
Hierarchical reinforcement learning for in-hand
robotic manipulation using Davenport chained

rotations
Francisco Roldan Sanchez

Dublin City University
Insight Centre for Data Analytics

Dublin, Ireland
francisco.sanchez@insight-centre.org

Qiang Wang
University College Dublin

Dublin, Ireland
qiang.wang@ucdconnect.ie

David Cordova Bulens
University College Dublin

Dublin, Ireland
david.cordovabulens@ucd.ie

Kevin McGuinness
Dublin City University

Insight Centre for Data Analytics
Dublin, Ireland

kevin.mcguinness@insight-centre.org

Stephen J. Redmond
University College Dublin

Insight Centre for Data Analytics
Dublin, Ireland

stephen.redmond@ucd.ie

Noel E. O’Connor
Dublin City University

Insight Centre for Data Analytics
Dublin, Ireland

noel.oconnor@insight-centre.org

Abstract—End-to-end reinforcement learning techniques are
among the most successful methods for robotic manipulation
tasks. However, the training time required to find a good policy
capable of solving complex tasks is prohibitively large. Therefore,
depending on the computing resources available, it might not be
feasible to use such techniques. The use of domain knowledge
to decompose manipulation tasks into primitive skills, to be
performed in sequence, could reduce the overall complexity of
the learning problem, and hence reduce the amount of training
required to achieve dexterity. In this paper, we propose the use of
Davenport chained rotations to decompose complex 3D rotation
goals into a concatenation of a smaller set of more simple rotation
skills. State-of-the-art reinforcement-learning-based methods can
then be trained using less overall simulated experience. We
compare this learning approach with the popular Hindsight
Experience Replay method, trained in an end-to-end fashion
using the same amount of experience in a simulated robotic hand
environment. Despite a general decrease in performance of the
primitive skills when being sequentially executed, we find that
decomposing arbitrary 3D rotations into elementary rotations
is beneficial when computing resources are limited, obtaining
increases of success rates of approximately 10% on the most
complex 3D rotations with respect to the success rates obtained
by a HER-based approach trained in an end-to-end fashion, and
increases of success rates between 20% and 40% on the most
simple rotations.

Index Terms—Robotic manipulation, deep reinforcement
learning, hierarchical reinforcement learning

This publication has emanated from research supported by Science Founda-
tion Ireland (SFI) under Grant Number SFI/12/RC/2289 P2, co-funded by the
European Regional Development Fund, by Science Foundation Ireland Future
Research Leaders Award (17/FRL/4832), and by China Scholarship Council
(CSC No.202006540003). For the purpose of Open Access, the author has
applied a CC BY public copyright licence to any Author Accepted Manuscript
version arising from this submission.

I. INTRODUCTION

A primary reason why it takes so long to train state-of-the-
art reinforcement learning techniques in manipulation tasks is
that they are very complex to solve without domain knowledge
[1]–[3]. However, most manipulation tasks can be decomposed
into a number of easier tasks that a robot can learn more
easily with much less training experience required [4], [5].
For example, robots can easily learn how to reach a point in
space, or how to push an object, when these tasks are trained
independently [6]. However, if the robot needs to learn from
scratch how to both reach for an object and then push it,
the training time required increases in a nonlinear manner,
meaning it often requires more simulated experience overall
to learn these skills [7].

Training time becomes an important matter for tasks that
have high degrees of complexity, like the block manipulation
tasks in OpenAI’s Gym environment [8]. The most popular
method for learning in this kind of goal-based environment is
Hindsight Experience Replay (HER) [9] trained in conjunction
with Deep Deterministic Policy Gradients (DDPG) [1]. HER
is capable of successfully solving most tasks implemented in
this environment, but the amount of simulated experience it
requires for training is immense, exceeding 38 × 107 time-
steps in the most complex tasks, and even then it is not able
to discover an optimal policy that is able to solve all object
rotation goals. Furthermore, 19 CPU cores are required to
generate simulated experience in parallel [10].

