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Abstract— This paper presents a framework addressing the
challenge of global localization in autonomous mobile robotics
by integrating LiDAR-based descriptors and Wi-Fi finger-
printing in a pre-mapped environment. This is motivated by
the increasing demand for reliable localization in complex
scenarios, such as urban areas or underground mines, requiring
robust systems able to overcome limitations faced by traditional
Global Navigation Satellite System (GNSS)-based localization
methods. By leveraging the complementary strengths of LiDAR
and Wi-Fi sensors used to generate predictions and evaluate the
confidence of each prediction as an indicator of potential degra-
dation, we propose a redundancy-based approach that enhances
the system’s overall robustness and accuracy. The proposed
framework allows independent operation of the LiDAR and
Wi-Fi sensors, ensuring system redundancy. By combining the
predictions while considering their confidence levels, we achieve
enhanced and consistent performance in localization tasks.

I. INTRODUCTION

Global localization plays a crucial role in autonomous
mobile robotics from several perspectives: providing the
necessary foundation for localization algorithms; enabling
robots to re-establish their positions after leaving a mapped
area; restarting missions in previously mapped environments;
mitigating pose estimation drift through loop-closure detec-
tion [1]; and merging mapping data collected during different
sessions [2]. However, certain environments, including urban
areas, industrial settings and underground mines, present
unique challenges for traditional GNSS-based localization
systems, often arising from issues like multi-path effects
and limited satellite reception. The ability to operate within
a global map is essential for successful exploration and
navigation missions. A global map provides robots with
valuable information for various tasks, such as path planning,
coordination of multiple robots, and localization of objects
and survivors during Search And Rescue (SAR) missions.
However, in these complex scenarios, localization algorithms
can face temporary failures. Factors such as sensor faults,
presence of dust particles or even drifting, can cause these
algorithms to temporarily lose accuracy. Consequently, the
robot’s current pose within the global map becomes mis-
aligned, thus potentially affecting its ability to effectively
carry out its mission objectives.
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Query point cloud

Fig. 1: Point cloud map generated from an experiment
showcased in this article, demonstrating the queried point
cloud, and showcasing several mobile robots equipped with
the novel and lightweight proposed solution.

With the recent advancements in efficient data representa-
tions and feature descriptors for LiDAR point clouds through
Deep Learning (DL) techniques, LiDAR sensors have shown
promising results in the realm of computer vision (especially
in the aim of place recognition). While LiDAR-based sys-
tems offer advantages in terms of immunity to appearance
changes and illumination, these sensors can face difficul-
ties in accurately capturing certain types of surfaces, such
as transparent or reflective objects. Additionally, adverse
weather conditions (like rain, fog, or dust) can affect their
performance Hence, in order to address these challenges and
enhance the reliability of localization systems, redundancy
becomes crucial. By incorporating additional sensors, such as
Wi-Fi sensors, alongside LiDAR, the system can benefit from
complementary information sources. It is well-know how, in
the last decade, the use of the IEEE 802.11 Wi-Fi technology
has further spread, enriching the overall availability and cov-
erage of wireless networks, thus making it more feasible and
easier to exploit existing networks for different applications.
Wi-Fi technology can provide valuable data for localization,
especially in scenarios where LiDAR may face limitations or
obstacles. This redundancy increases the overall robustness
and reliability of the system, enabling more comprehensive
and accurate localization capabilities.

Given the above remarks, in this paper we present a
framework integrating LiDAR-based descriptors and Wi-Fi
fingerprinting to address the challenge of global localization
in a pre-mapped environment. In particular, we emphasize
the system’s redundancy by maintaining the independence
of these two sensors, but at the same time leveraging them
to generate predictions, and then we evaluate the confidence
of each prediction as an indicator of potential degradation.
By merging the two predictions while considering their
confidence levels, we demonstrate an enhanced performance.
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The contributions of this paper can be summarized as
follows: (i) the development of a compact and affordable
Wi-Fi fingerprinting solution specifically designed for mobile
robots, enabling accurate global localization capabilities; (ii)
the establishment of a redundancy-based system architecture
that enhances the reliability and robustness of the over-
all framework, leveraging low-cost resources to improve
LiDAR-based descriptors; (iii) significantly improved global
localization likelihood in challenging environments, where
traditional methods tend to underperform due to percep-
tual degradation, through the integration of LiDAR-based
descriptors and Wi-Fi fingerprinting; (iv) promising results
demonstrating the real-world applicability of the proposed
framework in inspection and monitoring scenarios, showcas-
ing its potential for practical implementation.

