attractor. The forcing term is
modelled to match the system output with any arbitrary tra-
jectory demonstrated, which is then generalised to different
goal and initial conditions. τ ∈ R+ is a temporal scaling
term, which is normally set equal to the task execution time
or the motion duration while modelling/learning the forcing
term. The temporal evolution of the DMP system can be
modulated by varying τ . For generalization in time, the
explicit time dependency of f is avoided by reparameterising
time by a phase variable s guided by a first-order linear
dynamical system, termed as the canonical system, thus
making the system temporally scalable by varying τ ,

τ ṡ = −αs . (2)

The initial state of the canonical system is s0 = 1 and α ∈
R+ is the decay constant, where s decays exponentially from
1 to 0. The forcing term can be expressed as a function of
the phase variable s using Gaussian kernel functions ψi with
corresponding weights ωi,

f(s) =

∑N
i=1 ψi(s)ωi∑N
i=1 ψi(s)

s , (3)

where,
ψi(s) = exp

(
−hi (s− ci)2

)
. (4)

N denotes the number of Gaussian kernels used, which is a
hyper-parameter decided based on the geometric complexity
of the demonstration trajectory. The centres and widths of
Gaussian kernels are given by ci and hi respectively for a
demonstration trajectory of time duration, T ,

ci = exp

(
−αi T

N

)
, i = 1, 2, . . . , N , (5)

hi = 1
(ci+1−ci)2

, i = 1, 2, . . . , N − 1 ,

hN = hN−1 .
(6)

The DMP system is easily translated to multidimensional
problem as a separate transformation system is learned along
each dimension, while having a single canonical system. The
conventional transformation system representation in (1) has
few drawbacks, such as the case when the goal position
coincides or is too close to the initial position, i.e (xg = x0)
or when (xg−x0) flips sign from the demonstrated trajectory.
These problems are addressed in [8], [16], [18], [22] to
formulate an improved version,

τ ẋ = v ,
τ v̇ = K(xg − x)−Dv −K (xg − x0) s+Kf(s) .

(7)

The canonical system remains the same as (2). Unlike
(1), generalisation to different goal positions is possible
in (7) as f is independent of the spatial scaling. This
generalisation is obtained by utilizing the invariance property
of the transformation system in (7) and using the roto-dilation
based transformation to find the transformation matrix [13].
Given a transformation matrix S ∈ Rn×n, where n is number
of DMPs or the dimension of trajectory, X ∈ Rn, V ∈
Rn, X0 ∈ Rn, Xg ∈ Rn, F ∈ Rn respectively are the vector
representation of x, v, x0, xg, f , and K ∈ Rn×n,D ∈ Rn×n
are the matrix representation of K,D. The transformed states
and variables are:

X ′ = SX, V ′ = SV, X ′0 = SX0, X ′g = SXg,

F ′ = SF, K ′ = SKS−1, D′ = SDS−1
(8)

The DMP formulation has some drawbacks for real-time
control during execution. This becomes very pronounced if
the target is non-stationary. In the standard DMP formulation,
we can vary the execution time in real-time by modulating
τ according to an adaptive law based on a complete forward
simulation of the entire DMP, given by,

τ ′ = λτ ,

λti+1 = λti + kp

(
T̂ ti − T

)
− kd

(
T̂ ti − T̂ ti�1

)
.

(9)

where ti is the time at the ith control step, λti+1 , is the
temporal scaling factor at time ti, t0 = 0; λt0 = 1; kp and
kd are the specified proportional and derivative gains. T̂ ti
is the total execution time (from start) as computed at time
ti. T̂ ti is estimated by doing an entire forward simulation
of the DMP at time ti which is computationally inefficient
for a real-time task. Also, sudden changes in τ could create
unexpected behaviours in the DMP system and make it less
robust in a moving target scenario.
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III. EXTENSION OF THE DMP MODEL

