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Abstract—Micro-aerial vehicles (MAVs) are becoming ubiq-
uitous across multiple industries and application domains.
Lightweight MAVs with only an onboard flight controller and
a minimal sensor suite (e.g., IMU, vision, and vertical ranging
sensors) have potential as mobile and easily deployable sensing
platforms. When deployed from a ground robot, a key parameter
is a relative localization between the ground robot and the MAV.
This paper proposes a novel method for tracking MAVs in
lidar point clouds. In lidar point clouds, we consider the speed
and distance of the MAV to actively adapt the lidar’s frame
integration time and, in essence, the density and size of the point
cloud to be processed. We show that this method enables more
persistent and robust tracking when the speed of the MAV or its
distance to the tracking sensor changes. In addition, we propose a
multi-modal tracking method that relies on high-frequency scans
for accurate state estimation, lower-frequency scans for robust
and persistent tracking, and sub-Hz processing for trajectory
and object identification. These three integration and processing
modalities allow for an overall accurate and robust MAV tracking
while ensuring the object being tracked meets shape and size
constraints.

Index Terms—Micro-aerial vehicles, MAV, UAV, UGV, detec-
tion, tracking, lidar detection, lidar tracking, adaptive scanning.

I. INTRODUCTION

Micro-aerial vehicles (MAVs) have seen an increasing adop-
tion across a variety of application domains in recent years [1].
Multiple works have been devoted to the navigation of MAVs
in GNSS-denied environments [2], and state estimation in both
single [3] and multi-MAV systems [4]. In this paper, we are
particularly interested in tracking and state estimation from
an external system, for those applications where MAVs are
deployed together with or from unmanned ground vehicles
(UGVs) [5], [6].

From the perspective of deployment within multi-robot sys-
tems, being able to track MAVs from UGVs enables miniatur-
ization and higher degrees of flexibility lowering the need for
high-accuracy onboard localization. A recent and significant
example of multi-robot system deployment in GNSS-denied
environments is the DARPA Subterranean challenge [7], [8].
Reports from participating teams indicate that localization and
collaborative sensing were among the key challenges, with
MAVs being deployed from UGVs dynamically during the
challenge. Since MAVs often rely on visual-inertial odometry
(VIO) for self and relative estate estimation [9], relying on
external lidar-based tracking can also extend the operability
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(a) Illustration of the field of view (FoV) coverage with different point cloud
integration times in a non-repetitive lidar scanning device.
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(b) Illustration of a ground robot tracking a micro-aerial vehicle (MAV) using
a limited-FoV solid-state lidar.

Fig. 1: Conceptual illustration of the field-of-view coverage with
different integration times on a Livox Horizon lidar (top) and its
application to tracking MAVs (bottom).

to low-visibility or other domains where VIO has inherent
limitations [10], [11].

Tracking and detecting MAVs has been a topic of interest for
researchers in recent years. First, owing to the increasing need
of identifying and detecting foreign objects or drones in areas
with controlled airspace such as airports [12], [13]. Second,
to optimize the utilization of MAVs as flexible mobile sensing
platforms [14]. This paper focuses on the latter use. Compared
to the existing literature, which relies mainly on vision-based
techniques [15], we provide a lidar-based solution that can be
utilized more independently of the environmental conditions.
Until recently, most 3D lidars provided relatively sparse point
clouds in terms of object recognition [16], with limited vertical
resolution in inexpensive devices. However, solid-state lidars
have recently emerged as state-of-the-art in terms of long-
range scanners featuring high-density point clouds [17]. The
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main caveat is the limited field of view (FoV) in most of these
devices [18], but solutions include utilizing multiple lidars or
correspondingly adjusting the position and orientation of the
robot base where the lidar is installed.