II. RELATED WORK

In this section, we review the relevant literature in two
key areas: (i) LiDAR-based place recognition and (ii) Wi-Fi
fingerprinting for localization.

In the field of computer vision and place recognition,
camera-based approaches have long dominated the scene [3].
One of the widely known descriptors is SURF [4], which
utilizes visual features and geometric transformations to
establish correspondences between images, enabling accurate
localization. However, the limitations of cameras in low
light conditions, weather changes, and the lack of depth
information have led to an increasing interest in LiDAR-
based methods. LiDAR sensors gained appeal due to their
immunity to lighting variations and their ability to provide
rich 3D information about the environment, and became par-
ticularly valuable for applications where accurate localization
is crucial, such as autonomous driving or mapping. In [5], a
framework denoted as PointNetVLAD, which first processes
each point of a point cloud individually using PointNet to
extract local features, and then aggregates these local features
using VLAD, which encodes a global representation of the
entire point cloud, has been proposed. In detail, VLAD
represents each cluster of local features by computing the
residual vectors between each local feature and a set of
learned cluster centers. The authors of OREOS [6] proposed
a novel approach to address the heavy computational load
of 3D LiDAR scans, by projecting them onto a 2D plane
while preserving depth information. This technique reduces
the computational burden, making LiDAR more suitable for
mobile robots or UAVs without sacrificing the advantages of
LiDAR-based place recognition. In OverlapNet [7], a step
further has been performed by exploiting different types of
information generated from LiDAR scans to provide overlap
and relative yaw angle estimates between pairs of 3D scans.
The range images are enhanced with information such as
normals, intensity and semantic data.

The approach of Wi-Fi fingerprinting for indoor local-
ization has been adopted for several applications, spacing
from users’ tracking through their smartphones [8], up to
the localization of IoT devices in industrial environments [9].
This solution is well known for its low implementation cost,

especially on new devices (e.g., smartphones, IoT devices,
etc.) which nowadays all integrate Wi-Fi connectivity among
other communication protocols. An overview of existing Wi-
Fi fingerprinting solutions for localization has been carried
out in [10, 11], where several localization algorithms using
Wi-Fi fingerprints have been illustrated, showing how the
use of different techniques and Machine Learning (ML)
algorithms can achieve an accuracy of a few meters for
indoor localization applications.

However, for autonomous robotics applications, a step
forward is needed in order to allow the execution of complex
missions in harsh environments. A possible solution can be
the fusion of heterogeneous data sources for localization
purposes, such as, as an example, LiDAR, IMU and visual
odometry algorithms, to be fused with Wi-Fi fingerprints.
In [12], Wi-Fi fingerprinting—although focusing on the
Channel State Information (CSI) instead of the Received
Signal Strength Index (RSSI)—has been combined with
visual SLAM algorithm. Despite the promising results and
relative low cost of the platform, the proposed solution needs
a specific Wi-Fi network setup to collect the CSI fingerprints,
since this metric is not supported by all the Wi-Fi Access
Points (APs), therefore the solution cannot exploit the Wi-Fi
networks available in the environment.