A. Real-time Control of the DMP Execution Time

We propose an extension of the standard DMP framework
to provide real-time control over the execution time T , while
preserving the shape properties of the DMP system for tasks
involving moving targets. Although we consider the moving
target scenarios here, our approach is equally applicable to a
stationary target scenario. In the standard DMP formulation,
the execution time can be varied in real-time by varying
τ according to a suitable adaptive law. However, such an
adaptive law can not guarantee an exact final execution time.
This error in the final execution could be higher when T
is varied during the later stages of DMP execution. An
adaptive law is formulated for τ based the value of the
phase variable, s from the canonical system (2) and the
fraction of DMP executed at s in each DOF in comparison to
the demonstration trajectory. The dynamics of the temporal
scaling term τ of the canonical system is represented using
a first-order linear system modulated by the input u,

τ̇ = −kτ (τ − u) . (10)

Here kτ is a positive constant. An adaptive law is defined
for control input u, such that the decay rate of the canonical
system in (2) is slowed down if the desired execution time is
increased or sped up if the desired execution time is reduced.
The value of u is derived at each time step in order to have
continuous control over the execution time. As the nonlinear
forcing term f is a function of the phase variable s, the shape
of the trajectory can be preserved while the execution time
of the task is changed in real-time. The rate of change of s is
always negative as it is a monotonically decreasing function.
The control law for u is given by

u =

{
ŝt
st

‖x‖
‖xd‖ τ̂t if st > δ

τ̂t otherwise .
(11)

δ is chosen to be a very small value close to 0, to guarantee
finite value for u∀ t. ‖xd‖ denotes the norm of fraction
of DMP executed in the demonstration trajectory for a
specific value of phase variable at time t denoted by st.
Similarly ‖x‖ denotes the norm of fraction of the current
DMP corresponding to st. ŝt and τ̂t are the desired value of
s and τ at time t, which is described later. The mathematical
expressions are given by,

xd(s) =
gd − xd(s)
gd − x0d

, x(s) =
x̂g − x(s)

x̂g − x0
. (12)

xd, x ∈ [0, 1], where xd is derived from the transformed
demonstration trajectory used for learning the DMP, whereas
x(s) is calculated in real-time based on the value of st.
In (12), it is assumed that the initial pose of the robot is
different from the goal trajectory and needs to reach the goal
point only once during a trajectory execution to avoid the
division-by-zero condition. This is valid for general robotic
manipulation tasks where the initial pose of the robot is
different from the object’s trajectory in the workspace and
the robot needs to approach the object. In scenarios where the

starting and goal positions coincide, rhythmic DMPs should
be used instead of discrete DMP, which is not considered in
this paper.

Furthermore, ŝt is the desired value of the phase variable
from the canonical system given the value τ , scaled linearly
in the desired execution time T̂t at time t,

τ̂t ˙̂st = −αŝt , (13)

where,

τ̂t = τ0
T̂t
T0

. (14)

Here τ0 and T0 are the initial value of τ and initial value of
the task execution time respectively.

A similar approach of defining a first order dynamics
on τ is provided in recent work [23]. Here, τ is adapted
solely to maintain the demonstrated velocity levels in case
of DMP execution for a task involving a moving goal.
However, our work consider the aspect of real-time control
of task execution time, which is more applicable in practical
scenarios with strict timing requirements.

B. Polynomial Canonical System

The standard canonical system (2) in the DMP formulation
can not guarantee complete control over the execution time
with an adaptive law (10) because of its exponentially de-
caying nature. As the canonical system decays exponentially
in time, the value of s approaches zero rapidly, with only
very small changes in s in the later phases. This behaviour
of the canonical system makes it impossible to have control
over the time scaling by varying τ . For larger values of s
during the early phase of DMP execution, a better level of
real-time control over the task execution time is feasible. In
order to improve this drawback of the DMP framework, we
propose to use an alternative canonical system which could
provide a higher degree of control over the execution time
in later phases of the DMP. A polynomial function which
decays slowly at the beginning and then rapidly converges
to 0 at t = T , or any similar functions could offer such
property. Considering this benefit, we choose a polynomial
function which can be represented using an inverse gradient
formulation of the standard canonical system in (2),

τ ṡ =

{
−α−1s−1 if s > δ
−α′s otherwise .

