
UNav-Sim: A Visually Realistic Underwater Robotics Simulator and
Synthetic Data-generation Framework

Abdelhakim Amer, Olaya Álvarez-Tuñón, Halil İbrahim Uğurlu, Jonas le Fevre Sejersen,
Yury Brodskiy and Erdal Kayacan

Abstract— Underwater robotic surveys can be costly due to
the complex working environment and the need for various
sensor modalities. While underwater simulators are essential,
many existing simulators lack sufficient rendering quality, re-
stricting their ability to transfer algorithms from simulation to
real-world applications. To address this limitation, we introduce
UNav-Sim, which, to the best of our knowledge, is the first
simulator to incorporate the efficient, high-detail rendering of
Unreal Engine 5 (UE5). UNav-Sim is open-source1 and includes
an autonomous vision-based navigation stack. By supporting
standard robotics tools like ROS, UNav-Sim enables researchers
to develop and test algorithms for underwater environments
efficiently.

I. INTRODUCTION

Marine robotics is an expanding field with numerous
applications, including exploring underwater ecosystems and
inspecting underwater infrastructure [1]. Recent develop-
ments in robotics and autonomy have demonstrated the
superior capabilities of artificial intelligence (AI) and vision-
based algorithms in solving complex tasks, such as drone
racing [2], [3] and inspection [4]. These achievements have
shown promise in developing AI and autonomy for marine
applications as well [5]. To mitigate the high costs involved
in developing and testing such algorithms, photorealistic sim-
ulation environments are needed that can accurately model
the complexity of underwater scenarios [6].

In this context, this paper presents UNav-Sim, the first
open-source underwater simulator based on unreal engine
5 (UE5) to create photorealistic environments (see Fig. 1).
Compared to existing underwater robotics simulators, [7]–
[10], UNav-Sim provides superior rendering quality, essential
for the development of AI and vision-based navigation
algorithms for underwater vehicles. It supports robotics tools
such as ROS 2 and autopilot firmwares making it suitable for
robotics research and development. The simulator uses the
following open-source AirSim [11] extensions: [12] to add
custom vehicle models to AirSim, and [13] for integration of
AirSim to UE5. UNav-Sim can be used to simulate a wide
range of underwater scenarios and models. The paper also

A. Amer, O. Tunon, H. Uğurlu, J. Sejersen are with the Depart-
ment of Electrical Engineering and Computer Engineering, Aarhus Uni-
versity, 8200 Aarhus, Denmark {abdelhakim, olaya, halil,
jonas} at ece.au.dk. Y. Brodskiy is with EIVA a/s, 8660
Skanderborg, Denmark. {ybr} at eiva.com. E. Kayacan is with
the Automatic Control Group, Department of Electrical Engineering
and Information Technology, Paderborn University, Paderborn, Germany.
{erdal.kayacan} at uni-paderborn.de

1https://github.com/open-airlab/UNav-Sim

UNav-Sim
UNDERWATER ROBOTICS SIMULATOR

Fig. 1. UNav-Sim is an underwater robotics simulator utilizing Unreal
Engine 5 (UE5) highly realistic environments. The simulator includes many
features useful for roboticists, such as ROS 2, and a wide range of sensors
and cameras. The bottom right displays the feed from a front-facing RGB
camera, while the bottom left shows a corresponding depth image.

demonstrates its effectiveness for the development of vision-
based localization and navigation methods for underwater
robots.

The rest of the paper is structured as follows: Section II
presents an overview of the state-of-the-art simulators and
their respective capabilities. Section III describes the soft-
ware architecture, physics, and models that comprise UNav-
Sim. In Section IV, we describe a vision-based underwater
navigation stack that was developed as a component of
UNav-Sim. Then, we present a test case in Section V, where
we showcase the abilities and features of our simulator in
a vision-based pipe inspection scenario. Lastly, conclusions
are drawn from this work in Section VI.

II. STATE-OF-THE-ART

Robotics simulation tools have significantly advanced in
recent years, with a focus on providing high-fidelity and
photorealistic visual rendering. IsaacSim [14], developed
by Nvidia, is a recent example that includes both high-
fidelity contact simulation and high-quality image rendering
provided by Omniverse, making it suitable for simulating
robotic grippers and walking robots. Another example is Mi-
crosoft’s AirSim [11], yet another popular robotics simulator,
specifically designed for aerial vehicles. AirSim utilizes its
Fastphysics engine for physics simulation and unreal engine
4 (UE4) for visualization.

While progress in robotics simulation tools has been rapid,
underwater robotics simulation tools have lagged behind.

ar
X

iv
:2

31
0.