Another similar method to fuse Wi-Fi fingerprinting—this
time relying on RSSI and MAC addresses—together with
visual SLAM algorithm, is proposed in [13], highlighting
the improvement that the combination of both technologies
allows for indoor localization applications. However, the
visual SLAM system is known to poorly work in low light
conditions with reflections or dust, also showing a weak
accuracy for environments with repetitive patterns (e.g., same
wall geometry). Finally, in [14] an approach for a Wi-Fi
fingerprinting and LiDAR SLAM fusion technique (similar to
the one presented in our paper) is proposed, achieving inter-
esting results, although the Wi-Fi data collection equipment
detailed in [14] relies on the use of several smartphones as
Wi-Fi scanners, which is impractical for an implementation
on a constrained platform, such as a UAV. Also, during data
collection, the used platform has been moving at a very
low horizontal speed of 0.4 m/s, that, in favor of a richer
and more complete Wi-Fi fingerprinting database, makes the
initial data collection extremely time demanding, especially
over a large area.

III. PROBLEM FORMULATION

When dealing with autonomous robotic applications, one
of the most tedious problems is how to localize, in an
indoor GNSS-denied environment, the position of the robotic
platform with respect to an already mapped environment.
While SLAM algorithms applied to the point cloud collected
by the LiDAR can already achieve a good level of accuracy
in many environments, they are still affected by the loop-
closure issue and present poor performance in environments
where dust and repetitive patterns in the surrounding are
present, such as, for example, in a mining tunnel with walls
made of rocks or in corridors with recurrent windows, doors



or other fixed elements. These problems can heavily affect
autonomous mobile robotic missions, where the platform has
to localize itself in a global map previously built aiming to
complete the assigned task. In fact, a failure of the localiza-
tion estimation in the environment may lead to a failure in
the mission, thus requiring an external human intervention.
Since Wi-Fi networks are nowadays deployed in almost every
working environment, even in the most modern underground
mine tunnels, a possible way to significantly reduce the risk
of localization-related issues in autonomous missions might
be further mitigated by enhancing LiDAR-based algorithms
with the easy to integrate Wi-Fi fingerprinting techniques,
thus allowing to integrate the point cloud maps with Radio
Frequency (RF) data as a fourth dimension.

The goal of this paper is to introduce a global localization
algorithm able to yield a rigid transform T ∈ SE(3) so
that the current robot frame R is transformed to the global
map frame M. Given a map M = {mn|n = 1, 2, . . . , N}
that is a set of 3D points mn ∈ R3 and a trajectory
Tr = {pk|k = 1, 2, . . . ,K} that is a set of 3D poses
pk = (xk, yk, zk, θk), we aim at extracting discriminative
features from the observation sets P and W . In detail, the set
P contains the 3D LiDAR point cloud scans Pk = {sk,l|l =
1, 2, . . . , L}, where sk,l ∈ R3, while the set W contains the
Wi-Fi attributes Wk = {wk,l|l = 1, 2, . . . , L}. The global
localization process can be expressed as a function f of the
current observations Pt and Wt as follows:

x, y, z, θ = f(Pt,Wt) . (1)

The homogeneous rigid transform can be constructed as:

T =

[
Rz(θ) p
0 1

]
∈ SE(3), (2)

where: Rz(θ) ∈ SO(3) is the rotational matrix of the yaw
angle, and p = (x, y, z)T is the translational vector. In
order to address the aforementioned problem, we propose
a combination of LiDAR-based place recognition loosely
coupled with a Wi-Fi-based fingerprinting approach, shown
in Fig. 2 and detailed in Section IV.

IV. METHODOLOGY
In order to solve the problem introduced in Section III,

we divide the function f into four components: (i) LiDAR-

based place recognition; (ii) Wi-Fi fingerprinting; (iii) best
candidate selection; and (iv) ICP Point Cloud Registration.