Traditional robotic manipulation systems usually define a set
of non-primitive and primitive tasks that have a hierarchy [11]–
[13]. Non-primitive actions are a composition of primitive
actions performed in a particular order, where a primitive
action is one which cannot or should not be further divided into

ar
X

iv
:2

21
0.

00
79

5v
2 

 [
cs

.R
O

] 
 1

5 
N

ov
 2

02
2



a sequence of simpler actions. Therefore, in order to reproduce
a non-primitive action, a robot could sequentially perform a set
of primitive actions. We refer to Hierarchical Reinforcement
Learning (HRL) as those reinforcement learning methods
that decompose a problem into a hierarchy of sub-problems
such that solving the original problem requires the sequential
execution of the solutions of these sub-problems as if they
were primitive actions.

In order to demonstrate the benefit of using domain knowl-
edge to decompose a manipulation problem into primitive sub-
problems, in this paper we propose the use of Davenport angles
[14] to decompose 3D rotations of a cube into a sequential
chain of 1D rotations. By independently learning to perform
1D rotations around different orthogonal axes, which can then
be executed sequentially to achieve a 3D rotational goal,
we investigate if this methodology will accelerate the overall
reinforcement learning goal when compared to training using
the standard learning method that uses HER.

II. RELATED WORK

A. Hindsight Experience Replay

HER is an exploration strategy that allows agents to learn
faster, particularly when dealing with sparse rewards (i.e.,
temporally intermittent rewards). More specifically, HER has
proven to be a very efficient method in reward settings where
the reward is sparse and does not carry much information,
such as binary rewards.

In a standard reinforcement learning framework, the agent
learns from positive experiences [15]. In other words, under a
standard framework, every time that agent actions lead to an
unsuccessful example where the task is not correctly solved,
the only outcome the agent can have is that the sequence of
actions that was taken did not lead to the target goal. However,
if the objective would have been to reach the achieved result,
this same sequence of actions would then be considered a valid
sequence from which the agent could learn.

HER facilitates learning from failed attempts by replaying
each episode but altering the goal that the agent was originally
trying to solve. For example, if a robotic hand is trying to
manipulate a cube so that it reaches a target pose p, but the
actions taken lead to a different pose p′, when HER replays,
the agent would get two outcomes: that this sequence of
actions is not optimal to reach pose p, but instead it is optimal
to reach the pose p′. In other words, the agent will be learning
from mistakes.

Even though HER is a method that is capable of solving
complex manipulation tasks, it takes a very long time to train
because of the lack of domain knowledge employed during the
learning phase. In this paper we explore this problem in the
context of in-hand cube manipulation tasks by decomposing
the target goals and training agents (using HER) to learn
simpler primitive skills.

B. Hierarchical control

While HER is a model-free method that allows agents to
learn dexterous manipulation skills using minimal domain

Fig. 1: Example of a 3D rotation goal decomposition into three
Davenport angles. A target 3D rotation (a) is decomposed into
three consecutive target rotations around the (b) z, (c) x and
(d) z axes, respectively.

knowledge, traditional robotic manipulation controllers make
use of a simpler set of manipulation abilities (primitive actions)
that, when sequentially executed, can solve more complex
tasks.

In the context of in-hand robotic manipulation, these primi-
tives are usually defined depending on the type of action they
produce. For example, Li et al. define three different skills
(reposing, sliding and flipping), and a mid-level controller
plans how to sequentially apply them to reach a particular cube
pose [16]. Bhatt et al. use a similar method but define those
primitives as shift, pivot, twist, and finger gait, determining
how the robot fingers behave for each of the primitives [17].

Instead of focusing on specific hand movements, in this
paper we propose to decompose the target pose of a cube
into a sequence of simpler rotations that are easier to learn by
an agent using a a model-free method such as HER+DDPG,
and sequentially apply these learned actions to successfully
complete the more complex overall 3D rotation.

III. METHOD

Complex tasks are often defined by complex goals. In the
case of the OpenAI Gym hand block manipulation environ-
ment, this complexity appears when the goal the robot needs
to achieve consists of implementing arbitrary 3D rotations.

