
Reward Signal Design for Autonomous Racing

Benjamin Evans1, Herman A. Engelbrecht1 and Hendrik W. Jordaan1

Abstract— Reinforcement learning (RL) has shown to be
a valuable tool in training neural networks for autonomous
motion planning. The application of RL to a specific problem
is dependent on a reward signal to quantify how good or
bad a certain action is. This paper addresses the problem
of reward signal design for robotic control in the context
of local planning for autonomous racing. We aim to design
reward signals that are able to perform well in multiple,
competing, continuous metrics. Three different methodologies
of position-based, velocity-based, and action-based rewards are
considered and evaluated in the context of F1/10th racing. A
novel method of rewarding the agent on its state relative to an
optimal trajectory is presented. Agents are trained and tested in
simulation and the behaviors generated by the reward signals
are compared to each other on the basis of average lap time
and completion rate. The results indicate that a reward based
on the distance and velocity relative to a minimum curvature
trajectory produces the fastest lap times.

I. INTRODUCTION

Neural networks, trained from experience with rein-
forcement learning (RL), have shown to be effective in
many robotics applications including motion control for
autonomous systems [1], [2]. Reinforcement learning enables
such systems to use a reward signal to learn from experience
without requiring expert demonstrations, or knowledge of
the system dynamics [3]. The design of a suitable reward
signal for a given task is very important because the learned
behavior is completely dependant on the reward signal that is
used in training. While it is trivial to encode binary outcomes
into a reward signal, it is difficult to quantify behavior across
multiple, competing, continuous objectives such as fastest
time, or minimum effort.

We address the problem of reward signal design for robotic
systems with competing binary and continuous metrics. The
reward signal design problem is studied in the context of
local planning for autonomous racing where the challenge
is to generate navigation references to avoid un-mapped
obstacles, while following a global race line, and achiev-
ing a competitive race time. We consider three types of
rewards, namely, position-based, velocity-based, and action-
based. Agents trained with each type of reward are evaluated
in simulation in a F1/10th car racing simulator and the
behavior of each agent is analysed and compared. This paper
contributes a discussion of different reward methodologies, a
simulated comparison of several reward candidates, and the
novel idea of rewarding agents relative to a precalculated
minimum curvature path.
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Fig. 1. Reinforcement Learning Framework: A RL agent uses a state
vector to select an action that is implemented on a racing car. We ask the
question of how to reward the agent based on the cars performance?

The paper starts by looking at related work in learning
based methods for motion planning in Section II. In Section
III we present the theoretical design and discussion of reward
signal design. Section IV reviews the navigation architecture
stack that we develop and present our candidate solutions
on in Section V. Sections VI and VII explain our evaluation
methodology and present the results.

II. RELATED WORK

There have been many attempts to create certain kinds
of robotic behavior using learning based method. We start
by studying mapless navigation methods [2], [4], [5], [6],
we briefly look at how imitation learning has been used
[7], and then investigate current learning formulations for
autonomous racing [8], [9], [10], [11].

The problem of navigation is to move a mobile robot from
a start position to and end goal without crashing. Solutions
to the navigation problem with RL have been well studied
and it has been shown that agents can be trained to avoid
obstacles from raw high-dimensional sensor readings, such
as images [5], and laser range finders [2], [4]. Much of
the the navigation literature is focused on the binary metric
of reaching the target and thus rewards task completion
and distance progress to the goal, while punishing crashing.
While such a reward signal is able suitable to generate task
completion, it is not well suited to continuous metrics such
as minimum time.
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A solution to improving the long-horizon navigation per-
formance of neural network planners is to use imitation
learning (IL) to train a neural network to copy expert
behavior. A model predictive controller (MPC) with full state
estimation, has been used as a teacher, to train a neural
network to avoid obstacles [7]. While IL is able to train
policies with good performance, it is limited to situations
where an expert is available and thus undermines the aim of
being able to learn from experience.

Several solutions have used RL agents as planners for au-
tonomous racing. The most common reward function which
has been used to train autonomous agents for racing is some
variation of rewarding velocity in the direction of the track
and punishing distance from the center line [8], [9], [10].
This is a similar idea to the popular cross-track and heading
controller from the control system literature. Another reward
which has been used is to punish the steering angle of the
vehicle with the aim of creating smooth minimum curvature
trajectories [11].