A. LiDAR-based Place Recognition

With regard to the LiDAR-based place recognition, we
decided to adopt an approach similar to the one proposed
in [6, 15], since the transformation to the image space
keeps the computational effort low. The first step is to
transform the incoming LiDAR scans Pt in depth images
It through a 2D spherical projection. Then, the images It
are fed into the Descriptor Extraction module, that outputs
the 2×64 vectors q⃗ and w⃗. In particular, q⃗ is an orientation-
invariant vector encoding place-dependent information and
primarily used for querying similar point clouds, while w⃗
is an orientation-specific vector, responsible for regressing
the yaw discrepancy between two point clouds. Then, in
order to query the global map for near place candidates,
we first project the aforementioned LiDAR observations P ,
yielding the range images I. Then, the Descriptor Extraction
module is responsible for generating the vector sets Q and
W , described by the function D as Q,W = D(I), where Q
and W are the following vector sets:

Q = {q⃗ ∈ R64, k ∈ N : q⃗1, q⃗2, . . . , q⃗k} (3)

W = {w⃗ ∈ R64, k ∈ N : w⃗1, w⃗2, . . . , w⃗k} . (4)

In particular, the querying process can be described as a
minimization problem where a k-d tree is constructed with
the vector set Q and is searched through with the current
vector qt to find the pair with the minimum distance in the
q vectors space:

i = argmin
i∈N

f(Q, qt) . (5)

As a common practice in the robotics and computer vision
community, we keep the top-k candidates, denoted as Kl =
{il,1, il,2, . . . , il,k}, where the k candidates correspond to the
indexes of the most similar places and can be used to acquire
the respective poses from the trajectory Tr.

B. Wi-Fi Fingerprinting

The next component is the Wi-Fi fingerprinting, whose
integration details are discussed in Section V. Given the
observations W and the current Wi-Fi scan Wt, we aim at

Wi-Fi scan

Point cloud to 2D
depth image

Descriptor
Extraction

Preprocessing

Evaluation

Noise 
Estimation

Signal
Strength

Switch

Initial
guess Fast-GICP

C. Best Candidate Selection

A. LiDAR-based

B. Wi-Fi-based

D. ICP Registration

Fig. 2: An overview of the proposed system architecture, divided into four main components. (A) LiDAR-based place
recognition; (B) Wi-Fi fingerprinting; (C) best candidate selection; and (D) ICP Point Cloud Registration.



finding the pair with the strongest correlation. Since a Wi-Fi
scan contains multiple attributes, we currently use only two
of them, in detail the MAC addresses of the scanned APs,
denoted as A = {a0, a1, . . . , aN}, and the corresponding
RSSI values, denoted as S = {s0, s1, . . . , sN}. Therefore,
we can denote the Wi-Fi scan as Wt = {At, St}. The
amount of scanned APs is kept fixed at size N at all times
to make the calculations easier. Then: should the scanned
APs be more than N , we would discard the ones with the
highest RSSI; should the scanned APs be less than N , then
we would pad them with a fixed value. The correlation
between the observations W and the current scan Wt is given
by the matrix CN×N×K , where K is the total amount of
observations in W . In order to construct C, we compare all
the elements Ak of W with At, and assign a value based on
Sk and St. This process can be described as follows:

Ci,j(Wt,Wk) =

{
log2(−St,i − Sk,j) At,i = Ak,j

0 At,i ̸= Ak,j .
(6)

An example of the correlation matrix is depicted in Fig. 3.
In the sequel, we seek to find the pair (Wk,Wt) with
the highest correlation by summing up each matrix Ck,i,j ,
yielding the vector H1×K , denoted as:

Hk =

i,j=N∑
i,j=0

Ck,i,j for k = 0, 1, . . . ,K . (7)

In the case of the Wi-Fi fingerprinting, the top-k candidates
are the ones with the maximum correlation sum, or simply:

i = argmax
i∈N

H . (8)

Similar to the LiDAR-based place recognition, we keep the
top-k candidates, denoted as Kw = {iw,1, iw,2, . . . , iw,k}.

