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ABSTRACT

In this paper, the collision avoidance problem for non-holonomic robots moving at constant linear
speeds in the 2-D plane is considered. The maneuvers to avoid collisions are designed using dynamic
vortex potential fields (PFs) and their negative gradients; this formulation leads to a reciprocal
behaviour between the robots, denoted as being cooperative. The repulsive field is selected as a
function of the velocity and position of a robot relative to another and introducing vorticity in its
definition guarantees the absence of local minima. Such a repulsive field is activated by a robot only
when it is on a collision path with other mobile robots or stationary obstacles. By analysing the
kinematics-based engagement dynamics in polar coordinates, it is shown that a cooperative robot is
able to avoid collisions with non-cooperating robots, such as stationary and constant velocity robots,
as well as those actively seeking to collide with it. Conditions on the PF parameters are identified that
ensure collision avoidance for all cases. Experimental results acquired using a mobile robot platform
support the theoretical contributions.

Keywords Vortex Potential Fields ·Mobile Robots · Collision Avoidance · Reciprocity

1 Introduction

Collision avoidance (CA) is a crucial element in many applications involving mobile robots as well as aerial vehicles.
For example, in the deployment of a swarm of robots for area exploration–see [1, 2, 3] for applications and challenges–or
air traffic management, where several aerial robots sharing the same airspace have to reach their respective goal locations
while avoiding collisions with each other, [4, 5]. A commonly applied technique to avoid collisions in such dynamic
environments is based on artificial potential fields (APFs), mainly because this technique uses local information and is
easy to implement. As is well known, in this approach, an attractive field is defined at the goal location and repulsive
fields are defined around obstacles. These fields are typically functions of positions and/or the velocities of the robots
and obstacles. Calculating the negative gradient of these PF functions leads to expressions for the inputs to the robot
that can steer it towards its goal.

The choice of PFs, however, can lead to the presence of local minima, where, a robot gets “trapped” and is unable to
move towards its goal. Variants of PF functions have been proposed that avoid this issue, one of them being the class of
harmonic PFs, denoted by U , that satisfy the Laplacian equation ∇T∇U=0, [6]. Alternative PFs have been proposed in
[7, 5, 8].

Another variant is the use of the so-called curl-free vector field, also the vortex field, as the repulsive field defined
around the obstacles rotates around the obstacle. The direction of rotation can be selected by the appropriate choice of
signs of the gradients. Such fields have been used in [9, 4, 10, 3, 11] to design repulsive PFs for collision avoidance. In
our work, where we focus on cooperative robots, we select such a rotating repulsive field to ensure that a pair of robots
on a collision path turn in the same direction and avoid collisions; this formulation holds even for multiple robots. As
described in [4], fixing the direction of rotation of the vortex repulsive field corresponds to fixing the “rule of the road”.
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Repulsive PFs akin to the vortex PF we use are designed in [12], where the force vectors are chosen to lie tangentially
to an obstacle using a rotational matrix, and in [13], where a helicoidal PF function is proposed around an obstacle that
enables a robot to rotate around it. It is emphasised these designs do not explicitly consider the relative position or the
velocity.

We use the dynamic vortex field function proposed in [14] to design the repulsive field, where, the field is a function
of the position and velocity of a robot relative to another robot. As the repulsive field is defined in terms of relative
velocity and position, the direction of rotation of the field becomes fixed, which in turn, ensures that robots turn in the
same direction. It should be mentioned that the dynamic vortex field in [14] is designed for a robotic manipulator to
avoid dynamic obstacles, which we apply to mobile robots, thus bringing in the novelty to our approach.

Indeed, the idea of requiring cooperative robots to turn in the same direction is the essence of the Hybrid Reciprocal
Velocity Obstacle (HRVO) algorithm, [15], as well as the Optimal Reciprocal Collision Avoidance (ORCA) algorithm,
[16, 17]. In these algorithm, cooperative robots perform maneuvers that are reciprocal to each other to avoid collisions.
The maneuvers are designed in the velocity space of the robots; for example, in the HRVO algorithm, a robot computes
a new velocity that lies outside the velocity obstacle induced by other robots and which is also closest to its preferred
velocity. In contrast to these algorithms, what we propose does not require the computation of velocity obstacles and
reciprocity appears as a natural consequence of the formulation of the repulsive field. We also consider non-point robots,
modelled as circles, and determine conditions on the PF parameters as functions of the robots’ radii, initial separation
distance, as well as their relative velocities that guarantee collision avoidance. We explicitly consider a case where
a robot is actively seeking to collide, denoted as the attacking robot, with a cooperative robot and even for this case,
bounds on the PF parameters that enable the cooperative robot to repel the attacking robot are identified. The attacking
robot is assumed to apply the standard attractive PF to collide with the cooperative robot.