Reward signal design in navigation has been called a
“black art” [4], and it is been recently noted that there
remains a need to investigate how reward signals affect
driving performance [6]. We recognise the need to investigate
the effect of reward signals on driving behaviors by studying
the effect of different reward signals on autonomous racing
performance.

III. THEORETICAL REWARD DESIGN

Training a neural network is the process of transferring
knowledge form one form to another, namely, an intended
desired behavior to neural network weights and biases. RL
algorithms maximise the cumulative reward which the agent
receives. The intended desired behavior must therefore be
well represented by the reward signal.

Different methods of rewarding RL agents are discussed
in the context of applications where there is a minimum-time
reference path that should be followed with certain additional
un-mapped obstacles. The two behavioral objectives that are
considered are, the binary outcome of not crashing, and the
continuous metric of time to complete the task. To tackle
these two objectives, a reward framework with terminal
rewards for collision or completion are used in conjunction
with an intermediate reward at each step to encourage high
performance. The aim is to design a reward signal that trains
agents to produces high quality performance.

The first methodology considered is to reward the agent
based on the vehicles position at each timestep. The position
of the vehicle is used to reward the agent relative to the
progress towards the goal. The progress towards the goal
can be measured in racing as the progress made along a line
representing the race track. Figure 2 shows how the vehicles
location is projected onto a line and then used to measure
the progress. The distance-based reward aims to maximise
progress towards the target at each timestep.

The derivative of position, velocity, provides valuable
information about where the vehicles position in the next
timestep. Therefore, a reward based on the position and

st+1 − st

Fig. 2. Distance Based Reward: The vehicles position is projected onto
the line and used to measure the change in progress between time steps.

velocity is developed with an aim to better improve the long-
term performance of the vehicle. Taking the velocity into
account ensures that the planner is concerned with where
the vehicle is moving in the future, in addition to where
it currently is. A reward which has previously been used
in racing is to reward the vehicle for its velocity along a
reference line and punish the vehicles lateral deviation from
the line. The velocity along the line is calculated according
to the cosine of the angle difference between the vehicle and
the reference, and the distance is simply measured. Figure 3
shows how the cross-track distance, dc, and heading error,
θ, are measured. This reward signal uses the velocity of the
vehicle in addition to the vehicle’s position to calculate the
reward.

θ

dc

Fig. 3. Cross-track & Heading Reward: Illustration of how cross-track
distance, dc, and heading error, θ, are measured

The third methodology presented is to reward the agent
based on the actions that are selected. In racing, minimum
curvature trajectories are usually similar to time optimal
trajectories since one of the dominant constraints is the
lateral friction limit of the tyres and the track. The minimum
curvature path around a race track is the one in which the
vehicle steers as little as possible. We therefore consider
a reward signal that punishes steering with the aim of
generating minimum curvature paths.

In the existing literature, the distance based and cross-track
& heading error reward equations always use the center line
of the race track as the reference line. We introduce the novel
idea of using the minimum curvature path as a reference for
the reward since minimum curvature paths generally produce
faster lap times than merely following the center line. It is
thus expected that using the minimum curvature path as the
reference for the reward signal will improve the vehicles time
performance.

IV. PRELIMINARIES: NAVIGATION ARCHITECTURE

The reward signals are evaluated in using a standard
perception, planning and control stack [12]. A global planner



is used to generate a minimum curvature trajectory around
a track with a minimum time speed profile [13], [14]. The
planner uses the global plan and current sensor readings to
determine speed and steering references. A low level propor-
tional control system executes the navigation references on
the hardware.

Figure 4 shows the modification planner presented in [15]
that is used. The planner uses a path follower, in parallel
with a neural network to follow a reference trajectory while
avoiding obstacles. The path follower follows a precalculated
reference trajectory using the pure pursuit method with a
fixed look-ahead distance [16]. The neural network receives
the path follower references and the state of the vehicle and
is able to modify the steering reference to avoid obstacles.