C. Best Candidate Selection

Before we select the best candidates out of the sets Kl and
Kw, we perform a quick evaluation of each candidate in order
to add extra resiliency in the overall architecture. With regard
to the LiDAR-based candidates, we estimate the presence
of noise in the range images It, I based on the technique
proposed in [16]. If the noise variance σ2

n ≥ σ2
threshold, then

the candidates are considered a liability and are discarded.
For the Wi-Fi-based candidates, we evaluate the correlation
scores Ck,i,j . If the current RSSI values St are considerably

Fig. 3: Example of correlation matrices Ci,j , where the empty
cells correspond to the case At,i ̸= Ak,j , while the colored
cells correspond to the case At,i = Ak,j .

lower than the anchor values Sk, then the candidate should
be disregarded due to low signal strength. As a final measure
of assurance, we deploy a switching mechanism: in the case
that the current LiDAR scan is too noisy, the candidate
selection switches only to Wi-Fi; vice versa, if the Wi-Fi
signal strength is too low, we switch only to the LiDAR
candidates. After the candidate evaluation step, we make the
assumption that the candidates with the highest likelihood
Kf are the ones that exist in both sets, as follows:

Kf =


Kw σ2

n ≥ σ2
threshold

Kl ∩ Kw otherwise

Kl St ≥ Sthreshold .

(9)

In reality, we expect the set Kw to constraint the predicted
candidates of Kl, since perceptual aliases in the LiDAR scans
can lead to similar descriptors from similar but far away
place candidates. It will be highlighted in Section V how the
final remaining candidates Kf from the two sets of top-10
candidates, are reduced to 1-3 candidates.

D. ICP Point Cloud Registration

The final component of our proposed framework is the
one responsible for yielding the complete homogeneous rigid
transformation of the special Euclidean group T ∈ SE(3).
The best candidate if corresponds to the pose pif ∈ Tr.
Initially, we use the orientation-specific vectors w⃗if and w⃗t in
order to estimate the yaw discrepancy δθ between the current
scan Pt and the queried scan Pif (see [6]). Hence, we can
construct the initial translational vector as (pt-pif )

T
0 and the

initial rotational matrix as Rz,0(δθ), used in the sequel as a
prior to the Fast-GICP [17] point cloud algorithm.

V. INTEGRATION AND EXPERIMENTAL
EVALUATION

The experimental evaluation of the proposed system can
be divided into two phases: (i) an offline phase and (ii) an
online phase. In the offline phase, the environment is scanned
with LiDAR and Wi-Fi scanners, gathering the point cloud of
the environment together with the Wi-Fi data measurements.
Then, these data are associated with the odometry computed
by the robotic platform and, at the end of the survey, the final
map of the environment is built. Once the data are gathered,
the Wi-Fi fingerprints database is generated, associating each
Wi-Fi scan with the position (x, y, z) in the built map. In
the online phase, the re-localization framework, running on-
board the robotic platform, uses a single LiDAR and Wi-Fi
scan as the input data to localize itself on the built map
and to start the new mission. The proposed solution has
been developed with aiming at minimizing the weight and
the space required by the overall system, thus allowing the
integration on several possible robotics platforms, spacing
from rovers (e.g., Pioneer 3-AT), legged robots (e.g., Unitree
Go1) and even compact UAVs (e.g., Holybro X500 V2),
as depicted in Fig. 1. The developed system architecture
can be divided into two main hardware components, the
IEEE 802.11 2.4 GHz Wi-Fi scanner and the 3D LiDAR



scanner responsible for the localization through a SLAM
algorithm, both detailed in the following.