However, any 3D rotation can be decomposed into three
sequential rotations around the orthogonal axes of a known
reference frame [18]. These rotations can be performed around
the axes of a fixed system of reference (extrinsic rotations) or
around the axes of the rotating system of reference (intrinsic
rotations), and only if the second axis of rotation is orthogonal
to the plane containing the first and third axes [19]. In the
case of the OpenAI’s robotic hand environment, this reference
frame is fixed, and therefore, the decomposed sequence of
rotations applied to the cube must be extrinsic (see Figure 1).

The OpenAI Gym robotic hand block environment contains
three different manipulation tasks of increasing complexity:
• RotateZ: goal consists of a random target rotation around

the z axis of the reference frame and position is ignored.
• RotateParallel: goal consists of a random target rotation

around the z axis and rotations by multiples of π
2 around

the x and y axes, with position being ignored.
• RotateXYZ: goal consists of a random target 3D rotation

with the target position ignored.



Observations in all of these tasks include positions and
velocities of the robot joints and the pose of the object
manipulated (its Cartesian position and its rotation expressed
in quaternions).

The reward system applied in this environment is as follows:
at each time-step, the agent gets 0 reward if the task is
completed, and -1 otherwise. In order to determine whether
a rotation has been completed successfully, a quaternion
difference between the desired and the achieved poses is used,
θ = arccos(2〈q1, q2〉2−1), where 〈q1, q2〉 represents the inner
product of quaternions q1 and q2, and is considered successful
when this difference is less than 0.1 radians.

In order to learn rotations around the x and y axes, two dif-
ferent new tasks based on the RotateZ task were implemented
for the hand environment1:
• RotateX: goal consists of a random target rotation around

the x axis of reference frame and again position is
ignored.

• RotateY: goal consists of a random target rotation around
the y axis of reference frame, with the block’s position
ignored;

A. Policy learning

We trained HER in combination with DDPG (denoted
HER+DDPG) for each of the basic uni-axial rotation tasks:
RotateX, RotateY, and RotateZ. For these tasks, episodes have
a length of 100 time-steps. This means that, during inference,
the agent will have 300 time-steps in order to solve the task,
100 time-steps for each of the three chained rotations.

To have a fair comparison, we only train HER+DDPG
for the RotateParallel and RotateXYZ tasks using the same
number of time-steps used for training the three policies that
perform rotations around extrinsic axes, which are the policies
trained on the RotateX, RotateY and RotateZ tasks: 4,000,000
+ 4,000,000 + 2,000,000 = 10,000,000 time-steps. This way,
we can determine whether using Davenport chained rotations
is comparable to end-to-end learning of 3D rotations in terms
of the accuracy with which the target rotation is achieved for
the same amount of training.

We hypothesize that training HER+DDPG to learn rotations
around extrinsic axes and using the policies learned in a
sequential manner can achieve better success rates than using
HER in an end-to-end fashion on the most complex RotatePar-
allel and RotateXYZ tasks, if both methods are trained using
the same amount of simulated experience.

B. Evaluation

There is no unique way to decompose a 3D rotation into
three consecutive rotations around extrinsic axes. The same
rotation can be achieved by decomposing a 3D rotation into
elementary rotations around z-x-z, x-y-x, y-z-y, z-y-z, x-z-x
or y-x-y.

To evaluate our method and compare its performance against
that obtained with end-to-end learning, we create a test set of

1Tasks can be found at https://github.com/franroldans/custom gym

TABLE I: Test set created to evaluate the method. Table shows
how many poses are in the test set that can be solved with
either 1, 2 or 3 extrinsic rotations.

Comparable # rotations

to 1 2 3

RotateParallel 200 1000 2000

RotateXYZ 600 2000 4000

6,600 different initial and target cube poses for each rotation
configuration by random sampling on the goal space. This test
set is divided depending on how many extrinsic rotations the
robot must perform to achieve the target goals.

