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A Semi-Autonomous Tele-Impedance Method based on Vision and Voice
Interfaces

Yu-Chih Huang, David A. Abbink, and Luka Peternel*

Abstract—1In tele-impedance the human can control the
impedance of the remote robot through various interfaces, in
addition to controlling the motion. While this can improve
the performance of the remote robot in unpredictable and
unstructured environments, it can add more workload to the
human operator compared to the classic teleoperation. This
paper presents a novel method for a semi-autonomous tele-
impedance, where the controller exploits the robot vision to
detect the environment and selects the appropriate impedance.
For example, if vision detects a fragile object like glass, the
controller autonomously lowers the impedance to increase the
safety, while the human is commanding the motion to initiate
and perform the interaction. If the vision algorithm is not
confident in its detection, we developed an additional verbal
communication interface that enables the human to confirm
or correct the autonomous decision. Therefore, the method
has four modalities: (i) perturbation rejection mode, (ii) object
property detection mode, (iii) verbal confirmation mode, (iv)
voice control mode. We conducted proof-of-concept experiments
on a teleoperation setup, where the human operator performed
position tracking and contact establishing tasks.

I. INTRODUCTION

Tasks in hazardous or remote environments often require
robots to perform them because such environments are unsafe
or hard to reach for humans. Moreover, some of these
tasks involve the interaction with dynamic environments,
which could be too complex for fully autonomous robots to
handle with the current artificial intelligence (AI) capacity.
To make robots able to interact with dynamic environments,
human adaptability and cognitive capabilities are introduced
into robot systems through human-in-the-loop control. One
common way to achieve this is through teleoperation. In
the classic teleoperation, the human operator can control
the motion of the slave robot remotely through a master
device. However, the human operator can only control the
motion of the robot and not its impedance, therefore it can
damage the unstructured environment with high interaction
forces, or cause unstable conditions when interacting with
unpredictable environments.

In order to address the limited ability to interact with
dynamic environments in the classic teleoperation, a concept
called tele-impedance was developed that allows the human
operator to control the impedance of the robot [1]. Tele-
impedance includes an additional command channel that
enables the human to control the impedance of the remote
robot. This is realised with various interfaces, such as hand
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grip sensor [2], Electromyography (EMG) or [1], [3], [4]
push-button [5]. Although using tele-impedance allows the
robot to better interact with dynamic environments, it may
significantly increase the workload of the human operator
compared to the classic teleoperation setup, since he/she
has an additional control task with respect to the classic
teleoperation.

This problem can be alleviated by robot autonomy and
shared control methods to offload the impedance control
task from the human operator. There are numerous studies
dedicated to developing autonomous impedance controllers,
however only a few can be applied in teleoperation. Most
of the autonomous impedance controllers developed with
learning methods, such as reinforcement learning [6] or
learning from demonstration [7], [8], cannot be used in
teleoperation systems because the impedance is learned with
respect to a fixed trajectory. While some methods take into
account variability of multiple trajectories [9], the inferred
impedance behaviour is not always optimal for interaction
tasks [5]. This is not compatible with teleoperation because
the human operator changes the trajectory rapidly. On the
other hand, adaptive impedance controllers can be potentially
applicable to teleoperation. Past research in this direction
developed adaptive impedance controllers for autonomous
robots based on the measured forces from the interaction with
the environment [10]-[13]. However, such controllers can
change the impedance only after physical interaction with the
environment has been established, which might not be safe
in situations where the environment is unknown, unstable or
fragile.

To solve this problem, we propose and develop a novel
vision-based autonomous impedance control method for tele-
operation that can adjust the impedance of the remote robot
prior to physical contact. The two autonomous modes are
incorporated within the vision-based autonomous impedance
controller. In perturbation rejection mode, the controller uses
visual object detection to predict incoming perturbations in
order to stiffen up prior to perturbation. In object property
detection mode, the controller uses object property detection
algorithms to acquire environment information without the
need of physical contact. For example, if vision detects a
fragile object like glass, the controller autonomously lowers
the impedance to increase the safety, before the human
operator initiates the interaction by commanding the motion.

Vision and visual feedback have been successfully used in
robot learning, where the aim is to make robots autonomous.
For example, the method [14] used visual feedback to enable
the robot to learn and adjust complex behavioural semantics.
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Visual feedback was also used to infer the behaviour in
interaction tasks [15], [16]. Nevertheless, to the best of
our knowledge, it has not yet been exploited to adjust the
impedance in semi-autonomous teleoperation, in particular
based on the properties of the environment with which the
remote robot should interact.