A. 2.4 GHz Wi-Fi Scanner and 3D LiDAR

In order to collect all the information regarding the Wi-Fi
networks used to build the fingerprints’ database, a suitable
compact Wi-Fi scanner has been developed. Given the need
to minimize the device footprint, on the hardware side, as Wi-
Fi scanner we decided to use a compact-size development
board based on the ESP32 SoC, which is able to provide
both IEEE 802.11 Wi-Fi and Bluetooth connectivity on
the 2.4 GHz RF band. Despite Wi-Fi connectivity built-in
on the used robotics platforms, we decided to rely on an
external additional adapter in order to (i) have a detachable
solution deployable on the interested platform, (ii) avoid
impacting the built-in Wi-Fi connectivity, generally used to
stream the gathered data, and (iii) minimize the measurement
discrepancy introduced by the use of different antennas and
Wi-Fi modems, thus allowing to collect cleaner and more
reusable data for several experiments. The use of the ESP32
programmable micro-controller allowed us to fine tune the
Wi-Fi networks scanning process. In fact, a complete scan of
all the 2.4 GHz Wi-Fi channels—13 in Europe—requires a
relevant amount of time to complete. The Wi-Fi networks
scanning process consist in two types of scan: (i) active
scan, where the scanner sends a probe request frame and
the nearby APs reply with a probe response frame; and
(ii) passive scan, where the scanner passively listens for in-
coming beacon management frames on each Wi-Fi channel,
typically sent by APs every 100 ms. Using the default ESP32
parameters, a Wi-Fi scan of all the 2.4 GHz channels requires
approximately 2040 ms, achieving an update frequency of
the Wi-Fi data approximately equal to 0.5 Hz (on average).
In order to reduce the Wi-Fi scan time and thus increase
the update frequency, allowing to collect more data while
moving the various robotic platforms and also to make the
offline phase less tedious and faster, in the firmware devel-
oped for the ESP32 board, the Wi-Fi active scan time for
the channels 1-11 has been reduced from the initial 120 ms
to 85 ms, while the passive scan time for channels 12 and
13 has been reduced from 360 ms to 255 ms, thus reducing
the average complete scan time to approximately 1445 ms
and consequentially slightly increasing the update frequency
of the Wi-Fi data to approximately 0.69 Hz (on average).
Moreover, to collect more data, the detection of hidden SSID
is enabled, allowing to detect both RSSIs and MAC addresses
of the hidden networks. All the gathered data (namely: SSID,
MAC address, RSSI and channel of each detected AP) from

the Wi-Fi scanner are properly sent to the robotic platform
companion computer through the USB serial port and, then,
published to the custom ROS topic.

For the first experiment, the chosen 3D LiDAR scanner
is the Velodyne Puck Hi-Res, running at 10 Hz frequency
and featuring 16 channels with a 20◦ vertical Field Of View
(FOV) and a 360◦ horizontal FOV. In the second experi-
ment, we use the Ouster OS1-32 LiDAR, running at 10 Hz
frequency and featuring 32 channels with a 45◦ vertical FOV
and a 360◦ horizontal FOV. Along with the integrated IMU
unit, they are used to run DLO [18], a SLAM algorithm
responsible for providing the odometry. For the 3D LiDAR-
based place recognition, discussed in Section IV, we train a
model similar to OREOS [6], but with a different backbone
model. In particular, instead of using a 3 layer CNN, we
use ResNet18 to get a deeper and more sophisticated feature
extraction, assuring a robust performance even with sparse
LiDAR scans. The model was trained using data collected
from multiple runs in the underground corridors of Luleå
University of Technology (LTU) and a real-life underground
mine facility located in Luleå, Sweden.

B. Datasets and Platforms

The experimental evaluations took place in two differ-
ent environments with two different platforms. In the first
scenario, we test in the underground corridors of LTU
with a Spot robot manufactured by Boston Dynamics, and
equipped with the aforementioned sensors, featuring an Intel
NUC on-board computer with an Intel Core i5-10210U and
8 GB of RAM. This urban environment offers long, self-
similar corridors with some parts containing glass, doors and
various objects. Being part of the university, the corridors
are populated with fixed Wi-Fi APs as well as temporary
APs from various devices. During this experiment, the robot
traversed approximately 500 m at a constant speed of 5 km/h.

The second experiment took place in a modern under-
ground mining facility, being fully equipped with a Wi-Fi
infrastructure composed of several APs. The same sensors
have been mounted on top of a vehicle, which then navigated
through the mine at various speeds (between 15-20 km/h) for
a total distance of approximately equal to 1 km. In both these
experiments, we test the re-localization performance contin-
uously as the robotic platform navigates the environment.
The sampling speed of the LiDAR and the Wi-Fi scanners is
determined by the slowest one, which in both cases is the Wi-
Fi scanner. Therefore, the results presented below are from
a continuous evaluation for every sampling step defined by
the rate of the Wi-Fi scanner.