11
92

7v
1

 [
cs

.R
O

]
 1

8
O

ct
 2

02
3

https://github.com/open-airlab/UNav-Sim

MPC

Vision-based underwater navigation stack

Rendering engineUnderwater simulator

Control Visual localization
Tartan VO
ORB-SLAM3Thruster allocation

Sensor models
GPS - IMU
Distance sensor
Camera

Vision-based planning

Deep RL

ROV model
Thruster model
Thruster configuration
Model parameters

Environments

Blueprint

Underwater physics

Fast physics engine

Hydrodynamics & Hydrostatics

Interfaces
Python API

Fig. 2. UNav-Sim system architecture is designed to be modular, allowing flexibility in adapting the simulator to various underwater autonomy tasks.
The system utilizes Unreal Engine 5 (UE5) to provide a high-fidelity rendering environment for increased photo-realism. A model predictive controller
(MPC), combined with a deep reinforcement learning (DRL) planner and Visual SLAM are utilized for vision-based underwater navigation.

UWSim [15] and UUV Simulator [8] are the two most com-
monly used underwater simulators [16]; however, they are
now discontinued. A more recent simulator, DAVE [9], was
developed as a more modern version of the UUV simulator
that supports more remotely operated vehicle (ROV) models
and underwater sensors. However, the aforementioned sim-
ulators are based on Gazebo, which has the disadvantage of
unrealistic rendering. This limits their usefulness for training
and testing AI algorithms that often rely on image inputs.
To address this issue, HoloOcean [7] was developed using
UE4 for rendering and written in Python, but it lacks support
for robot operating system (ROS) [17]. Another example is
MARUS [10], which has not yet released its open-source
implementation. The simulator uses Unity3D for visualiza-
tion and integrates with ROS. However, it lacks support
for essential robotics and AI tools, such as commercial
autopilots [18], or OpenAI’s Gym environments [19], which
are important tools for developing AI and control algorithms
for autonomous vehicles.

A comparison of the capabilities of various open-source
underwater robotics simulators, including the proposed sim-
ulator, is presented in Table I. Amongst all simulators evalu-
ated, the present work, UNav-Sim, stands out for its superior
rendering quality, achieved through the utilization of the
unreal engine (UE)5 graphics engine. Additionally, UNav-

Sim supports a range of tools commonly used in developing
robotics solutions, such as ROS, gym environments, and
autopilot systems. Furthermore, UNav-Sim is compatible
with both Windows and Linux operating systems.

III. UNAV-SIM SOFTWARE ARCHITECTURE

UNav-Sim is composed of three main components, as
illustrated in Fig. 2: an underwater physics simulator, a
state-of-the-art rendering engine, i.e. UE5, and an autonomy
stack. The underwater physics simulator, which contains the
lumped parameter ROV model and underwater dynamics
equations, is modular and allows underwater vehicle motion
simulation. It leverages the capabilities of AirSim, including
the Fastphysics solver and a range of sensor models, such
as GPS, IMU, cameras, and distance sensor. An API allows
communication between the navigation stack and the physics
simulator, with the former receiving essential sensor data and
sending control commands. A ROS wrapper is also available,
which enables ROS-based development and communication
between different modules.

A. Underwater environment rendering

Underwater image formation can be modelled as a super-
position of absorption, forward scattering, and backscattering
effects at each pixel x = (u, v). The image intensity Ic(x)
in each color channel c can be expressed as [21]:

TABLE I
MARINE ROBOTICS SIMULATORS COMPARISON SHOWING UNAV-SIM’S SUPERIOR RENDERING QUALITY AND VERSATILITY.

Simulator Year Rendering quality ROS Support Autopilot OS

UWSim [15] 2012 Low ROS 1 None Linux
UUV [8] 2016 Low ROS 1 Ardupilot Linux

URSim [20] 2019 Moderate ROS 1 N/A Linux
HoloOcean [7] 2022 High N/A N/A Linux/Windows

DAVE [9] 2022 Low ROS 1 PX4/Ardupilot Linux
MARUS [10] 2022 Moderate ROS 1,2 N/A Linux/Windows

UNav-Sim (Ours) 2023 Highest ROS 1,2 PX4/Ardupilot Linux/Windows

Ic(x) = Dc(x) + Fc(x) +Bc(x) (1)

In this equation, Dc represents the attenuated signal from
the object due to absorption. The forward scattering compo-
nent Fc captures the light from the object that reaches the
camera with small-angle scattering. Lastly, the backscattering
component Bc accounts for the degradation in color and
contrast caused by the water scattering effect, where the light
does not originate directly from the object. These effects can
be modelled using different techniques and can vary based
on the implementation within the rendering engine.