We are particularly interested in the problem of tracking
a MAV that is deployed from a ground robot. We assume
thus that the initial position of the MAV after take-off is
known. We also assume that its shape and size are known a
priori. We develop methods targeting solid-state lidars owing
to the higher density of the resulting point cloud even with
more limited FoV. Moreover, in these lidars, the concept of a
frame or scan frequency changes considerably. Similarly, as in
rotating 3D lidars, a frame in solid-state lidars can be naturally
related to a single revolution. With non-repetitive scan pat-
terns, lidars can output point clouds at adjustable frequencies
with varying FoV coverage, as illustrated in Fig. 1a. This
opens the door to new lidar perception methods that exploit
the possibilities of adaptively adjust the frame integration time
to better sense the objects. To the best of our knowledge,
this approach has not been previously studied. We apply
the proposed adaptive lidar scan integration methods within
the problem of a UGV tracking a MAV for external state
estimation, as conceptualized in Fig. 1b. While our focus is
on MAVs, the proposed methods can also be easily adapted to
detect foreign objects or intruder MAVs more accurately. We
first put our focus on single and known MAV detection, but
present generic methods that can be extended to multi-MAV
tracking as long as FoV limitations are accounted for.

The main contribution of this paper is twofold. We first
introduce a novel adaptive lidar scan integration method
enabling more accurate and reliable object recognition and
tracking from 3D point clouds, specifically applied to MAV
detection. In addition, we then define a multi-modal tracking
system that relies on processing point clouds resulting in
different integration times for higher accuracy and persistent
tracking, while validating the trajectories using a priori known
information about the MAV dimensions.

The remaining of this paper is organized as follows. In
section II, we review the state-of-the-art in MAV detection,
lidar-based object detection and tracking, and a handful of
existing works on the vision-, radar- and lidar-based MAV
detection and tracking. Section III then formulates the adaptive
scanning method, and how it applies to a MAV detection and
tracking problem. Section IV reports on our methodology,
and Section V describes experimental results with different
settings. Finally, we conclude this work and outline future
research directions in Section VI.

II. RELATED WORKS

This section reviews the literature in the areas of detection
and tracking of MAVs. Owing to the scarcity of works devoted
to lidar-based MAV tracking, we have focused on: (i) the
state-of-the-art in MAV detection, mostly vision-based; (ii)
lidar-based detection and tracking of small objects; and (iii)
detection of MAVs based on lidar or radar point cloud data.

A. Vision-based MAV Detection
Most of the work to data in tracking small objects and

MAVs has been related to vision-based approaches [19], [20],
[15]. Vision-based approaches can be classified among those
that rely on passive or active visual markers, and those that
detect and track objects in general, e.g., with traditional
computer vision or deep learning. In the former category, [20]
provides an example of tracking based on passive artificial
visual markers, which can be used to calculate the relative 3D
position of the MAV from a camera. On a different direction
aimed at MAV-to-MAV detection, Walter et al. presented
UVDAR, an ultra-violet (UV) solution for relative localization
in multi-MAV systems [21].

Regarding the latter category, the development of deep
convolutional neural networks (CNNs) in recent years has
facilitated the adoption within the domain of object detection
and tracking. Arguably, a significant portion of the state-of-the-
art in tracking is based on deep learning methods [22]. These
methods often offer significantly higher degrees of accuracy
and robustness. For instance, Vrba et al. have presented a
marker-less system for relative localization of MAVs [15],
which can be applied to detecting foreign or intruder MAVs.

The potential of depth cameras for detecting MAVs has also
been showcased in the literature. For instance, deep learning
models processing depth maps have been applied to tracking a
MAV and aiding it in navigating and avoiding obstacles [23].

While depth cameras can provide accurate location and
size measurements, and vision sensors, in general, are able
of robust tracking and relative positioning, our focus in this
paper is to work with lidars owing to their flexibility in terms
of environmental conditions, and because of their significantly
higher range and accuracy when compared to depth cameras.

B. Lidar-based object tracking
More in line with the research presented in this paper is

point-cloud-based tracking. While this generally refers to lidar
point clouds, some of the work in the literature is also devoted
to point clouds generated by stereo or depth cameras, or radars.
In general terms, traditional approaches to tracking in point
cloud data rely mostly on distance-based clustering [24].

Nonetheless, significant work has been carried out in the
area of deep learning voxel-based methods for segmentation
and detection of objects in 3D point clouds. For instance,
VoxelNet [25] implements a voxel features extractor (VFE)
on point cloud to characterize object points. Other networks
have been proposed that directly process point sets, such
as PointNet [26] and PointNet++ [27], to fully exploit the
inherent information in the point cloud data for object tracking.
Iterating over these, works such as [28] have proposed end-
to-end and point-to-box networks for 3D object tracking.