TABLE I: Recall score, mean distance error and standard deviation for the top-1 candidate, as seen on Fig. 4.

LTU - w/o added noise LTU - with added noise Underground mine

RECALL (%) MEAN (m) STD (m) RECALL (%) MEAN (m) STD (m) RECALL (%) MEAN (m) STD (m)

LiDAR-based 88.7 6.8 16.2 68.6 16.4 24.9 86.6 7.9 25.1

Wi-Fi-based 79.8 4.2 13.1 79.8 4.2 13.1 81.0 3.8 4.7
LiDAR+Wi-Fi 96.9 3.3 9.5 91.4 3.8 10.2 93.8 3.4 11.6



1 2 3 4 5 6 7 8 9 10
N - Number of Top-k Candidates

60

70

80

90

100
Re

ca
ll 

[%
]

LTU - w/o added noise

Wi-Fi-based
LiDAR-based
Wi-Fi + LiDAR
OREOS

1 2 3 4 5 6 7 8 9 10
N - Number of Top-k Candidates

60

70

80

90

100

Re
ca

ll 
[%

]

LTU - with added noise

Wi-Fi-based
LiDAR-based
Wi-Fi + LiDAR
OREOS

1 2 3 4 5 6 7 8 9 10
N - Number of Top-k Candidates

60

70

80

90

100

Re
ca

ll 
[%

]

Underground Mine

Wi-Fi-based
LiDAR-based
Wi-Fi + LiDAR

1 2 3 4 5 6 7 8 9 10
N - Number of Top-k Candidates

0

20

40

60

80

M
ea

n 
Di

st
an

ce
 [m

] Wi-Fi-based
LiDAR-based
Wi-Fi + LiDAR

1 2 3 4 5 6 7 8 9 10
N - Number of Top-k Candidates

0

20

40

60

80

M
ea

n 
Di

st
an

ce
 [m

] Wi-Fi-based
LiDAR-based
Wi-Fi + LiDAR

1 2 3 4 5 6 7 8 9 10
N - Number of Top-k Candidates

0

20

40

60

80

M
ea

n 
Di

st
an

ce
 [m

] Wi-Fi-based
LiDAR-based
Wi-Fi + LiDAR

Fig. 4: Top plots showcase the results from the real-world experiments in terms of place recognition for an increasing number
N of nearest place candidates retrieved from the map. A candidate is considered correct if it is within a 3 m radius from
the corresponding pose in the database. Bottom plots demonstrate the mean distance of the predicted pose to the ground
truth from the map, for each candidate, with the addition of the min and max deviations.

C. Results and discussion

In this section, we go through the results that are presented
in Fig. 4, Fig. 5 and Table I. The metrics include (i) the recall
score for the increasing number of nearest place candidates
retrieved from the map and (ii) the mean and standard
deviation of the distance from the current pose to the one
queried from the database. The latter metrics heavily relies
on the recall score and on the density of the sampling space.
Starting from the results with the first experiment at the
urban indoor environment, shown in Fig. 4 and Table I, it can
be observed how the LiDAR based method demonstrates a
good performance in terms of recall percentage. On the other
hand, the mean distance of the predicted pose, compared
to the ground truth within the map, is significantly high,
especially for the increasing number of top-k candidates. On
the contrary, for the Wi-Fi fingerprinting, the mean distance
is maintained low (around 3 m, increasing to approximately
5-10 m as expected for the less likely candidates). The
proposed switching solution is then able to combine the
best achieved from both approaches (namely, the good recall
percentage of the LiDAR-based method and the lower mean
distance error of the Wi-Fi fingerprinting), finally resulting
in a 97% recall and a mean error of 3.3 m for the best
candidate selection. This performance gain is explained by
the nature of the Wi-Fi fingerprinting, being able to narrow
down the search space, compared to LiDAR, that is prune
to perceptual aliases. In 3D point clouds, descriptors are
used to capture and represent the unique features of each
point. However, it is possible for two descriptors to be
similar despite originating from different locations if the
underlying features of the point cloud, such as shape or
texture, exhibit similarities. This similarity can occur because
the descriptors are designed to extract and encode relevant
information about the point cloud, allowing them to capture
similar patterns or characteristics regardless of their spatial

origin. The deterministic nature of the Wi-Fi fingerprinting
overcomes this issue by removing the outlier candidates, and
the combination of both yields the best result.