UNav-Sim utilizes UE5 as the rendering engine, which
offers significant improvements over its predecessor, UE4.
UE5 significantly boosts polygon handling to 10 billion,
introduces real-time ray-based lighting with Lumen, and
incorporates Temporal Super Resolution for high-quality
textures with minimal performance impact, enhancing visual
fidelity and efficiency.

UE5 underwater rendering module models scattering ef-
fects in underwater images (1), with Schlick Phase Functions
[22], taking into account the Opaque or Masked water
surface. The transparency of the water is implicitly handled
within the volume shading model, and refraction is managed
by reading the depth and color beneath the water surface to
distort the samples. One of the main challenges in generating
underwater renderings is the variety of imaging conditions
that drastically change the environment’s appearance [23].
UE5 allows users to define the scattering coefficients, ab-
sorption coefficients, phase function, and color scale behind
the water, providing control over the water’s appearance and
thus allowing users to simulate their preferred environment’s
conditions.

Consequently, using UE5 within UNav-Sim, underwater
environments that appear realistic can be created, where UE
allows designers to place and manipulate assets in a 3D
space. These assets can include terrain, static meshes, and
lighting. They can be customized to create underwater virtual
worlds, as shown in Fig. 2.

UE uses blueprints to define the physical representation
and behaviour of an ROV. In UNav-Sim, the blueprint is
linked to an external underwater physics engine to obtain
kinematic information. The blueprint also defines cameras
that gather visual information from the underwater environ-
ment, such as RGB and depth images.

B. Underwater physics

The core of the physics underlying underwater vehicles
consists of the equations of motion that describe the different
forces and moments acting on the vehicle’s body. These
forces and moments can be classified into three categories:
hydrostatics, hydrodynamics, and externally applied forces.

The equation of motion in the body-fixed frame, originally
presented in Fossen [24], can be expressed in SNAME
notation [25] as,

MRB ν̇ = τ − CRB(ν)ν︸ ︷︷ ︸
Coriolis term

−MAν̇ −CA(ν)ν︸ ︷︷ ︸
Added mass

−D(ν)ν︸ ︷︷ ︸
Drag

−g(η).
(2)

The vehicle’s pose, η = [x, y, z, ϕ, θ, ψ]T , is described
by a six-dimensional column vector where x, y, and z
denote the vehicle’s position in the North-East-Down (NED)
frame, while ϕ, θ, and ψ represent its roll, pitch, and yaw
angles, respectively (see Fig. 3). The linear and angular
velocity vector in the body-fixed frame is denoted as ν =
[u, v, w, p, q, r]T . The inertia matrix of the vehicle’s body is
represented by MRB . Hydrostatic forces, g(η), arise from
gravity and buoyancy, along with associated moments and
torques. Hydrodynamic forces arise from the interaction
between the vehicle and the surrounding water and can sig-
nificantly impact the vehicle’s behavior. These forces include
the Coriolis and centripetal forces caused by the rigid body’s
mass, CRB(ν)ν, the Coriolis forces, CA(ν), and moment
of inertia, MA, arising from the added mass, and linear and
quadratic damping effects, D(ν)ν. External forces, τ , include
the forces exerted on the ROV by its thrusters, as well as the
disturbances, caused by the surrounding water flow. Multiple
disturbance models, such as constant value, sinusoidal, and
a combination of sine waves are implemented.

To efficiently solve the equations of motion presented
above, AirSim’s high-frequency physics engine is utilized
with a computational frequency of 1000Hz. The engine uses
the velocity verlet algorithm for numerical integration due to
its computational benefits.

C. ROV model

The ROV is represented as a rigid body that is manipulated
by an arbitrary number of actuators, N . These actuators
are located at user-defined vertices of the vehicle, with

xB

yB

zB

𝜏1

𝜏2 𝜏3

𝜏4

𝜏7
𝜏8

𝜏5𝜏6

y
O

z
x

East

North

Down

Sway

Surge

Heave

Yaw

Pitch

Roll φ

θ

ψ

n2

n1

n6

n7

n3

n4

n8

n5

Fig. 3. ROV model defined in UNav-Sim: A force τi is applied at each
thruster location i, where the thruster orientation is defined by a vector ni.

corresponding normals and positions denoted by ni and ri,
respectively, where i ∈ {1, . . . , N} is the actuator number.
At each vertex, the vehicle receives a unitless control input,
ui ∈ (−1, 1). To account for actuator dynamics, a discrete
low-pass filter with a time constant of tc is applied to the
control input. The filtered input, denoted as ufi, is then used
to calculate the thrust force using the relationship given as
[11],

τi = CT ρω
2
maxD

4ufi, (3)

where τi is the thrust force on the i-th thruster, CT is the
thrust coefficient, ρ is the density of water, ωmax is the
maximum thruster rotation speed, and D is the propeller
diameter. In order to accurately compute the specific rigid
motion of the ROV, as described by equations (2) and (3),
several vehicle-specific parameters such as its inertia, hy-
drodynamic coefficients, and the maximum thruster rotation
speed, must be configured by the user.

