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Abstract— In this work, we propose a methodology for
investigating the use of semantic attention to enhance the
explainability of Graph Neural Network (GNN)-based models.
Graph Deep Learning (GDL) has emerged as a promising
field for tasks like scene interpretation, leveraging flexible
graph structures to concisely describe complex features and
relationships. As traditional explainability methods used in
eXplainable AI (XAI) cannot be directly applied to such
structures, graph-specific approaches are introduced. Attention
has been previously employed to estimate the importance of
input features in GDL, however, the fidelity of this method in
generating accurate and consistent explanations has been ques-
tioned. To evaluate the validity of using attention weights as fea-
ture importance indicators, we introduce semantically-informed
perturbations and correlate predicted attention weights with
the accuracy of the model. Our work extends existing attention-
based graph explainability methods by analysing the divergence
in the attention distributions in relation to semantically sorted
feature sets and the behaviour of a GNN model, efficiently
estimating feature importance. We apply our methodology on
a lidar pointcloud estimation model successfully identifying
key semantic classes that contribute to enhanced performance,
effectively generating reliable post-hoc semantic explanations.

Index Terms— Attention, eXplanable AI, graph neural net-
works, pose estimation

I. INTRODUCTION

Trustworthy Graph Learning (TwGL) identifies reliabil-
ity, explainability, accountability, and other trust-oriented
features as key requirements for trustworthy Graph Deep
Learning (GDL) [1], [2]. Undeniably, trust is a critical design
factor for the successful development and deployment of
autonomous vehicles. Trust and explainability are inherently
linked. Explaining the decisions of autonomous vehicles
enables users and regulatory bodies to use and work on
transparent and accountable systems. Further, having a clear
understanding of the capabilities and limitations of an au-
tonomous system increases trust in the underlying technology
and fosters its adoption.

In real-world deployment, autonomous vehicles are re-
quired to navigate safely in unknown and dynamic environ-
ments. To ensure safe operation, the system must effectively
assess the complexity of traffic scenes and make logical
decisions based on its anticipated performance. A critical
prior requirement for reliable decision-making is for those
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vehicles to know their precise location relative to their
observed surroundings. This relates to the task of pose
estimation, which calculates the position of the ego-vehicle
w.r.t. the perceived environmental features.

Our proposed research focuses on analysing and explain-
ing the complexity of the environment using learned attention
weights to identify the contribution of each semantic element,
i.e. static and dynamic agents and morphological structures,
to the performance of a baseline lidar pointcloud-based pose
estimation model. Similar to [3], we take inspiration from
perturbation-based Graph eXplainable AI (GXAI) methods
to investigate the validity of using attention weights as
feature-importance indicators. In our work, we extract se-
mantic sets and rank them based on their attention scores.
We conclude on their importance in the pose estimation
task by verifying the correlation between attention weights
and model accuracy. We semantically perturb the input and,
as proposed in [4], [5], [6], we measure the distribution
divergence to calculate the contribution of each set’s attention
weights to the overall attention distribution.

Our key contributions are as follows:
• A methodology for assigning importance scores to

semantic sets based on their contribution to the per-
formance of a Graph Neural Network (GNN) model;

• A semantic interpretation of learned attention weights in
correlation with the predictions of a graph-based model;

• A semantically-informed perturbation process for eval-
uating the explanations for GXAI.

The model used as our baseline is a graph-attention-based
pose estimation model, SEM-GAT [7], trained on the KITTI
Odometry Dataset [8]. Our method examines the inter-
pretability of the model w.r.t. its output predictions, even-
tually assessing its efficacy in real-world applications.

II. RELATED WORK

Recent studies have investigated the topic of explain-
ability in GNNs proposing different approaches to explain
their predictions. Following the taxonomy for instance-level
explanations introduced in [9], these methods can be cat-
egorised into gradient/feature-, decomposition-, surrogate-,
and perturbation-based.