To further evaluate the performance of our novel frame-
work, we degrade the performance of the LiDAR by adding
Gaussian Noise at 40% of the samples with σ2

n = 0.015.
In the second column of Fig. 4, the performance drop is
approximately 20% for the recall percentage and the mean
error distance from 7 m to 16 m. At the opposite, with the
combined method the decrease is only 6%, demonstrating
the ability to decide between the best candidates in the
presence of disturbance. For both scenarios, in the urban
environment, the performance of OREOS showcases the
need for a deeper feature extraction pipeline, leveraging its
proposed point cloud to range image projection. For the rest
of the experiments, we disregard this method.

The second experiment took place in a real-world under-
ground mining facility that contains long featureless tunnels
with multiple drifts. In the last column of Fig. 4, the results
of the switching solution further validate our hypothesis. In
detail, the addition of the Wi-Fi can narrow down the search
space, and the resulting common candidates yield a 93%
recall score a mean error distance approximately equal to
3.4 m. The high recall score for the LiDAR-based method is
due to the higher resolution of the LiDAR scanner, which,
in this case, was the OS1-32 and had a number of channels
double with regard to the VLP16. Finally, as shown Fig. 5,
the red mismatched places are corrected, as long as at least
one of the components predicted it right.

VI. FUTURE DEVELOPMENTS

There are several ways to improve the accuracy of the
proposed framework. For example, in order to increase the
amount of Wi-Fi data collected during the offline phase of
the fingerprinting process, multiple scanners based on the
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Fig. 5: Trajectory for each experiment, based on the top-1
candidate (green points represent the correct predictions, red
points denote the incorrect ones).

same development board could be used, therefore increasing
the features available for the framework. Moreover, the
newer Wi-Fi standards, namely IEEE 802.11ac (Wi-Fi 5)
and IEEE 802.11ax (Wi-Fi 6E), introduce the use of the
additional 5 GHz and 6 GHz RF bands alongside the 2.4 GHz
band, with the aim to improve the throughput of wireless
networks. An enhanced version of the framework could adopt
a newer Wi-Fi sensor able to scan multiple bands, especially
the widely used 5 GHz band, that, given the shorter range,
should return more granular fingerprints, further improv-
ing the 2.4 GHz solution. Besides Wi-Fi networks, 5G
cellular networks adoption is rapidly increasing, with the
continuous deployment of indoor private 5G networks based
on small Base Transceiver Stations (BTSs) for industrial
applications in various environments. Given the different
radio technologies used by 5G, the integration of the cellular
network fingerprint can further enhance the accuracy of the
framework. Finally, more advanced ML techniques can be
adopted [19, 20], allowing a better usage of the gathered
data to further increase the accuracy.

VII. CONCLUSIONS

This paper has proposed a framework that integrates
LiDAR-based descriptors and Wi-Fi fingerprinting to over-
come the global localization challenge in pre-mapped en-
vironments. The preliminary experimental evaluations, as
shown in Section V, are promising. These evaluations high-
light the framework’s potential, particularly for localization
applications in environments where pure LiDAR solutions
may encounter technological limitations. By exploiting the
strengths of both LiDAR SLAM and Wi-Fi fingerprinting,
the framework consistently achieves improved performance,
especially in challenging environments where traditional
methods fall short. Experimental results from urban indoor
and underground mining scenarios validate the effectiveness
of the switching solution, which combines the LiDAR-based

method’s high recall percentage with the Wi-Fi fingerprint-
ing’s lower mean distance error. The proposed framework
holds promise for practical implementation in inspection
and monitoring scenarios, empowering mobile robots with
accurate global localization capabilities.
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