The model chosen to be implemented, the Blue Robotics
BlueROV2 Heavy, is an over-actuated ROV with four vertical
thrusters and four horizontal thrusters as shown in Fig. 3.
The horizontal thrusters are oriented at 45 degrees and are
responsible for the control of three degrees of freedom,
namely, surge, sway, and yaw, while the vertical thrusters
control heave, pitch, and roll. The model parameters are
obtained from [26].

IV. VISION-BASED UNDERWATER NAVIGATION STACK

The vision-based underwater navigation stack of UNav-
Sim includes planning, control, and SLAM. Many state-
of-the-art AI algorithms in robotics, for example, as im-
plemented in OpenDR toolkit [27] or PyPose library [28],
primarily rely on vision for localization, planning, and con-
trol [29]. Therefore, in this study, we have chosen to utilize
visual SLAM (VSLAM) and end-to-end deep reinforcement
learning (DRL) algorithms to demonstrate the capabilities
of the proposed simulator. To facilitate ease of integration
with various autonomy algorithms and deployment on actual

hardware, all algorithms have been developed using ROS
framework.

A. Vision-based planning

The recent developments in machine learning methods
enable intelligent agents to learn navigation tasks end-to-
end. Generally, a deep neural network policy takes sensory
input, such as high-dimensional visual data, and generates
feasible actions without explicitly mapping the environment.
These learning-based methods require large amounts of data
for training, which is impractical for real-world robotics
systems. Hence, simulation environments are very substantial
for enriching the required data in many cases [30]. Further-
more, DRL methods require demonstrations for exploration
of the environment to learn a policy, which increases safety
concerns for real-world learning [31]. Consequently, sim-
ulation environments with high-fidelity visual sensors and
accurate physical dynamics are crucial for DRL research.
OpenAI’s gym [19] is a general standard for experiment-
ing with learning-based sequential decision-making tasks.
Therefore, we have provided a gym environment along with
our simulator to augment its capabilities for benchmarking
learning-based navigation algorithms.

B. Control

A model predictive control (MPC) strategy was utilized
to control the ROV model, which consists of a two-step
process involving an MPC followed by a control allocation
algorithm. The motivation for the use of MPC is based
on its ability to handle both input and state constraints
explicitly, and intuitive tuning parameters [32]. The MPC
is designed to solve an online optimization problem, aiming
to determine the optimal body wrench forces and moments,
given a particular robot pose and a desired reference pose.

The control allocation algorithm is then employed to
obtain the individual control signal for each thruster by
using a pseudo-inverse of an allocation matrix, which is
vehicle-specific and depends on the thruster configuration of
the ROV. ACADO toolkit [33] is utilized to implement the
MPC as a ROS package, which is integrated into the ROS
navigation stack.

C. Visual localization

Visual localization algorithms rely on cameras to retrieve
the robot’s state, which are widely used in the under-
water robotics community [34]. Long-standing ROS pack-
ages for SLAM include robot_localization, which
presents a classical filtering approach for sensor fusion [35],
hector_slam, which implements occupancy grid maps for
laser and IMU data [36], and gmapping, which leverages
a Rao-Blackwellized particle filter for laser-based SLAM
[37]. The availability of these state-of-the-art and ready-
to-use algorithms has allowed outstanding progress in the
robotics community [38]–[42], as they ease the implemen-
tation of future advances for SLAM and the benchmarking
of their performance. However, the availability of off-the-
shelf packages for visual SLAM remains an open problem.

Therefore, we propose robot_visual_localization,
a ROS metapackage for deploying and benchmarking visual
localization algorithms. We chose to implement the state-
of-art methods ORB-SLAM3 [43] and TartanVO [44]. Each
algorithm is implemented as a standalone ROS package
within the robot_visual_localization metapack-
age, which takes as input the image stream, and outputs the
camera trajectory and the map points for ORB-SLAM3, and
the camera trajectory for TartanVO.

ORB-SLAM3 encompasses a geometry-based approach
for SLAM. The ORB-SLAM3’s front end tracks ORB fea-
tures across consecutive frames. The features are selected to
be uniformly distributed across the image, and the matches
search is performed according to a constant velocity model.
The ORB-SLAM3’s back end builds a map with the sparse
points tracked from the front end. Under tracking loss, the
map is stored in memory as inactive, creating a new active
map. The loop closure thread finds revisited areas under the
active and inactive maps, merging them and propagating the
accumulated drift.