Path Follower

Neural Network

Global
Plan

Vehicle
state

+

+ Modified
references

Fig. 4. Modification planner showing how a path follower and neural
network are used in parallel to avoid obstacles while maintaining a reference
trajectory.

The neural network is trained with reinforcement learning
to maximise a reward signal. At each step, the network
receives a state vector comprising of, the current velocity and
steering commands, the path followers calculated velocity
and steering commands, and the readings from the laser
range finders. The neural network (nn) then selects an action
which is used to modify the path follower (pf) references
according to, δref = δpf + δnn After each action has been
taken, a reward is calculated for the state-action pair.

V. REWARD SIGNAL EQUATION DESIGN

The ideas which were presented in Section III are now
developed into equations that can easily be calculated at each
step during training. We express the framework for all our
reward signals which punishes the agent for crashing and
rewards the agent for completing a lap as,

r(st, at) =


rcrash = −1 if crash
rcomplete = 1 if lap complete
rracing otherwise,

(1)

where rracing is the reward that we propose to encourage
optimal trajectories. All of our rewards are scaled to be
independent of vehicle or track used.

A. Baseline Reward: No Racing Reward

The baseline reward is to give no additional reward to
influence the trajectory, rracing = 0. Under this system, the
agent will simply learn not to crash and to finish laps.

B. Distance-Based Reward

The common navigation reward based on distance to a
goal is amended to be used for racing on a track to use the
progress the vehicle has made along the race track. We scale
the progress made between each time step according to the
total track length. We write the Distance reward as,

rracing = βdistance
(st+1 − st)

stotal
(2)

where st is the progress along the track at time t. The hyper-
parameter βdistance is the total amount of additional reward
which the agent will receive for completing the track. We
use both the track center line and minimum curvature path
as a reference line.

C. Cross-track & Heading (CTH) Reward

Racing behavior has been generated by using a reward
signal that rewards velocity along the track center line and
punishes the lateral deviation from the center line. The cross-
track & heading reward is written as,

rracing = βheading Vt cos θ − βcross-track dc, (3)

where, Vt is the speed of the vehicle, θ is the heading
error and dc is the cross-track error. The velocity is scaled
according to the vehicles maximum velocity and the cross-
track distance according to the width of the track. Once
again, the track center line and minimum curvature paths
are used.

D. Minimum Steering Reward

We attempt to generate minimum curvature paths around
obstacles by punishing the magnitude of the total steering
action. It is aimed for and expected that the RL algorithm will
learn a policy which generates trajectories with the lowest
curvature. The minimum steering reward signal is written as,

rracing = −βsteering |δref|, (4)

where δref is the steering angle which the local planner
outputs. The steering angle is scaled according to the vehicles
maximum steering angle.

VI. EXPERIMENTAL METHODOLOGY

A. Simulation Environment

We train and evaluate our vehicles in the context of
F1/10th autonomous racing. A simulator was custom built
so that the state of the vehicle on the map could be easily
accessed and used in the reward signals. 1 The simulator is
modelled on the OpenAI-Gym environment to take an action
at each time step, update the state according to stationary
transition dynamics, and then return the new state.

An F1/10th car is simulated using the kinematic bicycle
model [17] as in common in similar simulators [18]. The
simulator takes an action in the form of a velocity and steer-
ing command. A proportional control system implements the

1Our simulation code is available online at: https://github.com/
BDEvan5/RewardSignalDesign

https://github.com/BDEvan5/RewardSignalDesign
https://github.com/BDEvan5/RewardSignalDesign


velocity and steering commands by calculating and executing
the acceleration and the change in steering required. Table I
lists several important simulation parameters.

The simulator returns a state consisting of the location,
bearing, steering and velocity of the vehicle on the map and
10 sparse laser range finder readings. Figure 5 shows an
image of the vehicle and range finders on a section of race
track.

Fig. 5. Example scenario from simulator showing a non-holonomic vehicle
on a track and the relevant range finder readings. The range finders are
equally spaced in front of the vehicle and limited at a maximum range

We train and test our agents on a standard F1/10th map,
Porto, since it has a simple form. The track, shown in figure
7, is received as an occupancy grid and then converted to a
set of center line points with corresponding track widths and
normal vectors. The center line points and track widths are
used for the global trajectory optimisation, which produces
a set of time optimal way points [13].

