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Abstract—This paper presents an open-source simulation plat-
form developed for implementation of both homogeneous and
heterogeneous robotic swarm scenarios. BeeGround is a fully
modular simulation software that allows for a variety of exper-
imental setups with different robotic platforms and population
sizes. Users are able to define environmental conditions, e.g. size,
various properties like temperature and humidity, and obstacles
arrangements. The swarm controller, the individual’s behaviour,
is defined with a separate programming script. In this paper, we
simulated honeybees aggregation mechanism as a case study to
investigate the feasibility of the developed simulation platform.
The results demonstrated that the developed platform is a reliable
simulation software for implementing multi-agent and swarm
robotics scenarios with very large population sizes, e.g. 1000
robots.

Index Terms—Swarm Robotics, Multi-agent Systems, Simula-
tion

I. INTRODUCTION

Multi-robot systems began with groups consisting of in-
dividual robots each designed to complete specific aspects
of a complex task. The idea was to break down the task
into more manageable pieces, increasing efficiency and effec-
tiveness. The problem was that, with such specific purposes
built into the programming and hardware of each robot, the
structure failed when a single individual broke down which
then left a part of the task unfinished. To overcome this flaw,
we turned to nature for solutions [1]. Insect colonies were
prime examples of multi-agent systems capable of completing
incredibly complex tasks in an adaptive manner (i.e. the
collective does not fail until a vast majority of individuals
fail). Social insects, such as bees, ants, termites, wasps, etc.,
are simple on an individual scale and are divided into generic
roles. For example, termites have three main castes: worker,
soldier, and reproductive. In the worker caste, individuals have
no way of knowing what the final mound will look like, there
is no universal agreement. Yet, the building continues even as
workers die and they are able to complete massive structures
akin to an insect metropolis. Other examples are seen in
schools, flocks, and herds that move as if they are one large
organism. Naturally flowing, avoiding predators and obstacles
alike, never completely breaking formation or falling into total
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disarray. The thing that all these organisms have in common
in their behaviours is that they follow a predefined shared set
of rules [2]. These rules are simple enough that an individual
can execute them effectively, but are carefully crafted (over
millions of years of evolution) to achieve a robust desired
(or emergent) behaviour. A famous example of these rules in
action comes in the form of an artificial life program, Boids,
by Reynolds [3] who proposed that flocks of birds followed
3 simple rules to achieve their emergent flying behaviour:
separation, alignment, and cohesion. Separation ensured that
the birds kept a set distance away from each other to avoid
collision. Alignment meant that a bird will face the same
general direction as all its nearest neighbours. Cohesion meant
that a bird attempted to remain in the geographical centre of
the cluster of its nearest neighbours. In keeping to these rules,
Reynolds created life-like simulations of artificial birds flying
in a flock.

To observe and develop for emergent behaviours, re-
searchers had to take to simulations as building thousands of
real-world robots would be a colossal undertaking. Over the
years, numerous platforms have been developed to cater to
such needs.

A. Simulation platforms

Table I presents a list of software commonly used for robotic
platforms and swarm robotics. We described some of the
widely used simulation platforms in this section.

Stage [10]: one of the most popular options of the time
was Stage, a standalone 2D multi-robot simulator. Commonly
used as a plugin for Player, Stage struck a balance between
efficiency and accuracy. By modelling only first-order motions,
Stage could reduce the computational overhead, which in turn
allowed it to simulate a large number of robots within a
reasonable time frame (approximately 1000 robots in real-
time). Many studies in swarm robotics and multi-robotics used
Stage as their simulation platform.

Gazebo [5]: designed as an extension to the Player/Stage
framework, Gazebo was introduced to provide highly detailed
3D environments along with rigid body dynamics. The trade-
off for greater modelling of the environment, Gazebo severely
limited the number of robots that could operate at any given
time, roughly to the order of tens. This drawback meant that