The main contributions of this paper are the application of a dynamic vortex potential field for collision avoidance in
cooperative robots

1. that naturally introduces reciprocity between cooperative robots, thus eliminating the need to state rules that
define the directions of turn;

2. against non-cooperative robots that are either stationary or move at a constant velocity;
3. that can be applied to repel robots that actively seek to collide with cooperative robots; and
4. that consider the radius of the circle that bounds each cooperative robot.

It is also highlighted that the paper presents rigorous proofs of collision avoidance for all cases, using Lyapunov
theory and results from aerospace guidance literature. The engagement between robots, in all cases, is defined using
kinematics-based dynamics in polar coordinates. The proofs are based on the conditions–identified in [18]–that are both
necessary and sufficient for collision of points moving in 2-D space. Collision avoidance is demonstrated by proving
that the collision conditions form unstable equilibrium points and hence, are never satisfied. It is assumed that all types
of robots are homogeneous and move at the same linear speed. However, since the algorithm is developed in the relative
velocity space, it is applicable to robots that move at different linear speeds.

We present experimental results for all our theoretical contributions in an indoor robotics platform that consists of
several differential-drive robots that satisfy the non-holonomic constraints. As will be discussed, the theoretical results
can be applied directly with minor tuning of the PF parameters, primarily to account for the inertial parameters of the
robots that are not considered in the theoretical derivations.

The paper is organised as follows: The kinematic model of the robot as well as the engagement dynamics between
two robots on a collision path are presented in Sec. 2. The attractive and dynamic vortex repulsive fields that are
used to design the robot maneuvers are described in Sec. 3; the proofs of collision avoidance are also presented here.
Experimental results on the application of the proposed approach on differential drive robots are presented in Sec. 4,
followed by concluding remarks in Sec. 6.

2 Preliminaries

The kinematics of the robot as well as that of the engagement dynamics defined in terms of relative velocities in polar
coordinates are described. These relative velocities will be used to prove collision avoidance.

2.1 Robot description

A swarm of N ≥ 2 homogeneous robots that move at constant linear speeds, V , is considered. Each robot is assumed
to be a point-mass and non-holonomic, whose movements in a Cartesian plane (X − Y ) are given by the kinematic
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relations
ẋRi = V cos (φRi), ẏRi = V sin (φRi), (1a)

φ̇Ri = ωRi (1b)
where, (x, y)Ri are the coordinates of robots Ri, i = 1, · · · , N , in the Cartesian space with a known origin; φRi is the
heading angle, which is measured positive counter-clockwise about the X−axis; and ωRi is the angular velocity, which
can be varied. This variation leads to the accelerations

ẍRi = −V sin (φRi)φ̇Ri = FxRi (2a)

ÿRi = V cos (φRi)φ̇Ri = FyRi, (2b)
where, the terms FxRi, FyRi can be interpreted as forces acting on the robot that steer the robot to known goal locations
(x, y)RiG. It is these forces that are selected as the negative gradients of the PFs defined in Sec. 3.

2.2 Engagement Dynamics

R1

R2

r

X

Y

θ1

θ2

V

V

φR1

φR2

Figure 1: A pair of robots on a collision path

Consider 2 robots, R1 and R2, moving in the plane at constant linear speeds, as shown in Fig. 1. Following the notations
used in aerospace guidance literature, denote the separation distance between them as

r1 =

√
(xR1 − xR2)

2
+ (yR1 − yR2)

2
= r2, (3)

and the line-of-sight (LOS) angles as θi, which are computed as

θi = tan−1
(
yRj − yRi
xRj − xRi

)
, i, j = 1, 2, i 6= j, (4)

and are the angles made by the line joining the two robots and the X−axis passing through the robots, respectively.