(15)

To have s monotonically decreasing in the interval [1, 0]
and asymptotically converging to 0, the final stage of DMP
where s ≤ δ is represented using the standard canonical
system (2). δ is a small positive constant close to 0. The
value of τ for s > δ at any time instant t can be derived from
the solution of the system in (15) based on the condition,
t = T̂ =⇒ s = 0 assuming the polynomial function for s,

τ =
2α(T̂ − t)

s2t
. (16)

Here the value of τ needs to be updated only when there is
a change in T̂ . From (15) and (16), τ > 0 ∀ t as t < T̂
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when s > δ. Additionally the polynomial canonical system in
(15) is continuous, which can be made smooth by choosing
α′ = 1/(δ2α). An analytical solution for the polynomial
canonical system when s > δ is derived from (15), (16) as,

s =

(
T − t
T

) 1
2α2

. (17)

The value of α decides the nature of this polynomial
canonical system, where α = 1 defines a parabola. α is
chosen as α ≥ 1, to make better use of the higher order
polynomial behaviour motivating this approach. For s ≤ δ
the value of τ could be found using (10). The difference
between systems (2) and (15) is shown in figure 1.a. The
larger variation in s during the later phases of execution
provides the option to have better control over the execution
time. The intersection time tint of the polynomial canonical
system in (17) and the exponential canonical system from (2)
(assuming τ/α′ = T/4 for (2) for the sake of comparison)
can be found to be,

tint = T +
TW

(
−8e−8α

2

α2
)

8α2
, (18)

where tint is the time at which both the systems in figure 1.a
intersects and W is the Lambert W -function [24]. As α ≥
1 =⇒ tint −→ T̂ it follows that the polynomial canonical
system maintains a higher value of s until s is close to 0.

0 1 2

t [s]

0.0

0.5

1.0

s

0.0 0.5 1.0

x1

0.0

0.5

1.0

x
2

(a) (b)

Fig. 1. (a) Evolution of the canonical systems, exponential canonical system
is shown in blue and polynomial canonical system in red. (b) Behaviour of
learned DMP systems corresponding to both canonical systems, both overlap
as the same demonstration trajectory is used to learn both systems.

C. Stability Guarantee

For the adaptive law discussed in section III-A, from (10)
and (11) it can be observed that τ > 0 ∀ t, which guarantees
the asymptotic convergence of the exponential canonical
system (2) to 0. From (17), the polynomial canonical system
monotonically decreases to 0 as t→ T̂ with t = T̂ =⇒ s =
0. Therefore, ∃∆ > 0, such that, (T̂ −t)→ ∆ =⇒ s→ δ >
0. The existence of δ guarantees the switching of polynomial
canonical system to the exponential canonical system (15),
which in turn guarantees asymptotic convergence of s to 0.
The existence of δ > 0 also guarantees a finite value of τ at
switching (16) and τ is bounded ∀ t.

In order to analyse the stability of the transformation
system, the contraction analysis method is used [25], [26].
The stability analysis presented here is very similar to the
one presented in [23]. Consider the transformation system (7)
with e = x− xg ,[

ė
v̇

]
=

[
1
τ v

1
τ (−Ke−Dv −K(xg − x0)s+Kf(s))

]
. (19)

As s asymptotically converges to 0, for the fixed point of
s = 0 with a finite value of τ = τs and f(s) = 0, (19) can
be written as,[

ė
v̇

]
=

1

τs

[
0 1
−K −D

] [
e
v

]
. (20)

This is a linear time varying system with a bounded time
dependent parameter, τs.

Theorem 4.6 from [27]: Consider a linear time varying
system of the form ẋ = A(t)x where x ∈ Rn and
A(t) ∈ Rn×n. The equilibrium state x = 0 is exponentially
stable if and only if for any given symmetric, positive
definite, continuous, and bounded matrix Q(t), there
exists a symmetric, positive definite, continuously
differentiable and bounded matrix P (t) such that
−Q(t) = P (t)A(t) + AT (t)P (t) + Ṗ (t).