When considering small objects, the specific literature is
more scarce. In [16], Razlaw et al. focus on detecting people
in sparse point clouds from multi-channel rotating 3D lidars.
Compared with this approach, we focus on exploiting the
adaptive frame integration capabilities of solid-state lidars to
optimize the point cloud density and do not necessarily assume
sparsity.
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Fig. 2: Overview of the proposed methods, where tracking is simultaneously performed at three different scan frequencies. Within each of
these three threads, the scan frame integration is adjusted based on the distance to the target MAV and its speed.

Fig. 3: Integration trajectory recovery example

C. Lidar and radar-based MAV detection and tracking
When the focus is more on detection rather than on accurate

localization or tracking of the detected MAV, radar has been
proven a robust solution [29]. Lidars, in any case, have been
identified as having big potential for MAV detection and
tracking [30].

In summary, while object detection and tracking in point
clouds is a relatively mature field, we have found a gap in the
literature in terms of optimizing the way these point clouds are
generated. In particular, we see most of the current work being
focused on processing point clouds, while our objective is to
study how we can enhance the performance of a given tracking
algorithm by improving the quality of the point cloud data it
is fed with. Our focus here is on actively adapting lidar-based
perception for detecting and tracking a flying MAV, where the
density and size of the point cloud is optimized based on, e.g.,
the MAVs distance to the lidar sensor, or its speed.

III. PROBLEM DEFINITION

We consider the problem of tracking a MAV from a ground
robot. The ultimate objective is, e.g., to improve the collabora-
tion between the robots and the ability of the MAV to navigate
in complex environments aided by the UGV. The rest of this
paper delves into the definition, design, and implementation
of methods for tracking a single MAV. Nonetheless, these
can be extended to multiple MAVs. The main limitation when
tracking multiple units is the FoV of the lidar sensors onboard
the ground vehicle, and therefore assumptions have to be made
to the spatial distribution of the MAVs (always within the FoV
of the ground robot). Alternatively, more lidar scanners can be
installed to increase the FoV.

A. Rationale

The majority of 3D laser scanners available to date are
multi-channel, rotating lidars. While devices with 64 or 128
vertical channels can provide high angular resolution in both
horizontal and vertical dimensions, these high-end devices
are not the most common. Moreover, the scanning pattern is
in general repetitive, which has benefited from a geometric
perspective in terms of data processing but does not enable
a higher FoV coverage with longer exposure if the position
of the sensor is fixed. New solid-state lidars featuring non-
repetitive scan patterns, albeit having more limited FoV, can
provide more dense point clouds and often feature longer
detection ranges. In particular, we are interested in the possi-
bilities of dynamically adjusting the FoV coverage and density
in the point cloud to be processed for detection and tracking.
Among the benefits of these new lidars and the possibilities
of adaptive scanning rates is also higher resilience against one
of the challenges in lidar-based perception: motion-induced
distortion [31]. In general, the literature targeting tracking of
MAVs using lidar scanners is scarce, and existing methods in
point cloud object detection and tracking considering mainly
static frames. We aim to define more optimal settings for
generating point clouds based on the state (speed and distance
to the sensor) of the MAV being tracked.

B. System Overview

We propose three simultaneous tracking modalities with
three processes analyzing point cloud frames resulting in inte-
gration times ranging several orders of magnitude. A general
view of the multi-modal tracking processes is shown in Fig. 2.
In more detail, the three modalities are described below:

(i) Adaptive high-frequency tracking. In this first process,
sparse point clouds are integrated at frequencies up to
100 Hz. The MAV is only trackable through a reduced
number of points, but we are able to estimate its position
and speed with high accuracy. In this process, the MAV
is not necessarily recognizable in all processed frames.

(ii) Adaptive medium-frequency tracking. The second pro-
cess operates at frequencies within the range of typical
lidar scanners (i.e., 5 to 20 Hz). The frequency within that



Algorithm 1: MAV tracking with adaptive scan integration

Input:
High- and medium-freq int. rates: {Ik−1

HF , Ik−1
MF }

3D lidar point clouds: {Pk(I
k−1
HF ),Pk(I

k−1
MF ) }

Last known MAV state: (pk−1
MAV , ṗk−1

MAV )

Output:
MAV state: {pk

MAV , ṗk
MAV }

UGV control: q̇k
UGV

Int. rates: {IkHF , IkMF }

Function object_extraction
(
P, I, pk−1

MAV , ṗk−1
MAV

)
:

Ground removal: P ′ ← P;
Generate KD Tree: kdtree← P ′ ;

MAV pos estimation: p̂k
MAV ← pk−1

MAV +
ṗk−1
MAV
I

;

MAV points: Pk
MAV = KNN(kdtree, p̂k

MAV );

MAV state estimation: pk
MAV = 1

|Pk
MAV

|
∑

p∈Pk
MAV

p;

return pk
MAV ;

// Coarse but persistent tracking
while new Pk(I

k
MF ) do

pk′
MAV =

object extraction(Pk(I
k
MF ), IkMF , pk−1

MAV , ṗk−1
MAV );

// Fine-grained estimation
while new Pk(I

k
MF ) do

pk′′
MAV =

object extraction(Pk(I
k
HF ), IkHF , pk−1

MAV , ṗk−1
MAV );

pk
MAV , ṗk

MAV ← estimate
(

pk′
MAV , pk′′

MAV

)
;

{IkHF , IkMF } ← adjust integration freqs
(

pk
MAV , ṗk

MAV

)
;

q̇k
UGV ← keep within FoV

(
pk
MAV , ṗk

MAV

)
;

same range is dynamically adjusted to optimize the den-
sity of the point cloud. At these frequencies, the extracted
point cloud representing the MAV is distorted by motion,
and thus the localization and speed estimation accuracy
is lower. However, this process enables more robust and
persistent tracking as the MAV can be recognized in most
if not all frames.

(iii) Low-frequency trajectory and object validation. The third
and last process that runs in parallel to the previous
two performs long-term tracking and validates the re-
constructed trajectory of the MAV based on predefined
dimensional constraints. An illustration of such trajectory
reconstruction is shown in Fig. 3

C. Formulation

Let Pk(I
k
r ) be the point cloud generated by the lidar with

an integration time Ikr , and let skUGV ={ qk
UGV , q̇k

UGV } be the
position and speed defining the state of the UGV at time k. We
also denote by skMAV ={pk

MAV ,ṗk
MAV } the position and speed

of the MAV. We use discrete steps represented by k owing to
the discrete nature of the set of consecutive point clouds. The
output of the main tracking algorithm is to extract from Pk(I

k
r )

the set of points representing the MAV, which we denote by
Pk
MAV , and to adjust the integration time for the next point

cloud, IkHF , I
k
MF .

Algorithm 2: Trajectory validation
Input:

Low-freq int. rate: Ik−1
LF

3D lidar point cloud: Pk

(
Ik−1
LF

)
MAV state history: (pMAV , ṗMAV )

Output: Trajectory validation (bool)

while new Pk

(
Ik−1
LF

)
do

// Generate cubic splines
// with position and speed constraints
{Bi} ← {pMAV , ṗMAV };
// Estimate expected point cloud from
// known density at given distance and speed
P̂k ← {{Bi}, pMAV , ṗMAV } ;
// Calculate IoU

IoU = calc IoU
(
Pk

(
Ik−1
LF

)
, P̂k

)
;

if IoU > th then
return True

else
return False

D. Adaptive scan integration
Since we assume that the state of the MAV (pk−1

MAV , ṗk−1
MAV )

is initially known, the point cloud processing proceeds as
follows. First, we perform ground removal based on the known
position of the UGV and the last-known altitude of the MAV.
We then proceed with finding the nearest neighbor points to a
predicted MAV position. This step is repeated for both the high
and medium frequency scans, the former one providing a more
accurate position estimation while the latter is more persistent
in time. Finally, these two estimations are combined, and the
results are utilized to adjust the integration rates based on the
point cloud density expected for the given distance and speed.
The UGV is also controlled to maintain the MAV within the
FoV of its lidar. This process is outlined in Algorithm 1.

1) Trajectory validation: The main purpose of the low-
frequency scan stream is to validate the extracted MAV’s
trajectory. While the tracking with adaptive scan integration
only takes into account the MAV size roughly in terms
of distance within which nearest neighbors are looked for,
the extracted point cloud is not validated against its known
dimensions. This is done when enough points are accumulated
into a reconstructed trajectory. As exposed in Algorithm 2, we
first perform a cubic spline interpolation based on the history
of estimated positions and speeds. To calculate the parameters
of the cubic spline, we utilize constraints on the first derivative
based on the speed, rather than forcing the first and second
derivative to be continuous. Indeed, the acceleration of the
MAV can suddenly change. Based on predetermined values of
point cloud density as a function of the MAV’s distance to the
lidar and its speed, we then produce an expected point cloud.
We validate the original point cloud given a threshold for the
IoU measure with the generated estimate.