Geometry-based algorithms such as ORB-SLAM3 still
present the de-facto state-of-art for SLAM, due to their high
precision and efficiency. However, they are highly dependent
on feature detection and matching, and therefore sensitive to
visual degradations such as repetitive patterns, textureless en-
vironments, and non-Lambertian surfaces. On the other hand,
learning-based algorithms can be more robust against those
challenging imaging conditions, but are highly dependent on
the training data, and usually lack generalization ability.

The proposed ROS metapackage serves then as an ac-
cessible tool for the easy comparison of two of the main
taxonomies in the SLAM’s state-of-art, which in the present
work serves as a comparison of their performance under
challenging underwater imaging conditions.

V. EXAMPLE USE-CASES

As a case study for UNav-Sim, we present an autonomous
pipe inspection scenario. Pipe inspection, being the most
common use case for ROVs, presents a relevant and challeng-
ing use case, where vision-based navigation is essential to
achieve the required task. Furthermore, we assess the efficacy
of our underwater autonomy stack and report its performance
in executing the designated autonomous pipe inspection task.
A video showing the pipe inspection demonstration can be
found here2.

A. Vision-based pipe following with DRL

In this experiment, the performance of UNav-Sim is
evaluated in a pipe-following task. An agent utilizing DRL
is trained with the gym interface provided by the simula-
tor to generate position commands based on RGB image
observations. An MPC controller subsequently executes the
position commands. The convolutional neural network policy
inputs 180 × 320 pixel RGB image observation, ot, from a
downward-looking camera on ROV and outputs an action, at,

2https://youtu.be/unZS33lCqpU

y(m)
x
(m

)

Fig. 4. Trajectory followed by the DRL agent (dark blue) along with the
pipes from the top view. Starting point is the origin of the coordinate frame
and is indicated with the ROV.

describing one meter away waypoint consisting of two val-
ues, a1, a2 ∈ [−1, 1]. The actions represent the direction of
the position step and turn in the heading angle, respectively,
similar to our previous work [31]. The reward is defined
with respect to vertical divergence from the pipe unless the
termination of episodes; rt = 10 − 2e2p − 2eψ where ep is
the closest distance to the pipe in the horizontal plane and
eψ is the error in heading with respect to pipe direction.
An episode is terminated where the pipes are not in the
camera’s field of view, which is ep > 2.5m. The DRL agent
is trained with proximal policy optimization [45] algorithm
using stable-baselines3 [46] package.

The trained policy is deployed on a pipe ∼ 20 meters
long with right and left turns. The trajectory of the agent
along with the pipes is visualized in Fig. 4. While the agent
is not accurately tracking the pipes due to the exploratory
behavior of the DRL policy, it learns to make reasoning from
image observations and successfully follows the pipe. This
experiment demonstrates the utilization of high-fidelity im-
age observations and accurate dynamics provided by UNav-
Sim in a particular application.

B. Visual localization benchmarking

The vision-based trajectory generated in Section V-A,
being carried out by the robot with the controller showcased
in Section IV-B, has served as a test setup for the visual local-
ization experiment. Two trajectories are carried out: a linear

https://youtu.be/unZS33lCqpU

trajectory where no area in the map is revisited (see Fig.
4), and a trajectory with a loop, where the robot navigates
back to the starting point. The benchmarking is automati-
cally performed by the robot_visual_localization
metapackage using [47].

During runtime, the estimated trajectory Pi and the ground
truth trajectory Qi are recorded into separate files composing
a sequence of time-synchronized spatial poses. The pose for-
mat is the one proposed in [48], composed of the three spatial
coordinates with the orientation in quaternions. The metrics
implemented are the absolute positioning error (APE) and
the relative positioning error (RPE), which are automatically
deployed over the recorded trajectories before shutdown.
TartanVO presents a monocular visual odometry algorithm.
Therefore, for a fair comparison, the ORB-SLAM3 experi-
ment is executed under a monocular setup. The deployment
of monocular algorithms implies that the orientation of the
algorithm’s world frame and the trajectory’s scale is arbitrary.
Therefore, the estimated trajectories are aligned with the
ground truth by obtaining the transform S ∈ Sim3 that best
aligns Pi with Qi.