Using (1), (3), and (4), define the relative velocities in polar coordinates
ṙi = Vri = V cos (φRj − θi)− V cos (φRi − θi) (5a)

riθ̇i = Vθi = V sin (φRj − θi)− V sin (φRi − θi), (5b)
which, along with (2), yield the relative accelerations

V̇ri =
V 2
θi

ri
+ cos (θi) (FxRj − FxRi) + sin (θi) (FyRj − FyRi) (6a)

V̇θi =
−VriVθi

ri
− sin (θi) (FxRj − FxRi) + cos (θi) (FyRj − FyRi) . (6b)

Since the LOS angles satisfy θ2 = π + θ1, the relative velocities also satisfy Vr1 = Vr2 and Vθ1 = Vθ2. Thus, when a
pair of robots are considered, the subscript i is dropped for the relative velocity and acceleration terms.

As proved in [18, Lemma 2], the robots R1 and R2 moving at a constant velocity are on a collision path if Vr < 0 and
Vθ = 0; these are both necessary and sufficient conditions for collision. Thus, if the forces FxRi, FyRi acting on each
robot are selected such that these conditions are violated, then, the robots avoid a collision with each other. These forces
are chosen based on the negative gradients of the dynamic vortex potential field–which forms the repulsive field around
each robot considered as an obstacle–and an attractive field defined at the goal location; these designs form the main
results of the paper, which are presented next.
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3 Main Results

To design the inputs that steer each robot to its respective goal location and avoid collisions, the following standard
assumptions are made:

A.1 The goal locations, (x, y)RiG, of each robot are stationary and known.
A.2 Each robot possesses information on the positions and velocities of other robots in its vicinity.

3.1 Attractive Potential Field

Since each robot, Ri knows its goal location, the inputs that steer the robot towards its goal are designed based on the
attractive PF function

UAtti = κ

√
(xRi − xRiG)2 + (yRi − yRiG)2, (7)

where, κ > 0 is a user-defined parameter. As can be seen, UAtti is simply a scaled Euclidean distance between the
current location of the robot and the goal. Now, it is shown that if the robot inputs are chosen based on the negative
gradient of UAtti, then, it is attracted towards the goal. The proof is based on constructing a Lyapunov function and
analysing its dynamics.

For simplicity, consider a single robot and an obstacle-free environment (the subscript i is therefore dropped). Thus,
using the terms introduced in Sec. 2.2, the forces generated by the attractive field become

FxRAtt =
−∂UAtt

∂ (xR − xRG)
= +κ cos (θ), FyRAtt =

−∂UAtt

∂ (yR − yRG)
= +κ sin (θ). (8)

In deriving these partial derivatives, the expressions for the LOS angle

cos (θ) =
xRG − xR

r
, sin (θ) =

yRG − yR
r

(9)

are used, where, r is the separation distance between the robot and the goal. Substituting (8) in (6), the relative
accelerations become

V̇r =
V 2
θ

r
− κ, V̇θ =

−VrVθ
r

. (10)

Also, since the goal location, or target, is stationary, the relative velocities, Vr, Vθ, in (5), reduce to Vr =
−V cos (φR − θ), Vθ = −V sin (φR − θ), from which it emerges that

V 2
r + V 2

θ = V 2. (11)

This condition implies that in the Vr − Vθ space, the relative velocities are constrained to lie on a circle with the centre
at the origin and radius V .

The robot is attracted towards the target if the collision conditions Vr < 0 and Vθ = 0 are satisfied. Since these states
have to satisfy (11), for collision to occur, the relative velocity Vr has to satisfy Vr = −V . Also note that, since
|Vr| ≤ V , even if V̇r = −κ for Vθ = 0 and r 6= 0, in the dynamics (10), the relative velocity satisfies Vr = −V . Thus,
to examine the occurrence of collision, by defining Ṽr = Vr + V , the stability of the equilibrium point r, Vθ, Ṽr = 0 is
analysed, following Lyapunov stability concepts, as discussed in [19]. Consider the Lyapunov function

VLAtt = κr +
1

2
V 2
θ +

1

2
Ṽ 2
r , (12)

which satisfies VLAtt = 0 at the equilibrium point. By expressing the dynamics (10) in terms of Ṽr, the derivative of
VLAtt calculated using these dynamics is given by

V̇LAtt = −V
(
κ− V 2

θ

r

)
. (13)

Now, since |Vθ| ≤ V , by choosing κ > (V 2/r∗), where, r∗ > 0, the derivative V̇LAtt < 0 ∀ r > r∗ and Vθ 6= 0. Thus,
the trajectories of the non-linear dynamics are attracted towards r = r∗ if the initial distance r0 > r∗. Note that, from
(8), κ is a measure of the acceleration that can be provided by the robot.