IV. METHODOLOGY

A. Experimental platforms
The experimental platforms consist on a single ground robot

and a commercially available Ryze Tello MAV. The ground
robot is an EAI Dashgo platform equipped with a Livox
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Fig. 4: Ground robot and MAV utilized in the experiments.

Horizon lidar (81.7°× 25.1° FoV). The lidar is able to output
scanned pointcloud up to 100 Hz, featuring a non-repetitive
pattern. A pair of ultra-wideband (UWB) transceivers is used
to obtain a single range between the robot and the MAV at
frequencies ranging from 10 Hz to 100 Hz. The UWB ranging
is only used in aiding the manual validation of the extracted
trajectory in places where there was no external positioning
system. In the future, it could be incorporated as part of the
tracking algorithm as well, as is becoming increasing adopted
in multi-robot systems [32], [33].

B. Software

The system has been implemented using ROS Melodic
under Ubuntu 18.04. The algorithms are running in the main
computer onboard the ground robot. The computer runs the
robot’s driver1, the Tello MAV driver2, the Livox lidar driver3,
and our open-source MAV tracking package4. The latter is a
multi-threaded node able to process the different point clouds
in real time. The point cloud library (PCL) [34] is utilized to
extract the position of the MAV from the lidar’s point cloud.

C. Metrics

Owing to the lack of an accurate external positioning system
such as a motion capture system, our focus is instead on
measuring the performance of the tracking at different scan
integration rates and manually validating the overall trajectory.
The experimental flights are carried out in large indoor halls
with multiple columns and objects, as shown in Fig. 3. Another
set of experiments is carried out in a small flying area where
an external UWB positioning system was available and used
to fly the MAV over a predefined trajectory. A characterization
on the accuracy of such system can be found in [35].

V. EXPERIMENTAL RESULTS

In this section we report on the experimental results. The
experimental results consist mainly on flights in two different
indoor environments and different conditions.

1https://github.com/TIERS/dashgo-d1-ros
2https://github.com/TIERS/tello-driver-ros
3https://github.com/Livox-SDK/livox ros driver
4https://github.com/TIERS/adaptive-lidar-tracking

A. Adaptive scan integration

The first objective of our experiments was to assess the
tracking performance at different scan frequencies in order
to better model the adaptiveness of our algorithm. In order
to adapt the scanning frequency to optimize the tracking
performance, key parameters are the point cloud density at
different distances and the reliability of the detections at
different speeds.

The point cloud density for different scanning frequencies
as a function of the distance between the lidar and the MAV
is shown in Fig. 5. This measure refers only to the density of
the points representing the MAV and not the overall density
including the rest of the scene. The darker lines represent the
average point cloud density, while the band with higher trans-
parency represents the values within the standard deviation.
The size of the Tello MAV is about 500 cubic centimeters.
Based on our experiments, reliable tracking at high speeds
can be achieved with at least 4 points, while we require at
least 20 points at medium scanning frequency. This, however,
only applies in free space. As can be seen in Fig. 7, significant
noise appears in the point cloud between the MAV and walls
in the environment when flying nearby. We discuss further this
issue at the end of this section.

In terms of the tracking performance based on the speed,
we plot in Fig. 6 the distance between consecutive detections
at different scanning frequencies. The results in this particular
figure cannot be directly utilized to model the adaptive nature
of our tracking algorithm. Nonetheless, they can be leveraged
to better understand what are the speed limits under which
given scanning frequencies do not provide the expected dis-
tance between detection that can be inferred from the MAV
speed and the scan frequency.

The results included in Fig. 5 and Fig. 6 have been obtained
flying the MAV in a long, straight corridor with a length of
about 35 m. The MAV was flying mostly in straight lines and
the speed was estimated using both visual odometry and the
position history extracted from the lidar data in a partially
manual manner.

B. Qualitative trajectory validation

In order to validate the performance of the tracking algo-
rithm and better understand the limitations of our tracking
approach at different scanning frequencies, we compare two
different types of trajectories. Owing to the lack of a system to
obtain ground truth (e.g., a motion capture system), we provide
qualitative analysis for one of the trajectories and compare it
with a UWB positioning system in the other one.