In addition, a completely autonomous impedance con-
troller is not a desirable approach in human-in-the-loop
systems, where the human operator cannot override its
decision, when it is not correct due to unreliable sensory
data. In such a case, a shared control method is required
to provide the human with a suitable degree of authority
over the robot autonomy. Many studies investigated the
concept of shared control in teleoperation with different
purposes, such as teaching through shared control [17]-[19],
assistive shared control [20]-[22], or collaborative shared
control [23]. However, most of these studies focus mainly on
motion control, and only a few considered impedance control
[31, [12]. Although in [3] and [12] impedance control was
considered, both studies do not have vision-based impedance
capability and require robots to perform physical interactions
with the environment to make adjustments of impedance.

To facilitate a degree of shared control between the hu-
man operator and the vision-based autonomous impedance
controller, we developed a voice-based impedance control
interface that adds two additional modalities to the method.
Verbal confirmation mode enables the human operator to
interact with the vision-based autonomous impedance con-
troller and override its decisions if necessary. This is par-
ticularly crucial when the vision detection algorithm has
lower estimation accuracy or when it is not certain in its
decision. For example, when the vision detection is uncertain
due to unreliable sensory data, the controller prompts the
human operator for a confirmation through verbal interaction.
Finally, if the human for some reason wishes to set the
impedance himself/herself, voice control mode delegates the
impedance control entirely to the human.

To demonstrate the main features of the proposed method
we conduct proof-of-concept experiments. The experiments
are performed on a teleoperation setup with a Force Di-
mension Sigma7 haptic device as the slave robot, a com-
puter mouse as the master device, and a camera for visual
feedback. The experiments consist of two tasks that show
the performance of each modality of the proposed method:
rejecting external perturbations in a position tracking task
and establishing contact with different objects.

II. CONTROL METHOD
A. General Control Scheme

The block scheme of the proposed vision and voice based
semi-autonomous impedance control method is shown in Fig.
1. The human operator controls the motion of the robot
through a master device. The method has four modalities:
(1) perturbation rejection mode; (i1) object property detection
mode; (iii) verbal confirmation mode; (iv) voice control
mode. The two autonomous modes (mode i, ii) are part of the
vision-based autonomous impedance controller, where the

controller processes the data from the camera with vision
algorithms and determines the proper impedance command
for the robot. The impedance command is generated by a
Cartesian impedance control method. During the teleoper-
ation, the human operator can assess the situation through
visual feedback and, if needed, activate the voice-based
impedance control interface to override the robot impedance
value with the verbal confirmation mode (mode iii) or the
voice control mode (mode iv).

B. Robot Stiffness Control

We used the Cartesian impedance control method on
Sigma7 robot, which has 7 degrees of freedom (DoF).
However, in this study we only focused on controlling the
impedance in translational axes of Cartesian space, therefore
the following derivation only considers 3 DoF. The robot’s
physical interaction at the end-effector was controlled as:

fZK(iL‘d—SCa)-i-D(:itd—w.a) (D

where f € R3 is the end-effector force exerted by the robot
on the environment, z; € R? and z, € R3 are the desired
and the actual end-effector position of the robot. The stiffness
matrix K € R3%3 is controlled by either the autonomous
impedance controller or the human operator as diag{k}
where k = [k, k, k.] . The damping matrix D € R3*3
was designed based on the stiffness matrix K at each time-
step as:

D =2D:VK 2)

where D, € R3*3 is a diagonal matrix that contains the
damping factors, which were set to 0.7 for critical damping.

III. VISION-BASED AUTONOMOUS IMPEDANCE
CONTROLLER

A. Perturbation Rejection Mode

If position errors can lead to unstable conditions or damage
to the environment, it is important for the robot to closely
follow the trajectory in a position tracking task. For example,
in a drilling task, the robot should hold its position perpen-
dicular to the drilling direction under external perturbations
in order to minimise the damage on the environment and
prevent breaking the drill. To reject perturbations, the robot
needs to increase its stiffness when a perturbation or its po-
tential cause is detected. The proposed perturbation rejection
mode detects the incoming perturbation through vision and
increases the impedance beforehand in order to minimise
its effect on the position tracking error. The advantage of
the proposed perturbation rejection mode is that it does not
require a physical contact to adjust the impedance and can
do so before any interaction occurs, unlike most of the
existing adaptive impedance controllers mentioned in the
introduction.