Gradient/feature-based methods [10], [11] calculate the
gradients of the output with respect to the extracted features
in the input via backpropagation and use them to estimate
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Fig. 1: Overview of our proposed methodology. After retrieving the attention weights for each semantic class from vanilla
SEM-GAT, we use a node mask to perturb the model’s input by masking the highest-ranking semantic class set to measure
the divergence in the distribution of the attention weights. We correlate this measurement with the pose estimation error
from masked SEM-GAT to estimate importance scores for each semantic set. We repeat this process by masking the last
layer of the model using an edge mask.

attribution scores. Decomposition-based methods [11], [12],
[13] estimate the importance scores by expanding the net-
work inference blocks into a sum of effects and identifying
structures that contribute to the prediction. Surrogate-based
methods [14], [15], [16] use simpler, interpretable models to
approximate explanations on the original ones. Perturbation-
based methods [17], [18], [19], [20], [21], [22] measure
importance scores by iteratively masking the input and
calculating the changes in the output predictions, generating
post-hoc explanations. Perturbation-based methods are the
most relevant to our approach. Whereas these methods rely
on random masks to perturb the input, we argue for more
effective and concise perturbations by conditioning the masks
on the input. Specifically, our proposed methodology gener-
ates semantics-driven masks to perturb the input of a GNN
model and generate explanations for its output predictions.

Attention has been employed to interpret how input fea-
tures influence the predictions of deep learning models
[23], [24], [25]. However, these holistic explanations have
previously been regarded as insufficient and inaccurate [5],
[26]. Later studies [4], [6] challenged this stark position
by reclaiming attention’s role as an explainability method,
albeit with limitations in terms of accuracy and applicability.
Combining attention weights with the models’ properties has
been shown to produce more reliable and consistent expla-
nations [26]. Building upon this rationale, [3] suggests that
a verification step can prove the relation between attention
weights and feature importance by correlating the effects of
different attention weight distributions to the accuracy of the
models. This can be a prerequisite step before employing
attention to explain the model’s performance.

Following these studies, we evaluate the validity of using
graph attention to generate explanations by correlating the
accuracy of a baseline model with the distribution divergence
of attention weights after iterative perturbations. Our results
demonstrate that attention can be useful to identify important
semantics in the environment that contribute towards reliable
model performance.

III. PRELIMINARIES

In this section, we formulate the problem addressed and
describe the graphs and the GNN model used as the baseline.

A. Problem Definition and Notations

Let Pt : {pi | pi ∈ R3} be a pointcloud at discrete
timestamp t in a total of N consecutive scans. Pt can
be subdivided into a set of semantic classes S that may
include terrain, buildings, trees, vehicles, and pedestrians,
among others. For each point pi, we assign a semantic
label si ∈ S. In our proposed work, we aim to identify
the most significant semantic classes for accurate relative
pose estimation between two consecutive pointclouds, Pt and
Pt+1. Here, we denote the relative pose as [Rt,t+1|τ t,t+1],
where Rt,t+1 ∈ SO(3) is the rotation and τ t,t+1 ∈ R3 is
the translation.

B. SEM-GAT

We employ SEM-GAT [7] for generating attention-based
explanations. SEM-GAT is a semantic graph-based pose
estimation GNN model, depicted in Fig. 2. It estimates the
relative transformation between two pointclouds by iden-
tifying potential matching correspondences between those
pointclouds for registration. SEM-GAT explicitly employs
attention to weigh each candidate matching pair, making it
a suitable baseline to test our evaluation methodology.

SEM-GAT’s input is a static graph structure Gt comprising
the two pointclouds Pt and Pt+1. We define the input graphs
as Gt = ⟨Vt, Et⟩, where Vt and Et are the sets of nodes
and edges, respectively. Each point pi ∈ Pt and pj ∈ Pt+1

is a node in Vt and the edges correspond to the semantic
relationships between the points according to their associated
semantic label si ∈ S and their geometric characterisation as
corner or surface points. For the sake of the notation, from
now on, we will drop the subscript t for the instant in time.