First, we test the tracking algorithm through a trajectory
where the MAV flies in a large open area at distances from 2 m
to over 17 m far from the lidar scanner and variable speeds.
In this scenario, the analysis is mostly qualitative, with the
trajectories shown in Fig. 8. However, the UWB ranging data
and the lidar data has been both manually confirmed, so the
maximum positioning error along the track is at worst around
20 cm. Qualitatively, the main results from this experiment
are the ability of the tracking algorithm to keep track of the

https://github.com/TIERS/dashgo-d1-ros
https://github.com/TIERS/tello-driver-ros
https://github.com/Livox-SDK/livox_ros_driver
https://github.com/TIERS/adaptive-lidar-tracking
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Fig. 7: Accumulated point cloud for the circular trajectory.

MAV over changes in speed, direction, and at longer distances.
The figure only shows frequencies equal to or above 5 Hz
because at lower scanning frequencies the speed estimation
was highly inaccurate during the early stages of the flight.
We can see that only at the highest frequency we are able
to track the MAV along the completed trajectory, while the
trajectory itself is noisier. The higher level of error when
estimating the MAV position is due to a lower number of
points being detected, which can correspond to different parts
of the MAV in consecutive scans. The last subplot shows the
overall estimated trajectory where our algorithm has combined
the different scanning frequencies to obtain the smoothness of
the medium frequencies and the performance of the higher

frequencies. The trajectory also employs the cubic spline
interpolation from the validation algorithm.

Second, we perform a continuous flight with a predefined
circular trajectory in a small flying arena where the UWB
positioning system is available. The results for this flight
are shown in Fig. 9. The leftmost plot shows the reference
position. However, it is worth noticing that the accuracy of
the lidar, of around 2 cm for distances smaller than 20 m,
is higher than the average accuracy of 10 to 15 cm in the
UWB positioning system. Therefore, the trajectory is mere as
a reference and only a qualitative discussion is possible with
these results. In any case, owing to the continuous change
in the speed of the MAV, which is a prior unknown to the
tracking algorithm, again only at frequencies equal or over
5 Hz are we able to track the MAV. Nonetheless, at 5 Hz the
tracking stops before the fourth revolution is completed, and
persistent tracking is only possible when higher frequencies
are taken into account.

C. Discussion
We have shown in this section qualitative results that show

the performance of the adaptive tracking algorithm and the
same approach applied only to specific scanning frequencies.
From both sets of experiments, the main conclusion is that the
adaptive approach is able to accommodate a wider variety of
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scenarios. We have been able to put together the flexibility of
high-speed tracking with the robustness of medium frequen-
cies, avoiding the frequent errors of the former, and the lower
tracking capacity of the latter is more challenging conditions.

One key limitation when tracking MAVs, as visualized in
the circular trajectory experiments, is the low density of the
point cloud and the inability to tell the difference between
the MAV’s points and lidar noise. This is also due to the
low reflectively of the MAV, and there is thus the potential
for mitigation with more reflective surfaces that could aid in
separating the sparse MAV point cloud from the lidar noise
originated due to near objects. As we can see in Fig. 7, the
point cloud density near the rear wall is very sparse in some

areas, therefore being unable to reconstruct a robust trajectory
as there are multiple options available that would meet the
dynamics and dimensional constraints of the MAV.

VI. CONCLUSION

We have presented a set of methods for detecting and track-
ing MAVs that are deployed from ground robots, assuming
that the initial position is known. The focus has been on
the introduction of a novel adaptive lidar scan integration
method that enables more accurate MAV localization with
high-frequency scans, robust and persistent tracking with
longer frame integration times, and trajectory validation with
low-frequency analysis. Experimental results from different
settings confirm the better suitability of the different integra-
tion times for different scenarios or MAV behaviour, with our
adaptive tracking being able to consistently track a MAV in
places where a constant lidar scan frequency cannot. Finally,
with an additional method to validate the trajectory based on
the known shape and size of the MAV, we are able to confirm
that the object being tracked meets the dimensional constraints.

In future works, we will explore the integration of lidar-
based tracking into the navigation of the MAV, and the
integration of onboard state estimation at the MAV into the
tracking algorithm.
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