While the result (13) suggests a limit cycle type behaviour in the vicinity of r∗, the analysis is further extended by
determining if there exist initial conditions and a time instant, say t = t1 > 0, when Vθ(t1) = 0, Vr(t1) = −V ⇒
Ṽr = 0, and r(t1) 6= 0 hold. If such conditions can be identified, then, the robot reaches the equilibrium point within a
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finite time interval, say t1 < t2 <∞, since V̇LAtt = −V κ < 0 ∀ t ≥ t1. In addition, ∀ t ≥ t2, though Vr = −V and
V̇r = −κ hold, since |Vr| ≤ V , the magnitude of Vr cannot increase any further, implies that these conditions lead to
the robot being “trapped” at the target location.

To determine if the conditions mentioned can be found, consider the dynamics of Vr, in (10), and its simplification
V̇r = −βκ, where, β < 1. Note that if r0 < r∗ and Vθ(t = 0) 6= 0, then β < 0 as well; however, from (13), since
these conditions lead to V̇LAtt > 0, the robot moves away from the target resulting in r > r∗. Thus, the analysis can be
performed by assuming an initial separation distance r0 > r∗ and 0 < β < 1. Now, by integrating V̇r = −βκ once,
with the initial condition Vr0, leads to Vr(t1) = Vr0 − kt1 and the value of t1 when Vr(t1) = −V and Vθ(t1) = 0, to

be t1 =
Vr0 + V

βκ
. Integrating the dynamics of ṙ = Vr, results in

r(t1) = r0 +
(Vr0 − V )

2

2βκ
⇒ r(t1) ≥ r0 > r∗. (14)

Thus, for t ≥ t1, since V̇ < 0 and the conditions for collision are satisfied, the robot reaches its target location for any
initial conditions V[r0], Vθ0, and r0, implying that the equilibrium point r, Vθ, Ṽr = 0 is globally asymptotically stable.

The existence of Vθ(t1) = 0, Vr(t1) = −V , and r(t1) 6= 0 can be interpreted as follows: based on the initial conditions,
the robot moves away from the target location, but changes its orientation such that it points towards the target and then
moves to the target at constant speed.

Remark 3.1. The presented analysis is required mainly because the robot does not decelerate as it approaches the
target, but moves at a constant linear speed. This is a standard setting in aerospace guidance literature, where, an
interceptor is considered to move at constant speed and the forces acting on the interceptor are designed to point it
towards its target, leading to a collision. In the current robotics application, however, in a practical scenario, while
implementing the forces (8), the robot’s speed can be switched off to zero, when it is close (with allowable deviations) to
the target location.

The robot inputs that allow it to maneuver around various types of obstacles, both static and dynamic, are designed next.

3.2 Dynamic Vortex Repulsive Potential Field

Consider two robots Ri and Rj , as shown in Fig. 1, and let their velocities in the plane be such that they are on a
collision path. For each robot, the repulsive field, as proposed in [14], is selected in the form

URepi =

{
λ (cos γi)

2 ‖vij‖
ri

if π2 < γ ≤ π
0 otherwise

, λ > 0, (15a)

where,

cos γi =
vTijxij

‖vij‖ ri
, xij =

[
(xRj − xRi)
(yRj − yRi)

]
, vij =

[
(V cos (φRj)− V cos (φRi))
(V sin (φRj)− V sin (φRi))

]
. (15b)

As can be observed, the vectors vij and xij are the velocities and positions of robot Rj relative to robot Ri. The term
cos γi in (15b) has a direct connection with the relative velocity terms introduced in Sec. 2.2. By computing the dot
product vTijxij , expanding the norm ‖vij‖, and rewriting ri using (3), it can be shown that

cos γi =
Vr
Vrel

, Vrel = V
√
2
√
1− cos (φRi − φRj). (16)

Now, if the two robots are on a collision course, then, the relative velocity Vr < 0 and the relative speed Vrel > 0 as
well. Thus, cos γi can be evaluated and the angle γi lies in the domain π

2 < γi ≤ π, which is also the condition used in
the definition of the repulsive potential field, (15a).