Simulation Parameter Value
Number of range finders 10
Max range finder value 4 m

Obstacle size 0.6 m
Simulation time step 0.01 s

TABLE I
PARAMETERS USED IN THE SIMULATION

Each episode consists of a single lap of the track or until
the agent crashes. At the beginning of each episode, three
or four obstacles are randomly spawned along the track. We
use square obstacles with a length of 0.6m which is a similar
size to an F1/10th car.

B. Comparative Baseline Solutions
We compare our solutions to current successful planning

strategies. For Benchmark 1, we compare our work to a stan-
dard pure pursuit path follow that follows the precalculated
optimal trajectory. The reference trajectory given to the path
follower is the same as used in the network-based planners,
and uses a fixed look-ahead distance to calculate the steering
angle.

For Benchmark 2, we compare our solutions to the popular
“Follow the Gap Method” (FGM) [19]. The FGM identifies
a bubble around the nearest obstacle and then navigates away
from it into free space.

C. Neural Network Training
We select a training regime that is used to train all of the

local planners. The training regime is a controlled variable

that is kept constant for all the local planners that are
evaluated.

The Twin Delayed Deep Deterministic Policy Gradient
algorithm (TD3), is used as the reinforcement learning
algorithm [20]. The TD3 algorithm was selected because it
is currently one of the best RL algorithms for continuous
control. The original hyper-parameters for the algorithm are
used in our implementation.

We use simple neural networks that consist of two fully
connected hidden layers of 200 neurons each. After each
hidden layer, the ReLu activation function is applied. The
final action is passed through the tanh activation function to
give an output in the range [-1, 1]. The neural networks are
trained in mini-batches of 100 samples for a total of 100,000
steps. This number was selected as it was shown that the
networks have all converged by this many steps. Figure 6
shows a typical training graph for one of the agents trained.
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Fig. 6. Example training graph using the distance reward

The hyper-parameter values for each reward signal were
manually tuned to achieve high completion rates. Table II
notes the hyper-parameter values that we use so that our
results may be reproduced.

Hyper-parameter Value
βdistance 0.5
βheading 0.04
βcross-track 0.004
βsteering 0.01

TABLE II
HYPER-PARAMETER VALUES SELECTED FOR REWARD SIGNALS

VII. RESULTS

A. Benchmark 1: Performance Without Obstacles

Testing the agents on tracks with no obstacles shows how
well the planner is able to retain its ability to follow a path
when no obstacles are present. Table III shows the results
from each of the agents being tested on a track with no
obstacles.

All of the racing reward signals improved on the baseline
of no racing reward by producing faster lap times. The racing
reward signals also lead the vehicle to crash marginally more
often. The pure pursuit solutions is presented as a baseline
of the best time possible for the neural network-based local
planners.



Vehicle/Reward Name Time (s)
Reference Path Follower 7.2
No Racing Reward 10.7
Distance (center line) 8.5
Distance (min. curve line) 9.6
CTH (center line) 9.5
CTH (min. curve line) 8.5
Minimum steering 9.8

TABLE III
RESULTS FROM AGENTS TESTED ON THE PORTO RACE TRACK WITH NO

OBSTACLES

The distance (center line) and CTH (min. curve line)
rewards performed the best by achieving the lowest average
lap time of 8.5 seconds. Figure 7 shows a typical trajectory
taken by the CTH (min. curve) reward signal. The vehicle
learns to follow the reference trajectory closely, especially
around the corners of the track.

Fig. 7. Example trajectory of a vehicle trained with the CTH (min. curve
line) reward signal and tested on a track with no obstacles. The grey area is
the track, the green dashed line is the reference and the red line is the path
taken. The vehicle closely follows the reference in the corners and deviates
more during the straight section.

The distance (min. curve line) reward and the CTH
(center line) reward achieved times of 9.5 and 9.6 seconds
respectively. The minimum steering reward was the slowest
of the racing rewards with a time of 9.8 seconds. Figure 8
shows how the behavior which is learned by the minimum
steering reward appears to minimise the steering at each step
which results in the corners being taken very poorly.