Not all rotations that are comparable to the RotateXYZ task
can be performed by the policy trained on the RotateParallel
task because the goals generated on the RotateParallel task
only had angles of rotation around the x and y axes contained
in the set {−π,−π

2 , 0,
π
2 , π}. The distribution of target goals

of this test set is shown in Table I.

IV. RESULTS

As predicted, training a policy using HER in conjunction
with DDPG was able to successfully learn rotations around
extrinsic axes. However, in order to achieve near perfect
success rates, the RotateX and RotateY tasks needed a total
of 40 epochs of training instead of the 20 epochs that it takes
for the RotateZ task (see Figure 2). This happens because
rotations around the z-axis always have one of the cube faces
parallel to the palm of the hand, which makes the task easier,
as the cube position is very stable. In contrast, rotations around
the x and y axes often have cube poses where there is no face
parallel to the palm of the hand, making it more challenging
to maintain a stable grasp on the cube.

These initial experiments suggest that it is indeed the case
that chained rotations can achieve better performance than
end-to-end training. Using the same overall amount of time-
steps for training rotations around intrinsic axes can achieve
approximately 100% success rate, while for the RotateParallel
and the RotateXYZ tasks, end-to-end HER can only achieve
approximately 50% and 40% of success rate, respectively (see
Figure 3).

Results after evaluating the method on the test set show
that the hypothesis stated in this paper is supported: decom-
posing complex 3D rotations into elementary rotations around
extrinsic axes can be beneficial when computing resources for
training are limited (see Table II and III). However, the success
rates obtained when applying this approach vary depending on
how many elementary extrinsic rotations must be applied to
achieve the target 3D rotation.

V. DISCUSSION

While the success rate obtained when requiring only one
extrinsic rotation is near perfect, this result does not hold
when two or more extrinsic rotations are needed. The reason

https://github.com/franroldans/custom_gym


(a) (b) (c)

Fig. 2: Success rate evolution during training of the policies trained for the original (a) RotateZ, and the implemented (b)
RotateX and (c) RotateY tasks. Shown is success rate versus policy update count, which happens every 50 episodes (5,000
time-steps).

(a) (b)

Fig. 3: Success rate evolution per policy update of HER trained in an end-to-end manner for the (a) RotateParallel, and the
(b) RotateXYZ tasks using 107 time-steps of simulated experience.

TABLE II: Success rates on the test set for our method and
the policy learned on the RotateXYZ experiment depending on
how many extrinsic rotations the robot is required to perform.

Method 1 rotation 2 rotations 3 rotations
End-to-end HER 57.5% 47.25% 43.85%

z − x− z 96.16% 82.21% 51.68%
z − y − z 96.16% 88.89% 51.80%
x− y − x 93% 71.13% 48.75%
x− z − x 93% 80.35% 49.07%
y − x− y 90.50% 73.10% 45.65%
y − z − y 90.50% 79.65% 49.42 %

TABLE III: Success rates on the test set for our method and the
policy learned on the RotateParallel experiment depending on
how many extrinsic rotations the robot is required to perform.

Method 1 rotation 2 rotations 3 rotations
End-to-end HER 69% 63.4% 47.15%

z − x− z 97.5% 88.40% 66.05%
z − y − z 97.5% 89.30% 68.20%
x− y − x 92% 80.10% 62.65%
x− z − x 92% 83.60% 62.90%
y − x− y 94% 82.90% 60.65%
y − z − y 94% 85.20% 62.30 %

behind this decrease in performance is because each rotation
step expects the previous rotation to have been performed
perfectly. If the second extrinsic rotation is not achieved,
the third rotation will automatically fail because the policy
employed has been trained to perform rotations around only

one axis, but the goal it needs to reach would also require it
to correct the previous mistake.

There are two main possible alternatives to overcome this
problem. First, data augmentation could be used in order to add
noise to the initial cube positions so that the primitive policies
learned could also take into account errors on the previous
steps [20], [21], helping the robot achieve a better performance
at the expense of more training time. Second, the method
of decomposing the rotation could be applied in an iterative
manner, with each sequence of three rotations converging on
the target goal through repeated attempts. However, doing this
would obviously slow down the execution of the manipulation
task.