Remark 3.2. The triggering condition defined in (15a) for a robot to “activate” the repulsive potential field can be
evaluated by calculating the relative velocity Vr. This can be performed by the robots exchanging their state information
- heading angles, positions, and speeds - with each other or by using on-board sensors to estimate these states, such as
the infrared range and bearing sensor system, [20]. The experimental platform we use to demonstrate our algorithm
provides each robot with the states of others.
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Thus, a robot triggers the repulsive potential field only if it is on a collision path with another. In (16), the relative speed
condition Vrel = 0 holds when the heading angles of the two robots satisfy φRi = φRj . This condition occurs when
they either are moving in parallel or are one behind another; in the latter case, since they are moving at the same linear
speed, they also cannot overtake each other. In both these conditions, the repulsive field is not triggered.

Prior to showing how the robot inputs are computed using the PF in (15a), the gradients of URepi are calculated. For
robot Ri, these are

∂URepi

∂ (xRj − xRi)
= − λVr

Vrelr2
(2Vθ sin θi + Vr cos θi) (17a)

∂URepi

∂ (yRj − yRi)
= +

λVr
Vrelr2

(2Vθ cos θi − Vr sin θi) . (17b)

Now, the repulsive field assumes the vortex nature when the robot inputs are selected as

FxRiRep = −
∂URepi

∂ (yRj − yRi)
, FyRiRep = +

∂URepi

∂ (xRj − xRi)
. (18)

By fixing the signs of the components of the forces for each robot, it can be shown that the field “rotates” in the same
direction for all robots; flipping the signs reverses the direction of rotation. As has been proved in [21], based on the
expression of the repulsive field function and selecting the gradients according to (18), the field becomes curl-free.

Figure 2: Gradients of the repulsive dynamic vortex PF when two robots are on a head-on collision course

The nature of the dynamic vortex PF can be understood from Fig. 2. In this figure, robots R1 and R2 are on a head-on
collision course. The arrows around each robot show the direction of rotation of the other robot approaching it. As can
be seen, since the signs of the gradients are the same for both robots, the direction of turn of both robots is the same. As
the repulsive field is set to zero when the robots are moving away from each other, that is, when Vr ≥ 0, there are no
arrows in the space “behind” each robot.

Remark 3.3. In the non-vortex case, the robot inputs are given by the negative gradients of the repulsive field and are
of the form

FxRiRep = −
∂URepi

∂ (xRj − xRi)
, FyRiRep = −

∂URepi

∂ (yRj − yRi)
, (19)

which, as will be shown, may not guarantee collision avoidance for all cases of engagement.

Various cases of robots, both cooperative and otherwise, interacting in the plane are considered next.

3.3 Collision Avoidance between a Pair of Robots

Collision avoidance is proved for the following cases:

Case 1. A pair of cooperative robots on a collision path;

Case 2. A robot on a collision path with a stationary or non-cooperative robot;

6
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Case 3. A cooperative robot and a non-cooperating robot actively seeking to collide by applying inputs derived using
the Attractive PF.

For Case 3, the conditions on initial separation, initial relative velocity, and the PF parameters that ensure collision
avoidance are identified.

For each of these cases, the types of robots that are considered are first defined and next, the proof of collision avoidance
is presented.

3.3.1 Case 1

Definition 3.1. Cooperative robots are those that apply the same inputs as others when they are on a collision path.

With this definition, collision avoidance for the case of cooperative robots is proved in the following theorem.
Theorem 3.1. Consider two robots moving in the plane. Let each robot know the position and velocity of the other,
when measured in a common reference frame. If they are on a collision path and each applies inputs according to (18),
then, they avoid a collision with each other.

Proof. The proof of this theorem rests on showing that the conditions for collision, Vr < 0 and Vθ = 0, are never
satisfied if each robot applies inputs according to (18). This result is proved by analysing the non-linear engagement
dynamics, (10), with the substitution of the robots’ inputs, given by (17) and (18). Since, for robot Ri, these inputs are
a function of the LOS angle θi with respect to itself, in the analysis, the inputs for both robots are expressed using a
single LOS angle variable. This is possible, as, from Fig. 1, the two LOS angles satisfy the relation θj = π + θi. Based
on this relation, the robot inputs satisfy FxRiRep = −FxRjRep and FyRiRep = −FyRjRep.