Notably, C ⊂ E is the set of registration-candidate pairs
– where cij ∈ C links pi ∈ Pt and pj ∈ Pt+1 – which
SEM-GAT uses to estimate the relative-pose transformations
[R̂t,t+1|τ̂ t,t+1]. The model generates feature embedding rep-
resentations, encoding structural and semantic information



Fig. 2: SEM-GAT, the attention-based GNN used as baseline
for generating and validating semantic explanations.

through convolutions and multi-head graph attention [27]. It
then assigns attention weights αij ∈ R as confidence scores
to edges connecting potential registration candidate pairs cij .
The scores A : {αij} are used as weights in a Singular Value
Decomposition (SVD) module to align the pointclouds and
recover their relative transformation.

IV. ATTENTION-BASED SEMANTIC EXPLANATIONS

Fig. 1 depicts the overview of our pipeline. We estimate
the importance of the semantic elements in the environment
using the attention weights A predicted in the last layer of
SEM-GAT. To validate the suitability of using attention to
explain the performance of SEM-GAT semantically, we iter-
atively perturb the input, correlating the attention-weights-
distribution divergence with the changes in the model’s
accuracy.

We first investigate the semantic interpretation of the atten-
tion weights A by ranking the semantic classes at inference
according to their predicted total weights, normalised on
the number of points. Based on this ranking, we extract
semantic feature sets to iteratively mask the model while
measuring the output variations. We propose two different
methodologies, visualised in Fig. 3:

1) Masking the nodes of the input graph according to
the average overall attention score of the semantic sets
calculated in post-processing. This effectively alters the
elements and context of the input.

2) Zeroing the edge attention weights of our estimated
most important semantic sets at the last layer of SEM-
GAT, directly masking the edges with the highest
confidence weights for SVD.

Following the outcome of the perturbations, we evaluate
the adequacy of using attention weights as importance indi-
cators. The validation process can be split into two parts:
1) measuring the attention distribution divergence and 2)
correlating the attention scores with the model’s performance
before and after masking.

A. Attention Distribution Divergence

Given a graph G, we follow the works [4], [5], [6] and cal-
culate the variation in the predicted attention scores caused
by the perturbation with the Jensen-Shannon Divergence

(a) Average attention scores as importance weights.

(b) Node masking in the input graphs.

(c) Edge masking at the last layer of SEM-GAT.

Fig. 3: Overview of the perturbation process as Input →
Model → Output: (a) visualises the process of extracting the
semantic importance weights from vanilla SEM-GAT. These
weights then inform the two independent steps of (b) node-
and (c) edge-attention-weights masking.

(JSD) distance. Defining αb and αa as the distributions of
weights before and after the perturbation, with b correspond-
ing to vanilla SEM-GAT:

JSD(αb, αa) =

√
DKL(αb ∥ ᾱ) +DKL(αa ∥ ᾱ)

2
(1)

0 ≤ JSD(·, ·) ≤ 1. DKL corresponds to the Kullback-
Leibler divergence and ᾱ is the distribution of attention
weights averaged edgewise between before and after per-
turbation. We consider the total JSD of a sequence of
pointclouds as the average of the JSDs on the sequence.

B. Attention-Performance Correlation

As we mask the graph, we measure the variations in SEM-
GAT’s pose estimation accuracy to assess the correlation
between attention and model performance. The authors in
[3] propose using the discrepancy in the model’s accuracy
before and after masking; similarly, we calculate the Average
Absolute Discrepancy (AAD) of an accuracy score ŷ from
before and after masking as:

AAD(ŷb, ŷa) = |ŷb − ŷa| (2)

This metric is a good indicator of the fluctuations in the
output predictions in each perturbation step.