A similar approach is provided in Example 4.21 of [28]
using Theorem 4.10 [28]. Choosing the matrix,

P =
1

2

[
K
D + 1

D + D
K

1
K

1
K

1
D + 1

KD

]
,

which is constant, bounded and positive definite, gives
Q(t) = 1

τs
I . Since τs is bounded, Q is also bounded ∀ t.

Based on Theorem 1 in [26], the entire DMP system is
globally contracting. Therefore the DMP system with the
proposed adaptive laws and polynomial canonical system
asymptotically converges to a unique equilibrium point with
s = 0, e = 0, v = 0.

D. Moving Target DMP with Velocity Feedback

In order to better preserve the shape properties of DMP
while following a moving target, a velocity feedback of
the moving target is incorporated into the DMP formulation
similar to [16].

τ ẋ = v ,
τ v̇ = K(x̂g − x)−D(v − ẋg)−K (x̂g − x0) s+ f(s) .

(21)

Here x̂g is an estimate of the final goal position. A fair
assumption is that the goal is moving slow enough such that
v ≥ ẋg the convergence properties holds for the system in
(21). The estimate of the final goal position at time t is
updated with a simple weighted average of the current goal
position and the position estimated using the goal velocity
at time t,

x̂g(t) = xg(t) +
ẋg(t)(T̂t − t)t

T̂t
. (22)
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At any time instant t, xg(t) is the measured current goal
position , ẋg(t) is the velocity of the goal trajectory and T̂t
is the desired time for the entire execution of the DMP.

IV. RESULTS

A. Simulations

Two separate sets of simulations were conducted to eval-
uate the performance of our approach. In the first simulation
setup, a 2 DOF DMP system was set up with a moving target.
The control law for τ , for both the approaches are evaluated
based on how accurately we can control the execution time
of the DMP system. For both the approaches, a single
demonstration trajectory of a rotated sinusoidal pattern with
x0 = (0, 0) and xg = (1, 1) is used. The execution time of
the demonstrated trajectory is set as 2s. The sampling time
for all the simulations is dt = 0.01s, the position tolerance
for DMP convergence to the goal/target point is µ = 0.01,
i.e ‖xg − x‖ < µ ‖xg − x0‖. The other system parameters
are K = 1000, α = 4, N = 100, kτ = 1, D = 2

√
K and

δ = 0.01. For the purpose of analysis the initial pose is
always kept constant at origin (0,0).

The system is analysed for the following four scenarios
in simulation, regarding its adaptation to real-time changes
in the desired execution time T̂ as shown in figure 2 and
summarised in the following,
• S-1: T̂t gradually increases from 2s to 3.6s.
• S-2: T̂t gradually decreases from 2s to 1.5s.
• S-3: at t = 1s T̂t switches from 2s to 3s.
• S-4: at t = 1s T̂t switches from 2s to 1.5s.

All four scenarios are simulated with a moving target with a
random positive velocity ẋg ∈ [0, 0.5] at every time instant
along both the DOFs. The goal position is updated in real-
time based on a simple estimate from equation (22). The
DMP system is simulated with a velocity feedback from the
moving goal based on the transformation system in (21). For
all the scenarios, the real-time behaviour of DMP systems
with both exponential and polynomial canonical systems
described by (2) and (15) respectively are shown in figure
4. The behavior of their corresponding adapted canonical
systems is shown in figure 3.