Using these results and after much simplification, in the closed-loop, the dynamics of Vr and Vθ become

V̇r =
V 2
θ

r
+ 4

(
λ

Vrelr2

)
VrVθ (20a)

V̇θ =
−VrVθ
r

+ 2

(
λ

Vrelr2

)
V 2
r . (20b)

As can be observed, the equilibrium point of these dynamics is Vr = Vθ = 0.

Based on these dynamics, the occurrence of collision is demonstrated by analysing the Lyapunov function

VLRep = r +
1

2
V 2
θ +

1

2
V 2
r . (21)

Similar to (11), from (5), it can be shown that

V 2
r + V 2

θ = V 2
rel. (22)

This constraint also indicates that VLRep = r + 0.5V 2
rel. Thus, the Lyapunov function VLRep can be interpreted as the

sum of a potential energy component, measured by r, and a kinetic energy component, given by the relative speed Vrel.
Note that if the robots collide, which implies r = 0, and continue to move together, then Vrel = Vr = Vθ = 0 as well.
Thus, VLRep = 0 at the equilibrium point, which corresponds to collision.

Since the robots are on a collision course, indicated by Vr(t = 0) = −2V < 0 and Vθ(t = 0) = 0, the dynamics of
VLRep is analysed under these conditions. Let, at t = 0, the robots be separated by distance r0. Next, evaluating the
derivative of VLRep along the trajectories of the states ṙ = Vr and Vr, Vθ as given by (20), results in the expression

V̇LRep = Vr

(
1 +

6λ

Vrelr2
VrVθ

)
. (23)

Thus, if V̇LRep < 0 for all values of the states, then, the equilibrium point is stable, which implies that collision occurs.
However, the converse also holds true, an unstable equilibrium point, indicated by V̇LRep > 0, results only with an
increase in the separation distance r, implying that the robots do not collide.

From (23), consider the ratio
V̇LRep
Vr

=

(
1 +

6λ

Vrelr2
VrVθ

)
. (24)

Since, at t = 0, V̇θ > 0 and Vr < 0, the robots begin to turn away from each other, while simultaneously also
approaching each other, that is, the separation distance, r, between the robots reduces. Thus, for some λ and r0, a

7
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time instant, t1 > 0, can be found when the ratio 0 <
V̇LRep
Vr

< 1 ∀ 0 ≤ t < t1. This implies that during this interval,
the separation distance cannot reduce faster than VLRep. Thus, even if t = t1 is the time instant when VLRep reaches
its minimum, that is, when V̇LRep = 0, since Vr 6= 0 at t = t1, there exist non-zero values of r, Vr, Vθ that satisfy
VrVθ = −Vrelr

2

6λ < 0. Thus, there exists a non-zero separation distance when the Lyapunov function VLRep reaches its
minimum. This also implies that for t > t1, the derivative of VLRep changes sign.

Now, for t > t1, since V̇LRep > 0, the origin becomes an unstable equilibrium point. Moreover, as the separation

distance increases, the terms V 2
θ

r > 0 and −VrVθr > 0 dominate the derivatives of Vr and Vθ, respectively, implying that,
there exists a time instant, say t = t2 > t1, when Vr = 0 and Vθ = Vrel. Thus, as the trajectories in the Vr − Vθ space
are attracted to this point, the conditions for collision do not hold any longer and the robots now “deactivate” the vortex
repulsive field.