From a qualitative analysis of some of our preliminary
results, most of the errors our method produced in the second
rotation appeared when dealing with large rotations. While the
policies learned for the RotateX and RotateY tasks were very
proficient in applying rotations on the range of [−π

2 ,
π
2 ], when

having to apply rotations in the range of [−π,−π
2 ) and (π2 , π],

they were not always correctly executed. This was overcome
by introducing further intermediate steps: whenever these
policies need to perform a large rotation with a magnitude
greater than π

2 , firstly rotate the cube either π
2 or −π

2 and then
apply the remaining smaller rotation to complete the goal.

After including this extra intermediate step, the success rate
on the test set increased from 67.05% to 88.89% for those 3D
rotations that can be decomposed into two extrinsic rotations



in the z−y−z configuration. Some errors appeared in the third
extrinsic rotation, where the agent could not always maintain
or deal with tilted cube poses. This happens because the policy
trained on the primitive tasks had the cube initialized in a
way that it always had one face touching the robotic hand
in a stable position. Because the policy never saw this kind
of tilted configuration during training, on execution it tends
to fail. A solution to this would be introducing these tilted
initial configurations and goals into the environments so that
the robot sees these configurations during the learning phase.
Another solution could be forcing the agent to learn how to
apply rotation vectors instead of reaching a particular pose,
making the learning invariant to the initial and target poses.
Another possible solution could be applying intermediate
rotations with a magnitude of π

2 , where the cube would be kept
face down for all intermediate rotations until the last rotation,
and then apply the remaining rotation in the last step.

As mentioned in Sections I and II, HER+DDPG is able to
successfully solve this task when being trained for 38 × 107

time-steps and using 19 CPU cores generating simulated expe-
rience in parallel, one worker for each core [10]. Translated to
days, this equates to approximately 30 days of training when
using an Intel Core i7-6850K CPU @ 3.60GHz. Considering
the sensitivity of reinforcement learning models to hyper-
parameter selection, this becomes an issue when computing
resources are scarce [22]. Instead, our method is trained using
the same CPU model with no parallelization, and the training
of each primitive skill takes less than one day.

VI. CONCLUSION

Training time is a key consideration for all artificial in-
telligence research, as often small companies and academia
have scarce computing resources. In this paper we explored
the idea of decomposing complex manipulation tasks into a
set of simpler tasks, in the context of a simulated robotic
hand environment, where the skills required to complete the
simplified tasks can be learned more quickly. Through the
addition of domain knowledge, the robot learns how to rotate
a cube, with the simulated experience used during training
limited to 107 time-steps.

Furthermore, several ideas for future work have been pro-
posed throughout the discussion section above. These are
summarized as follows for the reader’s convenience:
• Use data augmentation techniques to find policies capable

of correcting mistakes made in previous intermediate
rotation steps;

• Iteratively decompose the target rotation into three new
elementary extrinsic rotations when an attempt fails;

• Improve goal and state exploration by introducing tilted
cube configurations and goals during training in order to
make the agent learn more unconventional rotations;

• Encourage the agent to learn how to apply a given rotation
vector instead of reaching a particular pose.

REFERENCES

[1] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.

“Continuous control with deep reinforcement learning.” arXiv preprint
arXiv:1509.02971 (2015).

[2] Gu, Shixiang, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine.
“Continuous deep Q-learning with model-based acceleration.” In Inter-
national Conference on Machine Learning, pp. 2829-2838. PMLR, 2016.

[3] Pastor, Peter, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal.
“Learning and generalization of motor skills by learning from demon-
stration.” In 2009 IEEE International Conference on Robotics and
Automation, pp. 763-768. IEEE, 2009.

[4] Cohen, Benjamin J., Sachin Chitta, and Maxim Likhachev. “Search-
based planning for manipulation with motion primitives.” 2010 IEEE
International Conference on Robotics and Automation. IEEE, 2010.

[5] Stulp, Freek, et al. “Learning motion primitive goals for robust manipu-
lation.” 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2011.