In all four scenarios, the DMP trajectories converge
smoothly to a moving goal as shown in figure 4. The
trajectories generated by both DMP systems with standard

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s]

1.5

2.0

2.5

3.0

3.5

̂ T t
[s
]

S-1
S-2
S-3
S-4

Fig. 2. The change in desired execution time T̂t for (S-1 to S-4).
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Fig. 3. (a) - (d) represent behaviour of the canonical systems for S-1 to S-
4 respectively. The dashed lines represents the ideal DMP profile when the
final desired execution time T is known at t = 0. The solid lines represent
the real-time behaviour of the canonical system based on the control law u
given only the current T̂ . The red and blue lines corresponds to the standard
exponential and the proposed polynomial canonical systems respectively.
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1.5
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0.0 0.5 1.0 1.5
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x2
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Fig. 4. (a) - (d) represent the trajectory generated by their corresponding
transformation systems for S-1 to S-4 respectively. The dashed lines
represents the ideal DMP profile when the final desired execution time
T and exact end position of goal xg(T ) are known at t = 0. The
solid lines represent the real-time behaviour of DMP based on the adapted
canonical system and the green dotted lines represents the trajectory of the
moving target with star shape denoting its final position. The red and blue
lines correspond to the standard exponential and the proposed polynomial
canonical systems respectively.

exponential and the proposed polynomial canonical systems
in figure 4 are very similar in its shape characteristic. The
adaptation to real-time changes in T̂ can be seen in figure 3
from the evolution of canonical systems. For gradual changes
in T̂ as shown in figures 3.a and 3.b, both the exponential
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]

Fig. 5. Performance comparison of DMP system with the two canonical
systems, the standard exponential system (in red) and the proposed poly-
nomial canonical system (in blue). The lines denotes the final execution
time T for the DMP system when perturbed with a step change T̂ from 2s
to 1s and from 2s to 3s evaluated every 0.05 seconds for t ∈ [0, 1)s and
t ∈ [1, 2)s respectively.

and polynomial canonical systems adapts smoothly with the
desired values of τ and converges to the moving goal exactly
at the final desired execution time T = 3.6s and T = 1.5s
for S-1 and S-2 respectively. In response to a negative step
change in T̂ in S-3 as shown in figure 3.c , the exponential
canonical system converges to the moving goal t = 2.98s
with an error of 0.02s, whereas the proposed polynomial
based canonical system converges exactly at the final desired
execution time T = 3s. But in S-4 in response to a negative
step change in T̂ as shown in figure 3.d, both canonical
systems adapts with the desired values of τ and converges
to the moving goal exactly at final desired execution time,
T = 1.5s.

However, these simulations do not reflect the effect of
larger changes in the execution time during the later phases
of execution. As the difference is expected to become more
pronounced when changes are made on T̂ towards the later
stages of trajectory execution, a second set of simulations
are conducted to evaluate the real-time performance of
the approach during the DMP execution. Two scenarios of
step changes in T̂ are considered in the simulation with a
stationary target, xg = (1, 1), all other system parameters
remain unchanged.

Negative step change in T from 2s to 1s: This step change
in T is simulated with time step of 0.05s for t ∈ [0, 1).
The resulting performance and the corresponding error are
shown in figure 5 for t ∈ [0, 1]. The proposed polyno-
mial canonical system outperforms the standard exponential
canonical system, as seen by the increased difference towards
the later phases of DMP execution as shown in figure 5. Take
t = 0.75s, on changing T from 2s to 1s the adaptive version
of standard exponential canonical system takes 1.38s to finish
execution which is a 0.38s delay over the desired time. But
with the proposed polynomial canonical system the DMP
system converges to the goal at exactly 1s.

Positive step change in T from 3s to 2s: This step change
in T is simulated at every 0.05s for t ∈ [1, 2): The resulting
performance and the corresponding error are shown in figure
5 for t ∈ [1, 2]. Here the proposed polynomial canonical sys-
tem outperforms the standard exponential canonical system.
Again, this difference increases towards the later phases of

DMP execution as shown in 5. Take t = 1.45s, on changing
T from 2s to 3s the adaptive version of standard exponential
canonical system takes 2.95s to finish execution which is
0.05s earlier that the desired time. But with the proposed
polynomial canonical system the DMP system converges
to the goal at 2.99s. At t = 1.75s, this is 2.8s and 2.95s
respectively.