With the deployment of the automatic stack for vi-
sual inspection proposed by UNav-Sim, benchmarking
of visual localization algorithms becomes a straightfor-
ward task: the robot follows the pipeline autonomously
under the planned trajectory, with the visual local-
ization algorithms being automatically executed by the
robot_visual_localization package, which on
shutdown generates the results as depicted in Table II. It can
be seen from the generated results that the two proposed al-
gorithms depict a similar performance in the linear trajectory,
but ORB-SLAM outperforms TartanVO under the presence
of a closed loop. Despite ORB-SLAM’s high efficiency in
state-of-the-art datasets, the realistic underwater conditions
confront one of the main challenges for feature-based ap-
proaches: the lack of texture. Moreover, the pipes are the
main source of features, which avoids their uniform distri-
bution across the image. Without enough evenly-distributed
features, the ORB-SLAM’s front end drifts. Nevertheless, the
closed trajectory shows the convenience of the back-end’s
loop closure algorithm: the absolute errors are significantly
reduced for translation and rotation. On the other hand,
TartanVO presents a drift similar to ORB-SLAM’s in the
translations, but slightly higher for rotations. These results
show the great potential of learning-based algorithms under
imaging conditions that challenge geometry-based methods.
Although the lack of generalization ability is the main source
of drift in this case, TartanVO has been trained with high
amounts of diversified data that explain its good performance
in the proposed setup.

In conclusion, the framework proposed in UNav-Sim has
enabled the automatic benchmarking of state-of-the-art visual
localisation algorithms in a realistic underwater scenario.
This has allowed the challenges and opportunities of these
algorithms to be easily demonstrated in a geometry-based
and learning-based manner.

TABLE II
VISUAL LOCALIZATION RESULTS IN THE PIPELINE TRACKING SCENARIO.

Trajectory Algorithm APE[m] RPE[m] APE[rad] RPE[rad]

Linear ORB-SLAM3 1.75 0.412 1.53 0.036
TartanVO 1.67 0.489 1.95 0.108

With loop ORB-SLAM3 0.078 0.372 1.62 0.006
TartanVO 0.961 0.322 2.10 0.068

VI. CONCLUSION & FUTURE WORK

We have developed UNav-Sim, a novel open-source un-
derwater simulator, which builds upon AirSim and UE5
and incorporates state-of-the-art robotics algorithms. UNav-
Sim also supports ROS and multiple operating systems,
facilitating a streamlined and efficient development process
for robotics applications. Future work will include the incor-
poration of additional underwater sensors, vehicle models,
and more custom environments.

ACKNOWLEDGEMENT

This work is supported by EIVA a/s and Innovation Fund
Denmark under grants 2040-00032B and 1044-00007B, the
European Union’s Horizon 2020 Research and Innovation
Program (OpenDR) under Grant 871449 and the Marie
Skłodowska-Curie (REMARO) under Grant 956200. This
publication reflects the authors’ views only. The European
Commission is not responsible for any use that may be made
of the information it contains.

REFERENCES

[1] Robert Bogue. Underwater robots: a review of technologies and
applications. Industrial Robot: An International Journal, 2015.

[2] Efe Camci, Domenico Campolo, and Erdal Kayacan. Deep reinforce-
ment learning for motion planning of quadrotors using raw depth
images. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–7. IEEE, 2020.

[3] Huy Xuan Pham, Ilker Bozcan, Andriy Sarabakha, Sami Haddadin,
and Erdal Kayacan. Gatenet: An efficient deep neural network archi-
tecture for gate perception using fish-eye camera in autonomous drone
racing. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4176–4183. IEEE, 2021.

[4] Mohit Mehndiratta and Erdal Kayacan. Gaussian process-based
learning control of aerial robots for precise visualization of geological
outcrops. In 2020 European Control Conference (ECC), pages 10–16.
IEEE, 2020.

[5] Leif Christensen, José de Gea Fernández, Marc Hildebrandt, Christian
Ernst Siegfried Koch, and Bilal Wehbe. Recent advances in ai for
navigation and control of underwater robots. Current Robotics Reports,
pages 1–11, 2022.

[6] Olaya Álvarez Tuñón, Hemanth Kanner, Luiza Ribeiro Marnet, Huy
Xuy Pham, Jonas le Fevre Sejersen, Yury Brodskiy, and Erdal Kay-
acan. Mimir-uw: A multipurpose synthetic dataset for underwater
navigation and inspection. 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2023.

[7] Easton Potokar, Spencer Ashford, Michael Kaess, and Joshua G
Mangelson. Holoocean: An underwater robotics simulator. In 2022
International Conference on Robotics and Automation (ICRA), pages
3040–3046. IEEE, 2022.

[8] Musa Morena Marcusso Manhães, Sebastian A Scherer, Martin Voss,
Luiz Ricardo Douat, and Thomas Rauschenbach. Uuv simulator:
A gazebo-based package for underwater intervention and multi-robot
simulation. In OCEANS 2016 MTS/IEEE Monterey, pages 1–8. IEEE,
2016.