For our case, we consider as ŷ the Relative Rotational
Error (RRE) [°] and Relative Translational Error (RTE) [m]
between SEM-GAT’s rotation and translation estimations
[R̂|τ̂ ] and ground-truth values [R|τ ], respectively. The two
metrics are defined as:

RRE = acos

(
1

2
(tr(R⊤R̂)− 1)

)
(3)

RTE = ∥τ gt − τ̂∥2 (4)



We consider the total AAD over an entire sequence as the
average of the two metrics’ AADs. The combined average
absolute discrepancy AAD is then calculated as follows:

AAD =

∑N−1
t=1 |RREb −RREa|

N − 1
+∑N−1

t=1 |RTEb −RTEa|
N − 1

(5)

V. RESULTS

SEM-GAT is trained and evaluated on Sequences 00,
02, and 03 of the KITTI Odometry Dataset [8]. We test
our approach on every sequence in the dataset, from 00
to 10. We use the ground-truth labels and poses from
SemanticKITTI [28] to generate our semantic graphs and
evaluate the performance of SEM-GAT by correlating AAD
with JSD to estimate the contribution of the query semantic
importance scores to the accuracy of the model.

A. Semantic Masking

We use the predicted attention weights from the last layer
of SEM-GAT to rank the semantic classes in the dataset
according to their average learned attention scores for each
sequence. Tab. I reports each sequence’s five most important
semantic classes and their average attention values.

According to the ranking in Tab. I, we split and perturb
the input data in the following semantic sets:

• Single-class; separately masking the top 3 highest-
scoring classes.

• Multi-class; masking the top 3 and top 5 highest-scoring
classes, as well as 3 random classes.

• Single-feature; masking corner or surface points.
We then evaluate whether the attention weights of these sets
represent key semantic structures in the environment based
on their contribution to SEM-GAT’s performance.

B. Attention-JSD Correlation

To estimate the contribution of each masking set to
the total distribution of attention weights predicted in the
last layer of SEM-GAT, we calculate the JSD distance
of the distributions before and after removing the weights
corresponding to each set during node masking. Higher
JSD values correspond to a larger overall contribution of
the query set of semantic attention weights to the total
distribution of attention. As can be seen in the vertical
axis in Fig. 4, the attention weight masking sets corner,
5-class, and Random 3-class produce higher overall
JSD scores compared to the scores from single-class
masking. Similarly, the attention weights in the corner set
have the highest probability density corresponding to almost
half the distribution.

C. JSD-Performance Correlation

To investigate the correlation between attention weights
and model performance, we retrieve the total AAD from
each sequence and correlate it with the JSD results. When
masking the larger semantic sets, corner, 5-class, and

Fig. 4: Average JSD distance correlation with the average
absolute discrepancy AAD, calculated after perturbing the
last layer of SEM-GAT for Seq. 00 to 10 in SemanticKITTI.

Random 3-class, AAD fluctuations are also caused by
the large number of points masked. Thus, we are mainly
interested in the single-class masking sets in which the
number of points masked is negligible compared to the entire
pointcloud. Consequently, any AAD fluctuation is caused by
the divergence in the attention weights’ distribution and not
the downsampling of the pointcloud.

As can be seen in Fig. 4, there is a strong linear correlation
between JSD and AAD for all single-class sets. Our
results indicate that AAD is proportional with JSD on
every masking set, proving the validity of using attention
weights as importance indicators and correlating them with
the changes in the model’s performance.

To investigate this further, for each sequence, we compare
the results in Tab. II and correlate them with Fig. 4. For
all sequences, except Seq. 4, the ranking of AAD scores is
proportional to the ranking in JSD scores. For example, in
Seq. 00 we observe the highest AAD and highest JSD when
masking the first semantic class. These results indicate that
the semantic sets with the highest JSD are the most important
for SEM-GAT. In the single-class sets, there is no
clear ordering relationship between them. This is expected
because, as seen in Tab. I, their average attention scores are
very similar.