In order to identify the perturbation with vision, we em-
ployed an object detection algorithm to detect any unknown
objects that are moving within the camera view, and an
object tracking algorithm to track the position of the robot.
The system identified the perturbation when the minimum
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Fig. 1: Block diagram of the semi-autonomous impedance control method based on vision and voice interfaces. The bottom block (red) is the teleoperation
framework for motion control. The upper half is the impedance control loop. The autonomous impedance control block (blue) contains the vision-based
autonomous impedance controller with the perturbation rejection mode ((mode i) and the object property detection mode (mode ii). The human impedance
control block (green) contains the voice-based impedance control interface with the verbal confirmation mode (mode iii) and voice control mode (mode

v).

distance between the detected object motion and the robot
is less than a preset safe distance. The robot then increased
its stiffness in order to minimise the effect of disturbance on
the position tracking task.

B. Object Property Detection Mode

Humans often use their visual cues and experience to
estimate the properties of an object, and adjust their neuro-
muscular impedance to interact with it in a natural manner.
Inspired by this behaviour, we designed the object property
detection mode to adjust the impedance according to the
detected object and its material.

We used two databases from the literature for object
material recognition: Flickr Material Database (FMD) [24]
and the Materials in Context Database (MINC) [25]. FMD
contains 10 categories with 100 samples in each category,
while MINC contains 23 categories with at least 14000
patches in each category. We selected ten materials (Glass,
Leather, Metal, Paper, Plastic, Stone, Concrete, Wood, Ce-
ramic, Rubber) from these databases and categorised them
into groups by their properties: elasticity and fragility. Based
on the material properties, we established the relationship
between the material and the desired robot impedance, which
was used by the autonomous impedance control method.

The results are shown in Table I. We categorised the
selected materials into three groups: “Rigid, Fragile”, "Rigid,
Non-Fragile”, “Elastic, Non-Fragile”, where each group was
assigned a corresponding impedance value. For example, if
the material is in the "Rigid, Fragile” group, the robot should
interact with a low impedance in order not to damage the
object. If the material is in the "Rigid, Non-Fragile” group,
the robot can have a higher impedance as there is less chance
of damaging the object. If the material is in the “Elastic, Non-
Fragile” group, the robot should have a medium impedance
to ensure a sufficient damping that can stabilise the elastic
property of the object.

TABLE I: Material property and prescribed impedance

Material | Elasticity Fragility Impedance
Glass Rigid Fragile Low
Leather Elastic Non-Fragile Medium
Metal Rigid Non-Fragile High
Paper Rigid Fragile Low
Plastic Rigid Non-Fragile High
Concrete Rigid Fragile Low
Stone Rigid Non-Fragile High
Wood Rigid Non-Fragile High
Ceramic Rigid Non-Fragile High
Rubber Elastic Non-Fragile Medium

Ideally, the object property detection algorithm should be
a material recognition algorithm. However, material recogni-
tion algorithms are not as widely available, well developed
and precise as object detection algorithms. Since this study
did not focus on vision and visual recognition itself, but
rather on the impedance control method, we instead used an
object detection algorithm YOLOvV3 and linked the material
to a specific detected object.

I'V. VOICE-BASED IMPEDANCE CONTROL INTERFACE

A. Verbal Confirmation Mode

To deal with situations where the detection algorithm
might not be sufficiently accurate or reliable, we developed a
verbal confirmation mode within the voice-based impedance
control interface. This mode allows the robot to offload the
impedance control task, but the human operator still has the
ability to intervene when the robot is not confident. It is
activated automatically by the robot control system when the
confidence score of the detection is lower than a predefined
threshold, or when the robot incorrectly identifies the object.
The robot then verbally announces the detected material to
the human operator, who is required to either confirm the
detection results by saying ’yes” or override the results by
saying the correct material.



Fig. 2: Photos from the experiments. The photo on the top shows the
human operator controlling the slave robot through the master device
(computer mouse). The photo on the bottom left shows the position tracking
experiment. The humanapplies physical perturbations on the end-effector of
the robot. The photo on the bottom-right shows the contact establishing
experiment, where the human operator controlled the robot to approach the
object. The robot base frame orientation is illustrated by the blue arrows for
y-axis and z-axis. The x-axis follows the right-handed coordinate system.

The object property detection mode and the verbal confir-
mation mode both have the same drawback; the impedance
values can only be switched discretely between the pre-
defined values. This can be sufficient in many cases. For
example, when the robot is approaching an object, setting an
approximate impedance level is usually sufficient to establish
a safe contact for a given material. However, if the interaction
task is very complex after the contact is established, the
human operator might need to further adjust the impedance
in a continuous fashion.