[9] Mabel M Zhang, Woen-Sug Choi, Jessica Herman, Duane Davis, Car-
son Vogt, Michael McCarrin, Yadunund Vijay, Dharini Dutia, William
Lew, Steven Peters, et al. Dave aquatic virtual environment: Toward a
general underwater robotics simulator. In 2022 IEEE/OES Autonomous
Underwater Vehicles Symposium (AUV), pages 1–8. IEEE, 2022.

[10] Ivan Lončar, Juraj Obradović, Natko Kraševac, Luka Mandić, Igor
Kvasić, Fausto Ferreira, Vladimir Slošić, Ðula Nad̄, and Nikola
Mišković. Marus-a marine robotics simulator. In OCEANS 2022,
Hampton Roads, pages 1–7. IEEE, 2022.

[11] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor.
Airsim: High-fidelity visual and physical simulation for autonomous
vehicles. In Field and service robotics, pages 621–635. Springer, 2018.

[12] BYU. byu vtol. https://github.com/byu-magicc/
vtol-AirSim, 2013.

[13] CodexLabsLLC. Colosseum. https://github.com/
CodexLabsLLC/Colosseum, 2013.

[14] Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chen-
tanez, Miles Macklin, and Dieter Fox. Gpu-accelerated robotic
simulation for distributed reinforcement learning. In Conference on
Robot Learning, pages 270–282. PMLR, 2018.

[15] Mario Prats, Javier Perez, J Javier Fernandez, and Pedro J Sanz.
An open source tool for simulation and supervision of underwater
intervention missions. In 2012 IEEE/RSJ international conference on
Intelligent Robots and Systems, pages 2577–2582. IEEE, 2012.

[16] Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard.
A review of physics simulators for robotic applications. IEEE Access,
9:51416–51431, 2021.

[17] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[18] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. Px4: A
node-based multithreaded open source robotics framework for deeply
embedded platforms. In 2015 IEEE international conference on
robotics and automation (ICRA), pages 6235–6240. IEEE, 2015.

[19] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[20] Pushkal Katara, Mukul Khanna, Harshit Nagar, and Annapurani
Panaiyappan. Open source simulator for unmanned underwater ve-
hicles using ros and unity3d. In 2019 IEEE Underwater Technology
(UT), pages 1–7. IEEE, 2019.

[21] Olaya Álvarez-Tuñón, Alberto Jardón, and Carlos Balaguer. Genera-
tion and processing of simulated underwater images for infrastructure
visual inspection with uuvs. Sensors, 19(24):5497, 2019.

[22] Philippe Blasi, Bertrand Le Saec, and Christophe Schlick. A rendering
algorithm for discrete volume density objects. In Computer Graphics
Forum, volume 12, pages 201–210. Wiley Online Library, 1993.

[23] Derya Akkaynak, Tali Treibitz, Tom Shlesinger, Yossi Loya, Raz
Tamir, and David Iluz. What is the space of attenuation coefficients in
underwater computer vision? In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4931–4940, 2017.

[24] Thor I Fossen. Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

[25] TheSocietyofNavalArchitectureandMarineEngineers SNAME.
Nomenclature for treating the motion of a submerged body through
a fluid. The Society of Naval Architects and Marine Engineers,
Technical and Research Bulletin, pages 1–5, 1950.

[26] Chu-Jou Wu. 6-dof modelling and control of a remotely operated
vehicle. PhD thesis, Flinders University, College of Science and
Engineering., 2018.

[27] S Pedrazzi, D Dias, F Ferro, O Green, E Kayacan, et al. Opendr:
An open toolkit for enabling high performance, low footprint deep
learning for robotics. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 12479–12484. IEEE,
2022.

[28] Chen Wang, Dasong Gao, Kuan Xu, Junyi Geng, Yaoyu Hu, Yuheng
Qiu, Bowen Li, Fan Yang, Brady Moon, Abhinav Pandey, et al.
Pypose: A library for robot learning with physics-based optimization.
arXiv preprint arXiv:2209.15428, 2022.

[29] Huy Xuan Pham, Halil Ibrahim Ugurlu, Jonas Le Fevre, Deniz Bar-
dakci, and Erdal Kayacan. Deep learning for vision-based navigation
in autonomous drone racing. In Deep learning for robot perception
and cognition, pages 371–406. Elsevier, 2022.

[30] Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller,
Vladlen Koltun, and Davide Scaramuzza. Learning high-speed flight
in the wild. Science Robotics, 6(59):eabg5810, 2021.