Random Classes; Average Attention Scores in Descending Order(→)
00 vegetation (0.38) trunk (0.34) terrain (0.29)
01 terrain (0.39) car (0.29) other-ground (0.18)
02 car (0.34) building (0.33) terrain (0.31)
03 car (0.3) building (0.28) traffic-sign (0.15)
04 trunk (0.33) building (0.2) traffic-sign (0.18)
05 trunk (0.31) pole (0.29) other-vehicle (0.1)
06 other-ground (0.27) truck (0.16) bicycle (0.14)
07 bicycle (0.11) other-vehicle (0.1) traffic-sign (0.1)
08 person (0.17) other-vehicle (0.16) traffic-sign (0.12)
09 car (0.34) traffic-sign (0.12) person (0.1)
10 trunk (0.25) other-ground (0.04) person (0.1)

Highest Ranking Classes; Average Attention Scores in Descending Order (→)
00 pole (0.55) sidewalk (0.53) fence (0.44) building (0.4) bicycle (0.4)

01 fence (0.51) vegetation (0.42) terrain (0.39) car (0.29) ground (0.18)

02 sidewalk (0.56) fence (0.48) trunk (0.45) vegetation (0.4) pole (0.36)

03 pole (0.55) sidewalk (0.55) fence (0.5) vegetation (0.38) terrain (0.38)

04 sidewalk (0.6) pole (0.49) fence (0.45) car (0.44) vegetation (0.43)

05 sidewalk (0.56) terrain (0.5) fence (0.47) car (0.4) building (0.4)

06 pole (0.6) sidewalk (0.57) trunk (0.52) terrain (0.45) car (0.45)
07 pole (0.56) sidewalk (0.54) fence (0.46) building (0.4) car (0.39)
08 sidewalk (0.55) pole (0.51) terrain (0.43) trunk (0.42) building (0.4)

09 sidewalk (0.55) terrain (0.44) trunk (0.43) vegetation (0.39) fence (0.38)

10 pole (0.49) fence (0.47) sidewalk (0.44) vegetation (0.38) building (0.37)

TABLE I: Attention-based importance ranking of semantic classes in Sequences 00 to 10 of SemanticKITTI [28]. This
ranking guides the perturbations. Seq. 00, 02, and 06 to 09 were captured in urban environments, Seq. 03 to 05 and 10
in the countryside, and Seq. 01 in a highway.

D. Qualitative Discussion

Notably, the SemanticKITTI dataset [28] is particularly
interesting due to its diverse domain coverage. It is then
well-suited to analyse how SEM-GAT performs in different
environments. On every urban or countryside sequence, the
highest ranking class is either pole or sidewalk as seen in
Tab. I. In Seq. 01, captured in a highway, such semantics are
not observed and thus, naturally, the class fence is found
to be the most important one. Moreover, we observe higher
attention scores assigned to corner points than to surface
points, further justifying the high ranking of classes like
vegetation, sidewalk, and fence which mainly
consist of corner points.

It is particularly interesting that large semantic classes
like building are not assigned high-importance scores
from the model. After examining the model’s architecture,
we conclude that SEM-GAT assigns lower overall attention
scores to these semantic classes due to the dense distribution
of points in each instance, making it challenging for the
model to identify the most important segments within them.

VI. CONCLUSIONS

In this work, we investigated the semantic interpretation of
attention scores for identifying key elements in a pointcloud
and introduced a methodology to evaluate the fidelity of our
findings. Our analysis provides a thorough insight into the
validity of using attention as an indicator of semantic impor-
tance. Our experimental results indicate a strong correlation
between attention weights and model performance, allowing

us to draw conclusions on expected model behaviour in
diverse environments. In our approach, we identify important
semantic features in the environment for graph-attention-
based pose estimation models. This methodology can be used
to explain the model’s performance in correlation with the
semantics present.
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