B. Experiments

To validate the performance of the proposed canonical
system, experiments were conducted on a UR5 robot manip-
ulator for the task of approaching a moving object. The 3D-
cartesian position of the object is tracked in real-time using a
Polaris Vicra optical tracking system. A PID trajectory track-
ing controller is utilized to track the trajectories generated
by the DMP. In the experiments, the proposed polynomial
canonical system is evaluated for its performance on reaching
a moving object within a specified time which is varied dur-
ing the DMP execution similar to the simulations conducted.
The experiment consists of an object moved around by a
human operator and the UR5 robot manipulator reaching
it from a fixed starting pose. The object is moved around
slowly in order to keep the robot velocity within safe limits.
An open-source robot control framework developed for UR
robots is used for controlling and communicating with the
UR5 robot [29]. A demonstrated robot trajectory is collected
using the optical tracking system with a static goal as shown
in figure 7. The time duration of the demonstration trajectory
is Td = 10s. The sampling time for all the experiments
is 60Hz, the position tolerance for DMP convergence in
Cartesian space is defined to be µ = 0.01, other system
parameters are K = 800, α = 1/2Td, N = 100, kτ = 1,
D = 2

√
K and δ = 0.01. Four sets of experiments (E-1 to

E-4) were conducted similar to the simulations (figure 8),
• E-1: T̂t gradually increases from 35s to 50s.
• E-2: T̂t gradually decreases from 50s to 35s.
• E-3: at t = 15s, T̂t switches from 25s to 40s.
• E-4: at t = 20s, T̂t switches from 50s to 40s.

Fig. 6. The experimental setup with UR5 robot and an object fitted with
motion capture markers, which is moved around manually by hand.
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Fig. 7. Demonstration trajectory used for learning the DMP. In (a)
time evolution of the Cartesian position (x, y, z) is shown and in (b) the
corresponding 3D trajectory in the Cartesian space is shown.
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Fig. 9. (a) - (d) represents the 3D Cartesian trajectory generated by the
DMP in red and trajectory followed by the UR5 robot in blue for E-1 to E-4
(the blue and red trajectories approximately overlap). The trajectory of the
target object is shown in green with star shape denoting its final position.
The target trajectory is noisy as the target object is moved around by hand.

The moving object scenario is created by moving the target
by hand approximately within a Cartesian space of 1.0m,
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Fig. 10. Behaviour of the polynomial canonical system for E-1 to E-4.

0.3m and 0.3m along x, y and z directions respectively.
The movement of the object is tracked at approximately
60 Hz using the optical tracking system. The corresponding
velocity and estimate of the goal position are fed back to
the DMP system. Figure 9 and 10 show the generated DMP
trajectories and the behaviour of the polynomial canonical
system respectively for E-1 to E-4. We found the exper-
imental results to be very consistent with the simulation
results. The experimental results validates the usefulness of
the proposed polynomial canonical system in adapting the
DMP to the changes in desired task execution time. In all
the four trials, the difference between the desired execution
time and final execution time was within ±0.1s which is
acceptable compared to the total execution time of the task.

V. CONCLUSIONS
In this study, we extended the DMP framework with

real-time control over the execution time while preserving
the shape characteristics. We used a DMP formulation fo-
cused on a moving target scenario, incorporating the target’s
velocity feedback and a simple estimation of the target’s
final position based on its current position and velocity.
We formulated an adaptive law for the standard exponential
canonical system and an alternative polynomial canonical
system to have better real-time control on the task execution
time even during the later phases of DMP execution. We
compared the proposed polynomial canonical system with
the standard exponential canonical system for their relative
performance. On comparing both the canonical systems,
the proposed polynomial canonical system was found to
perform better in all the simulations conducted. The proposed
polynomial canonical system was evaluated on an experiment
using a UR5 robotic manipulator with a moving target.
The extended DMP framework is useful in various robotic
tasks with strict task execution time requirements, when the
desired task execution time is unknown prior to performing
the task itself. This requirement is very relevant to robotic
tasks involving moving targets such as industrial handling of
moving parts, and human-robot collaborative tasks.
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