B. Voice Control Mode

To complement the verbal confirmation mode, we devel-
oped the voice control mode that gives the human operator
the ability to adjust the impedance value continuously and
hands-free. Unlike the verbal confirmation mode, which is
activated automatically based on the robot vision confidence,
the voice control mode can be activated or deactivated by
the human operator through language commands (i.e., "acti-
vate/deactivate voice control”). Once the mode is activated,
the impedance control is assigned entirely to the human
operator, who can then adjust the impedance by making high-
pitch or low-pitch tones; high-pitch increases the impedance,
while the low-pitch decreases the impedance. The proposed
voice control mode changes the impedance value with a
fixed rate (i.e., change of diagonal elements of K), which
is determined by a predefined increment size parameter.
The audio data is processed at each time-step to adjust the
impedance in the following manner:

1) Receive audio data from the microphone.
2) Perform fast Fourier transform (FFT) on the audio data.
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Fig. 3: Experiment results using the perturbation rejection mode (mode i)
during the position tracking task. The blue shaded area shows when the
robot is perturbed with the mode disabled. The red shaded area shows
when the robot is perturbed with the mode activated. The first graph shows
the commanded impedance K. The second graph shows the external force
exerted on the slave robot. The third graph shows the end-effector position
of the slave robot (zs, ys and zs).

3) Get the top three nominal frequency signals, f1, fo, f3
(large to small amplitude).

4) Calculate the average amplitude of f1, fa, fs.

5) If the average amplitude is less than a noise threshold,
then no impedance changes will be made. Otherwise,
the voice command frequency f. will be calculated to
best represent the current tone: f. = M

6) If f. is higher than the threshold frequency fin, the
impedance K increases by the predefined increment
size. In the opposite case, the impedance K decreases
by the increment size.

V. EXPERIMENTS

To demonstrate the proposed vision and voice based semi-
autonomous impedance control method in real-world appli-
cations, we performed several proof-of-concept experiments
on a teleoperation setup (see Fig. 2). The setup included
Force Dimension Sigma7 as slave robot, a computer mouse
as a master device, and a camera for robot vision. The
human operator controlled the y — z plane motion of the
Sigma7 by the computer mouse. Force feedback was not
important to this study and was therefore not implemented.
The method derived the appropriate impedance from the
processed camera feed and sent the command to the Sigma7.
The experiments involved two tasks, where adjusting the
impedance of the robot is crucial or beneficial: a position
tracking task and a contact establishing task.

A. Position Tracking Task

In the position tracking task, the goal was to control
the robot to hold a reference position during the external
perturbations. Ideally, the robot should be compliant to
avoid large interaction forces that might damage the robot.
However, in some cases, where small position errors could
lead to unstable or dangerous conditions (e.g., drilling task
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Fig. 4: Experiment results using the object property detection mode (mode ii) during the contact establishing task. The green shaded area indicates when
the human operator is moving the slave robot by teleoperation. The yellow shaded area indicates when the robot is perturbed with external forces. The
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the slave robot end-effector. The bottom right graph shows the components of Fegy.

or surgical task), the priority is to minimise position error
caused by the perturbations, therefore the robot impedance
should be increased in the direction of the perturbation. By
considering such cases in our experiment, the strategy of the
perturbation rejection mode was designed to reject external
perturbations by stiffening up the robot.

The human operator controlled the robot position in or-
der to hold the desired reference position with the initial
impedance K set to 100 N/m. The human then applied an
external force mainly along the x-y plane to perturb the robot.
When the perturbation was detected by the proposed vision-
based method, the controller increased the impedance K
from 100 N/m to 400 N/m. The results of the experiment
are shown in Fig. 3. The robot was first perturbed without
the perturbation rejection mode activated (blue area). Then
the robot was perturbed again with approximately the same
external force while the perturbation rejection mode was
activated (blue area). The displacement difference under
perturbations can be seen in the third graph. The displace-
ment of the second perturbation was much smaller than the
displacement of the first perturbation, because the vision-
based impedance controller increased the robot impedance
as result of detected perturbations.

B. Contact Establishing Task

In the contact establishing task, the goal was to approach
and establish contact with different objects. If the object
property is unknown to the human operator due to lack of
visual feedback, or the exact position of the object is un-
known due to sensory uncertainty, the robot should approach
the object slowly and compliantly. However, if the robot

can obtain knowledge about the object property beforehand
through our system, it can set the appropriate impedance
and approach the object slightly faster and without a con-
siderable risk of unsafe interaction. During this task, the
object property detection mode and the verbal confirmation
mode were used to approach different objects with the proper
impedance. Additionally, the voice control mode was used by
the human operator to command the impedance continuously
while interacting with the objects.