TABLE I
LIST OF SIMULATION PLATFORMS COMMONLY USED FOR SWARM ROBOTICS RESEARCH

Platform Ref. OS Level of Sim.† Open-source Application No. Robots‡ 2D/3D ROS Support
ARGoS [4] Linux/Mac Realistic Yes Swarm Limited 2D & 3D Yes
Gazebo [5] Linux/Mac/Win Realistic Yes Generic Limited 3D Yes
NetLogo [6] Linux/Win Abstract Yes Generic Large 2D No
OpenHRP [7] Linux/Win Realistic Yes Generic Limited 3D Yes
PyCX [8] Linux/Win Abstract Yes Generic Large 2D No
SCRIMMAGE [9] Linux/Mac Realistic Yes Generic Large 3D Yes
Stage [10] Linux/Mac Realistic Yes Swarm Large 2D No
Swarm-sim [11] Linux/Mac/Win Abstract Yes Swarm Large 2D & 3D No
USARSim [12] Linux/Mac/Win Realistic Yes Generic Limited 2D & 3D Yes
V-rep [13] Linux/Mac/Win Realistic No Generic Limited 3D Yes
Webots [14] Linux/Mac/Win Realistic Yes Generic Limited 3D Yes
BeeGround – Linux/Mac/Win Realistic Yes Swarm 1000+ 2D & 3D Yes

†Level of Sim.: indicates is a robot has physical properties or just a particle. ‡’Limited’ means less than 50-100 robots and ’Large’ means 100s of robots.

Gazebo could never fully replace Stage in large-scale multi-
robot simulations.

ARGoS [4]: like other swarm simulators, was designed to
simulate a large number of robots. It is capable of operating in
both 2D and 3D at high levels of efficiency. In this case, 10,000
e-pucks can be simulated in a 2D environment in 60% of the
time it would take for a similar real-world experiment. The
novelty of ARGoS comes in its ability to partition experiments
into multiple sub-spaces, each overseen by a physics engine
of the user’s choice. Its multi-threaded architecture also allows
for efficient usage of multi-core CPUs.

Webots [14]: developed by Cyberbotics Ltd.,the initially
commercial Webots program provided high-fidelity robotic
simulations. Similar to problems faced by other simulators,
the more accurate modelling meant that the scale of swarm
experiments was limited. The price barrier also made adoption
of Webots less popular amongst researchers. However, as of
version 2019a, Webots became fully open-source resulting in
greater accessibility.

Kilombo [15]: Kilombo is a simulator designed for the low-
cost swarm robot, Kilobot. Capable of simulating 100,000
kilobots in real-time, the Kilombo simulator is a must-have for
any researcher utilising Kilobots in their research. However,
Kilombo was designed specifically for the Kilobot, making it
limited in its applications for other robotic platforms.

USARSim [12]: originally designed for Urban Search and
Rescue Simulation, the Unreal Engine-based simulator evolved
into a generic multi-robot simulator. The reason for its mention
is that, like BeeGround, it utilises a video game engine as
the base of its architecture. However, unlike BeeGround, its
focus is not on large-scale swarm simulation but on small-scale
multi-robot experimentation.

B. Developed Simulator in This Work

BeeGround is the developed open-source simulation plat-
form built upon the Unity Development Engine. The goal
of BeeGround was to make swarm simulation accessible for
everyone. In taking advantage of Unity’s physics engine and
design interface, we have created a plug-and-play package
that enables users to quickly create testing environments of
varying sizes, obstacle placements, and swarm populations

as well as program desired swarm behaviours. The freedom
of design in Unity and, by extension, BeeGround allows for
customisation based on the needs of the experiment. Sensors
can be added or removed, means of locomotion can be altered,
or the agent swapped out entirely. In addition, Unity allows for
TensorFlow 2.0 integration, further expanding the use cases of
BeeGround.

Throughout the remainder of this paper, we outline how
BeeGround was used to test a bio-inspired swarm aggregation
algorithm and showcase its capabilities and usefulness in
swarm simulation.

II. BEEGROUND ARCHITECTURE

BeeGround was designed for convenience and quick test
runs. Fig. 1 reveals architecture of the developed simulation
software and its modules. Before commencing the simulation,
a user can customise the arena and swarm parameters. In arena
settings, the size and the obstacle presence can be modified
to cater to a variety of scenarios. For instance, in case of
a cue-based bio-inspired algorithm, an additional heat map
can be loaded which the agents use to reference temperature
conditions within a region. The swarm parameters allow the
user to specify the population size, the positions of agents
within the arena, and various other kinematic constraints. In
addition, ROS-Unity integration packages allow for the use
of popular ROS projects in Unity with the option to publish
and subscribe to topics between the two platforms. A URDF
importer package also allows for existing robot definitions to
be realised in the Unity Environment. In this section, we will
not delve into the finer details of programming in Unity as
the development engine itself has a large library of learning
resources and an active community to aid in understanding.
Instead, we present an overview of the components necessary
in getting started with and operating BeeGround.