[31] Halil Ibrahim Ugurlu, Xuan Huy Pham, and Erdal Kayacan. Sim-to-
real deep reinforcement learning for safe end-to-end planning of aerial
robots. Robotics, 11(5):109, 2022.

[32] Utku Eren, Anna Prach, Başaran Bahadır Koçer, Saša V Raković,
Erdal Kayacan, and Behçet Açıkmeşe. Model predictive control
in aerospace systems: Current state and opportunities. Journal of
Guidance, Control, and Dynamics, 40(7):1541–1566, 2017.

[33] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. Acado
toolkit—an open-source framework for automatic control and dynamic
optimization. Optimal Control Applications and Methods, 32(3):298–
312, 2011.

[34] Olaya Álvarez-Tuñón, Yury Brodskiy, and Erdal Kayacan. Monocular
visual simultaneous localization and mapping:(r) evolution from geom-
etry to deep learning-based pipelines. IEEE Transactions on Artificial
Intelligence, 2023.

[35] Thomas Moore and Daniel Stouch. A generalized extended kalman
filter implementation for the robot operating system. In Intelligent
Autonomous Systems 13: Proceedings of the 13th International Con-
ference IAS-13, pages 335–348. Springer, 2016.

[36] Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and Uwe
Klingauf. A flexible and scalable slam system with full 3d motion
estimation. In 2011 IEEE international symposium on safety, security,
and rescue robotics, pages 155–160. IEEE, 2011.

[37] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improving
grid-based slam with rao-blackwellized particle filters by adaptive
proposals and selective resampling. In Proceedings of the 2005 IEEE
international conference on robotics and automation, pages 2432–
2437. IEEE, 2005.

[38] Leyao Huang. Review on lidar-based slam techniques. In 2021
International Conference on Signal Processing and Machine Learning
(CONF-SPML), pages 163–168. IEEE, 2021.

[39] Naigong Yu and Bo Zhang. An improved hector slam algorithm based
on information fusion for mobile robot. In 2018 5th IEEE International
conference on cloud computing and intelligence systems (CCIS), pages
279–284. IEEE, 2018.

[40] Weichen Wei, Bijan Shirinzadeh, Shunmugasundar Esakkiappan, Mo-
hammadali Ghafarian, and Ammar Al-Jodah. Orientation correction
for hector slam at starting stage. In 2019 7th International Conference
on Robot Intelligence Technology and Applications (RiTA), pages 125–
129. IEEE, 2019.

[41] Yassin Abdelrasoul, Abu Bakar Sayuti HM Saman, and Patrick Sebas-
tian. A quantitative study of tuning ros gmapping parameters and their
effect on performing indoor 2d slam. In 2016 2nd IEEE international
symposium on robotics and manufacturing automation (ROMA), pages
1–6. IEEE, 2016.

[42] BLEA Balasuriya, BAH Chathuranga, BHMD Jayasundara, NRAC
Napagoda, SP Kumarawadu, DP Chandima, and AGBP Jayasekara.
Outdoor robot navigation using gmapping based slam algorithm. In
2016 moratuwa engineering research conference (mercon), pages 403–
408. IEEE, 2016.

[43] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM
Montiel, and Juan D Tardós. Orb-slam3: An accurate open-source
library for visual, visual–inertial, and multimap slam. IEEE Transac-
tions on Robotics, 37(6):1874–1890, 2021.

[44] Wenshan Wang, Yaoyu Hu, and Sebastian Scherer. Tartanvo: A
generalizable learning-based vo. In Conference on Robot Learning,
pages 1761–1772. PMLR, 2021.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[46] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Max-
imilian Ernestus, and Noah Dormann. Stable-baselines3: Reliable
reinforcement learning implementations. Journal of Machine Learning
Research, 22(268):1–8, 2021.

[47] Michael Grupp. evo: Python package for the evaluation of odometry
and slam. https://github.com/MichaelGrupp/evo, 2017.

[48] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard,
and Daniel Cremers. A benchmark for the evaluation of rgb-d slam
systems. In 2012 IEEE/RSJ international conference on intelligent
robots and systems, pages 573–580. IEEE, 2012.

https://github.com/byu-magicc/vtol-AirSim
https://github.com/byu-magicc/vtol-AirSim
https://github.com/CodexLabsLLC/Colosseum
https://github.com/CodexLabsLLC/Colosseum
https://github.com/MichaelGrupp/evo

	Introduction
	State-of-the-art
	UNav-Sim software architecture
	Underwater environment rendering
	Underwater physics
	ROV model

	Vision-based underwater navigation stack
	Vision-based planning
	Control
	Visual localization

	Example use-cases
	Vision-based pipe following with DRL
	Visual localization benchmarking

	Conclusion & future work
	References