Fig. 8. Example trajectory of vehicle trained with the steering reward
racing in Benchmark 1. The trajectory shows how the vehicle stays in the
middle of the track and takes a long path through the corners.

A trend which was observed to varying degrees in all
neural network planners is that they avoid the edges of the
track, which causes them to take turns more sharply and thus
more slowly. All of the example trajectories show how the
path taken by the vehicle is further away from the edge than
the reference trajectory.

B. Benchmark 2: Performance with Obstacles

Table IV shows the results of the agents on the race track
that they were trained on tracks with randomly spawning
obstacles. We tested our agents by running 1000 laps with
each of them and present the average times and % completion
rate.

Vehicle Avg. Time % Complete
Follow The Gap 9.8 84.0%
No Racing Reward 11.1 99.8%
Distance (center line) 10.0 95.8
Distance (min. curve line) 9.9 98.3
CTH (center line) 9.4 99.9
CTH (min. curve line) 8.8 94.3%
Minimum steering 10.2 97.0%

TABLE IV
RESULTS FROM AGENTS TESTED ON RACE TRACK WITH RANDOM

OBSTACLES

The Benchmark 2 results, show that all of our proposed
reward signals are able to decrease the lap time than not using
a racing reward. Our solutions are able to compete with the
Follow the Gap Method with two of the agents achieving
faster average times.

The CTH (min. curve line) reward signal achieves the
best average time of 8.8 seconds and lowest completion
rate of 94.3%. Figure 9 shows how the CTH (min. curve
line) vehicle typically maintains the reference path, while
deviating to avoid obstacles.

Fig. 9. Example Trajectory of CTH (min. curve line) avoiding obstacles.

The CTH (center line) reward comes a close second with
an average time of 9.4 seconds. The distance (center line)
reward produces and average time of 10.0 and the distance
(min. curve line) reward produces an average time of 9.9. It
is also noted that both of these reward signals have good
completion rates of 99.9 and 98.3%. These results show
that using the progress along a line as a reward produces
improved racing behavior while maintaining a high level of
safety.

The minimum steering reward achieved the slowest aver-
age time of the racing rewards test of 10.2 seconds. Figure
10 shows the typical behavior from the minimum steering
reward and how it takes a long path around obstacles which
results in slower lap times.

C. Discussion

The cross-track and heading (min. curve line) reward
signal has shown to outperform the other reward candidates
by achieving the fastest lap times with and without obstacles.



Fig. 10. Example trajectory from the minimum steering reward shows the
agent takes a long path to avoid obstacles.

Using a minimum curvature line as a reference was shown
to produce faster lap times than the center line as the reward
signal trains the network to closely follow the reference line
while avoiding obstacles.

Using the distance along the reference line is effective
and able to produce good racing behavior. It is suggested
that the reason that it is slower than the cross-track error
signal is because it only encodes the position of the vehicle
in the reward as opposed to position and velocity. While the
minimum steering reward signal is the worst performer of the
rewards considered, it still improves the racing performance.

The work presented here should be extended to designing
neural network-based agents that are capable of competitive
head-to-head racing. It is expected that this will involve
stacking multiple states and a reward signal that takes being
in the lead into account. A long standing question that
should be further investigated is the safe application of neural
network based planners. Safety based reward signals should
be explored to see how the safety of neural network based
planners can be improved.

VIII. CONCLUSION

In this paper, the question of reward signal design for
robotic systems with multiple, continuous, competing metrics
was studied. The three different reward methodologies of
rewards based on the position of the vehicle, direction of the
velocity and action selected were proposed and evaluated
in the context of F1/10th autonomous racing. The reward
signal candidates were evaluated in the context of F1/10th
autonomous racing and the results showed that the cross-
track & heading reward signal generated the fastest average
lap times while using no racing reward resulted in the fewest
crashes. The center line and a minimum curvature line were
used as the references for the position and velocity based
reward signals and the results indicated that uses a line of a
minimum curvature leads to faster lap times. These results
contribute to better understanding how reward signals can
be designed to generate specific kinds of behavior in robotic
systems.
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