A. Robot Modelling

For software, Unity Engine scripts consist of a start func-
tion and an update function. The start function emulates the
initialisation phase of the robot and occurs at the beginning of
the simulation. The update function behaves as a while loop



Fig. 1. Architecture of the developed BeeGround simulation software for
swarm and multi-robot applications.

Fig. 2. (a) An abstract model of Mona with 5 infrared proximity sensors and
two actuators, and (b) a Mona robot.

and will continue to iterate throughout the simulation. Within
this update function, the robot’s behaviour is defined.

For hardware, one could define a robot by importing a
standard URDF file or, alternatively, construct one from within
the Unity Environment itself for quick prototyping or vi-
sualisation. For robot construction within Unity, rigid body
components are added to robots which places them under
the influence of the physics engine. With this, physics such
as forces, torques, and collisions can be applied within the
engine’s fixed update function (which occurs every 20 ms).
Joints can also be implemented which allows for the creation
of wheels and robotic limbs. Within the Unity framework,
sensors such as cameras and range finders can be made with
tools readily available in the development engine. For faster
simulation, at the cost of accuracy, the physics can be ignored
entirely, relying on mathematically-derived translations.

B. Arena Configuration

In the arena settings, the first step would be to define the
size of the arena in standard units. BeeGround will then create
a walled off arena to the desired dimensions. After which, the
user can input an occupancy grid which will instantiate 1 cubic
unit cube obstacles within the environment. In addition, other
assets exist in Unity which allow for more complex obstacles
to be crafted if so desired.

C. Swarm Parameters

The Bee agent, a simplified model of the MONA robot [16],
was easily created from the ground up with customisable
parameters (Fig. 2). Custom robot models can take the place
of the Bee agent during swarm generation. BeeGround also
allows for the swarm population and placement to be defined,
allowing for some truly unique testing scenarios.

Fig. 3. BeeGround UI featuring arena instantiated with heat map with a large
size swarm. Object Hierarchy: Overview of all objects in the environment.
Simulation Display: Graphical representation of simulation. Configuration
Window: Settings for BeeGround simulation including agent and swarm pa-
rameters. Asset/Model Folders: Library of all assets relevant to the simulation.
Console/Debug Log Window: Tracks any errors or debugging information
during simulation.

D. Simulation Parameters

For convenience in running simulations, the length of a
simulation and the number of repeated trials can be defined in
this section. The speed of the simulation can also be altered as
it is running. This setting provides great flexibility for running
long-term experiments for many repetition that is required for
statistically analysing the results.

E. Bio-inspired-specific Parameters

Environmental properties, e.g. humidity, temperature, etc.,
play an important role in bio-inspired swarm robotics scenar-
ios [17]. Therefore, those environmental properties must be
embodied in the simulator to achieve a realistic simulation
platform for swarm robotics applications. As an example,
a heat map was included for the testing of the honeybees
aggregation algorithm in [18]. Here, an array of temperatures
was applied to the arena which the bee agents used as reference
for their wait times. We can use these arrays in multiple layers
to impose environmental properties with different sources and
models. Also, we are able to define dynamic models of the
environmental conditions that changes over time during an
experiment. Furthermore, these environmental properties can
interact with the robots, e.g. to implement a bio-inspired
pheromone communication system [19]. The mechanics of the
aggregation scenario will be further explained in the case study
below. For logging in our experiments, the position of the
Bee agents are recorded every second as we are looking to
observe aggregation over time. However, output logs can be
crafted based on the user’s needs as other parameters such
as velocities and rotations are made available through the
Unity interface. Fig. 3 shows a snapshot from the developed
simulation platform running a swarm scenario with 100 robots.

III. CASE STUDY: HONEYBEES AGGREGATION

To test the developed simulation software in its ability to
implement a real robotic swarm scenario, we prepared a set of
experiments on bio-inspired aggregation. In an investigation



Fig. 4. Flowchart showing implemented honeybees thermotactic aggregation.

of swarm intelligence amongst honeybees, it was observed
that honeybees would form a cluster near to or at an opti-
mal temperature, while clusters outside of this region would
gradually dissolve. Schmickl et. al [20] concluded through
their experiments that there were two main factors being
optimised in this aggregation behaviour which led to near
optimal solutions being found: temperature and social contact.
Using these results, a swarm algorithm, BEECLUST, was
proposed.

A. Bio-inspired Aggregation

BEECLUST, which is the algorithm adopted in this study,
mimics the thermal closing behavior of young bees that cluster
in an optimal area. This is an example of cue-based aggre-
gation behaviour. The optimal area (cue) being held at tem-
peratures ranging from 34◦C to 38◦C. Previous studies have
shown that the BEECLUST algorithm successfully imitates
the aggregation behaviour of bees in the optimal region [20],
[21]. In most cases, the cue is simulated with a light source or
sound source, rather than a heat source, as the implementation
is simpler.