[6] Stulp, Freek, Evangelos A. Theodorou, and Stefan Schaal. “Reinforce-
ment learning with sequences of motion primitives for robust manipu-
lation.” IEEE Transactions on Robotics 28, no. 6 (2012): 1360-1370.

[7] Strudel, Robin, Alexander Pashevich, Igor Kalevatykh, Ivan Laptev,
Josef Sivic, and Cordelia Schmid. “Learning to combine primitive
skills: A step towards versatile robotic manipulation.” In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp.
4637-4643. IEEE, 2020.

[8] Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. “Openai Gym.” arXiv
preprint arXiv:1606.01540 (2016).

[9] Andrychowicz, Marcin, Filip Wolski, Alex Ray, Jonas Schneider, Rachel
Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel,
and Wojciech Zaremba. “Hindsight experience replay.” Advances in
neural information processing systems 30 (2017).

[10] Plappert, Matthias, Marcin Andrychowicz, Alex Ray, Bob McGrew,
Bowen Baker, Glenn Powell, Jonas Schneider et al. “Multi-goal rein-
forcement learning: Challenging robotics environments and request for
research.” arXiv preprint arXiv:1802.09464 (2018).

[11] Clement, Bradley J., and Edmund H. Durfee. “Top-down search for
coordinating the hierarchical plans of multiple agents.” In Proceedings
of the third annual conference on Autonomous Agents, pp. 252-259.
1999.

[12] Garland, Andrew, and Neal Lesh. “Learning hierarchical task models
by demonstration.” Mitsubishi Electric Research Laboratory (MERL),
USA–(January 2002) (2003): 51-79.

[13] Liu, Mingxing, Yang Tan, and Vincent Padois. “Generalized hierarchical
control.” Autonomous Robots 40, no. 1 (2016): 17-31.

[14] Malcolm D. Shuster, F. Landis Markley, “General formula for extraction
the Euler angles.” Journal of guidance, control, and dynamics, vol. 29.1,
pp. 215-221. 2006

[15] Mitsunaga, Noriaki, Christian Smith, Takayuki Kanda, Hiroshi Ishiguro,
and Norihiro Hagita. “Robot behavior adaptation for human-robot inter-
action based on policy gradient reinforcement learning.” Journal of the
Robotics Society of Japan 24, no. 7 (2006): 820-829.

[16] T. Li, K. Srinivasan, M. Q. -H. Meng, W. Yuan and J. Bohg, ”Learning
Hierarchical Control for Robust In-Hand Manipulation,” 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020,
pp. 8855-8862,

[17] Bhatt, Aditya, Adrian Sieler, Steffen Puhlmann, and Oliver Brock.
”Surprisingly robust in-hand manipulation: An empirical study.” arXiv
preprint arXiv:2201.11503 (2022).

[18] Henderson, David M. “Euler angles, quaternions, and transformation
matrices for space shuttle analysis.” No. DN-1.4-8-020. 1977.

[19] Goldstein, H. “Euler Angles in Alternate Conventions.” Appendix B in
Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, 606-610,
1980.

[20] Mitrano, Peter, and Dmitry Berenson. “Data Augmentation for Manip-
ulation.” arXiv preprint arXiv:2205.02886 (2022).

[21] Hansen, Nicklas, and Xiaolong Wang. “Generalization in reinforcement
learning by soft data augmentation.” In 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 13611-13617. IEEE,
2021.

[22] Paine, Tom Le, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre,
Konrad Zolna, Alexander Novikov, Ziyu Wang, and Nando de Freitas.
“Hyperparameter selection for offline reinforcement learning.” arXiv
preprint arXiv:2007.09055 (2020).

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1802.09464
http://arxiv.org/abs/2201.11503
http://arxiv.org/abs/2205.02886
http://arxiv.org/abs/2007.09055

	I Introduction
	II Related work
	II-A Hindsight Experience Replay
	II-B Hierarchical control

	III Method
	III-A Policy learning
	III-B Evaluation

	IV Results
	V Discussion
	VI Conclusion
	References