Different objects were placed in front of the robot, with
which it had to interact. The human operator controlled the
motion of the remote robot and approached each object. Prior
to contact, the proposed vision-based autonomous impedance
control method changed the impedance of the robot ac-
cording to the detected object through visual feedback. To
visualise the commanded impedance for the results, the
robot was perturbed by the human with approximately the
same amount of force. The purpose of these experiments
was to demonstrate different modes of the semi-autonomous
impedance control method in three different scenarios, with
different amounts of robot autonomy.

In the first scenario, the vision algorithm had a good
accuracy (high confidence in detection) and therefore did
not need human intervention. The object property detection
mode was demonstrated by establishing contact with three
different objects that represent metal, glass, and rubber. The
results are shown in Fig. 4. The top left graph shows that
the robot had an initial impedance K = 100 N/m, which
later changed to 300 N/m, 50 N/m, and 200 N/m based on
the detected material (metal, glass, and rubber, respectively).
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Fig. 5: Results of the second scenario voice confirmation mode (mode iii).
The figure description is similar to that of Fig. 4.

The bottom left graph shows that approximately 3N of
external forces were applied to the robot after the impedance
value changed. The effect of the impedance change can be
visually confirmed by observing the difference in position
displacements under the same amount of force (the yellow
shaded area in the top right graph).

In the second scenario, the vision algorithm had poor
performance and required the human operator to confirm
the detected material or command the correct material.
The scenario included two cases: (a) the vision has low
confidence in detection of the new object, (b) the new object
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Fig. 6: Results of the third scenario that demonstrates the voice control mode
(mode iv). The top graphs show the voice command frequency f. and the
threshold frequency fi. The bottom graphs show the desired impedance
profile kg4 and the impedance commanded by the user k.

is made of plastic but the vision falsely identifies it as glass.
The verbal confirmation mode was used to handle both cases
of this scenario before the robot physically interacted with
the new object. The results are shown in Fig. 5. The robot
had an initial impedance K = 100 N/m in both cases. In
(a), the impedance changed to 50 N/m after confirming the
detected glass object by saying “yes”. In (b), the impedance
increased to 300 N/m after overwriting the false detection
by saying “’plastic”.

In the third scenario, the human operator had to take
over the impedance control and change the impedance
continuously. This scenario imitates the situation when the
vision is unavailable (e.g., dark room) or when switching
discretely between the predefined impedance values is no
longer sufficient for the interaction task. The human operator
was asked to command a reference impedance profile. The
results in Fig. 6 show that the impedance increases when the
extracted human voice frequency f. > fi,, and decreases
when f. < fin.

VI. DISCUSSION

The main advantage of the vision-based autonomous
impedance controller is that it can adjust the impedance of
the robot before making contact with the environment. The
object property detection mode can adjust the impedance
according to the detected material using visual feedback. The
perturbation rejection mode can detect the perturbation and
increase the impedance of the robot prior to physical contact
in order to guarantee a precise position tracking during the
perturbation. If the environment is fragile or unstable, ad-
justing the impedance prior to contact can minimise chances
of damage to the environment, and can prevent entering
unstable conditions. On the other hand, the existing adaptive
impedance control methods [10]-[13] adjust the impedance
based on the measured physical interaction through force or
proprioceptive sensors on the robot, which can be risky in
fragile or unstable environments.



However, there are also disadvantages to the two vision-
based modes. The disadvantage of the perturbation rejection
mode is that the interaction forces cannot be measured,
therefore force sensor-based methods are better suited for
force tracking tasks. The disadvantages of the object property
detection mode are that the detection results can sometimes
have low accuracy, and that the impedance changes are
discrete.

These disadvantages were for the most part addressed
by developing the voice-based interface with two modes
that allow the human operator to interact with the vision-
based autonomous impedance controller. The human operator
can correct the object detection results with the verbal
confirmation mode when the vision algorithm is performing
poorly. On the other hand, the voice control mode enables the
human operator to take full control over the impedance when
changing the impedance discretely is no longer sufficient.

Unlike the state-of-the-art interfaces based on EMG [1],
grip force [2] and button [5], the voice-based impedance
command interface does not require a limb to operate it and is
essentially a hand-free approach. It was shown that the EMG-
based interfaces have a coupling effect between between
the force feedback (if implemented) and the commanded
stiffness; i.e., physical interaction with the limb of the human
operator can affect the commanded impedance [26]. Since
the proposed method is based on vision and voice, there is
no direct physical contact between the human limb and the
impedance-command interface and such effect is not present.

In future, we will perform a human factors study that
will go beyond this proof of concept. Furthermore, we will
introduce several improvements to the proposed method. One
such improvement can be in the form of a more complex
object trajectory prediction system for the perturbation re-
jection mode. Additionally, the developed material property
mapping can be expanded to include more properties (i.e.,
beyond elasticity and fragility).
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