Fig. 4 illustrates the BEECLUST honeybee aggregation
behaviour. BEECLUST, in and of itself, is a straightforward
algorithm that the simplest of robots can execute, making it
low-cost and scalable. In addition, the algorithm is crafted such
that it is robust against sensors with high margins of error. The
workflow of a swarm agent running BEECLUST is as follows:

1) Random exploration: Move forward until an object is
detected.

2) If the object is an obstacle, turn towards a random
heading and return to step 1.

3) If the object is a fellow agent, wait for a time, w(t),
based on the equation:

w(t) =
60S(t)2

S(t)2 + 5000
(1)

where S(t) is the intensity of the cue at that particular
point in arena.

4) After the wait time has elapsed, turn towards a random
heading and return to step 1.

B. Experimental & Results

BeeGround was used to simulate BEECLUST with a very
large swarm population. N =1000 robots played the role of
honeybees in a homogeneous setting meaning all the robots

(a) t = 0 s (b) t = 600 s (c) t = 1800 s

Fig. 5. A sample simulation in BeeGround with swarm population of
N = 1000 robots in a single cue environment setting.
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Fig. 6. Aggregation size in experiments with N = 1000 robots in a single
cue environment. Line indicates median of the results and Blue area shows
1st and 3rd quartiles of the results.

follow a single algorithm and physical setting. A large size
arena 80× 80 unit2 was developed with a cue at the centre of
the area with diameter of dc = 50 unit. Each unit is equivalent
to diameter of Mona robot. All robots move at speed of vr = 2
unit/s. Fig. 5 shows three stages form an experiment using
BeeGround. The snapshots were taken at t ∈ {0, 600, 1800} s
from a randomly selected experiment. Fig. 5(c) demonstrates
a stable aggregation where the cue is covered by majority of
swarm.

The experiments were repeated 5 times and observed results
are shown in Fig. 6. Results showed that the swarm behaved
as we expected and could find the optimal zone following the
BEECLUST algorithm.

The results from aggregation in BeeGround validated the
reported results of many previous studies which have used real
robots [17] and different simulation platforms e.g. Stage [22],
NetLogo [23], and PyCX [24].

It has significantly improved the efficiency of swarm
robotics experiments with reducing complexity so we easily
start a bio-inspired swarm experiment in a few simple steps
on a fast 3D platform.

IV. FUTURE EXPANSION

A recent addition to the Unity development engine is
its integration with Tensorflow 2.0, an end-to-end machine
learning platform. This machine learning package by Unity
is known as ML-Agents and focuses on deep reinforcement



learning [25]. Since swarm algorithms are, in essence, op-
timisation problems, a swarm-focused reinforcement learning
pipeline would be a powerful extension to BeeGround. Our fu-
ture work will aim to explore the capabilities of reinforcement
learning in the development of more efficient and robust swarm
algorithms. One reinforcement learning solution of particular
interest is generative adversarial imitation learning (GAIL)
[26]. In GAIL, agents learn through imitation of observed
behaviours. For example in investigating social insects, it
would be possible to have artificial swarm agents learn from
the behaviours of actual insects.

Another important improvement to the platform, which we
are currently finalising, is to enable parallel simulation of
several experiments. This allows us to run a swarm scenario
in several settings, e.g. different populations, environmental
settings, etc, simultaneously. It means that we can import some
results from other settings which are in progress, or export
an optimised parameter from this setting to other parallel
sessions [27]. These parallel sessions are happening in nature,
hence, having such a simulation platform that imitates a natural
ecosystem will be of significant benefit to the swarm robotics
community.

V. CONCLUSION

We introduced our new open-source simulation platform
which has been developed based on the Unity3D engine. The
simulation platform and its architecture were described in brief
and a case study was carry out to evaluate the feasibility of
the platform. We simulated honeybees aggregation behaviour
using 1000 of robots in a large size arena. It was shown that
many layers of environmental properties from walls/obstacles
to humidity and temperature can be modelled and simulated
easily in BeeGround. Also, BeeGround supports dynamic
environments where robots can interact with their environment
directly, suitable for pheromone depositing and following be-
haviours. The future expansions of the platform were described
which are: to enable machine learning extensions and to use
parallel simulations to generate a wider array of samples.
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