The following remarks help in obtaining an intuitive understanding of the effect of the inputs designed using the vortex
repulsive field and the proof of Theorem 3.1:

i. The inputs to the robots are

FxRiRep = − λVr
Vrelr2

(2Vθ cos θi − Vr sin θi) (25a)

FyRiRep = − λVr
Vrelr2

(2Vθ sin θi + Vr cos θi) , (25b)

from which can be seen that the magnitude of these forces increases with decreasing r. Thus, if the two robots are
initially located close to each other, r ≈ 0, then, for any λ > 0, these forces ensure that the robots turn away from each
other at a faster rate. Similarly, if the robots are far away, r � 0, then, these forces do not significantly influence the
robots’ maneuvers. The effect of bounded robot inputs on collision avoidance is discussed in a later section.

ii. As the robots deactivate the repulsive field once Vr = 0 and Vθ = Vrel at t = t2, the dynamics of the relative
accelerations reduce to

V̇r =
V 2
θ

r
> 0, V̇θ = 0,

implying the trajectories in the Vr − Vθ space do not enter the domain Vr < 0. Thus, the forces eliminate oscillatory
behaviour during collision avoidance.

iii. Also, at t = t2, the behaviour of the robots will now be defined by the attractive potential field, which, as discussed
in Sec. 3.1, ensures that the robots reach their goal locations.

3.3.2 Case 2

In this section, it is shown that the inputs (18) also aid in a robot avoiding collisions with stationary or non-cooperative
robots. Prior to presenting this proof, a non-cooperative robot is formally defined.

Definition 3.2. A non-cooperative robot is one that moves at a constant velocity and does not actively avoid collisions
with other robots.

Theorem 3.2. A robot applying the inputs (18) can avoid a collision with both stationary and non-cooperative robots.

Proof. Consider a robot, Ri, which is on a collision path with either a stationary or non-cooperative robot. Since,
both stationary and non-cooperative robots do not apply the inputs (18), in the dynamics (6) for robot Ri, the terms
FxRj = FyRj = 0. The relative velocity expressions for a stationary robot reduce to Vr = −V cos (φRi − θi) and
Vθ = −V sin (φRi − θi), while, for a constant velocity non-cooperative robot, the relative velocity terms are as given
in (5). However, in both cases, the relative accelerations have the same expressions.

Thus, when robot Ri applies the inputs (18), in the closed-loop, the relative accelerations become

V̇r =
V 2
θ

r
+ 2

(
λ

Vrelr2

)
VrVθ (26a)

V̇θ =
−VrVθ
r

+

(
λ

Vrelr2

)
V 2
r . (26b)

8
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Now, by defining a Lyapunov function, denoted by VLRepNC with an expression identical to the one in Theorem 3.1,
its derivative is analysed. The derivative of VLRepNC is given by

V̇LRepNC = −|Vr|
(
1 +

3λ

Vrelr2
VrVθ

)
. (27)

In this case, employing arguments similar to those used in the proof of Theorem 3.1, it can be shown that, the cooperative
robot is able to avoid a collision with the non-cooperative one.

Remark 3.4. Note the difference in the coefficients in the terms in (20) and (26) derived using the repulsive field inputs,
(18). This difference is natural, since in Case 1, the robots reciprocate and turn away from each other, thus increasing
the magnitude of the relative acceleration component. On the other hand, in Case 2, since it is only one of the robots
that turns away from the non-cooperative robot, the relative acceleration is smaller.

Remark 3.5. Since the proof of collision avoidance is shown in the relative velocity space, our algorithm is applicable
even when cooperative robots on a collision path move at different constant linear speeds.

3.3.3 Case 3

In this case, a robot, sayRj , that is actively seeking to collide with a cooperative robot, Ri, is considered. An “attacking”
robot is defined as
Definition 3.3. An attacking robot is one that chooses a cooperative robot as a goal (or target) and applies its inputs
according to the inputs defined by the negative gradient of the attractive PF, in (8).

Prior to demonstrating collision avoidance against an attacking robot, a few notations are introduced based on the
engagement geometry shown in Fig. 1. Let R2 be the attacking robot which is trying to collide with the cooperative
robot R1. Thus, the attractive PF for R2 is

UAttack2 = κ

√
(xR2 − xR1)

2
+ (yR2 − yR1)

2
, (28)

and following the discussion presented in Sec. 3.1, its inputs are chosen as the negative gradients

Fx2 =
−∂UAttack2

∂ (xR2 − xR1)
= +κ cos (θ2) = −κ cos (θ1) (29a)

Fy2 =
−∂UAttack2

∂ (yR2 − yR1)
= +κ sin (θ2) = −κ sin (θ1), (29b)

since, θ2 = π + θ1.

If R1 and R2 are on a collision path, then, the cooperative robot R1 considers the robot R2 as a dynamic obstacle. Now,
R1 “projects” the dynamic vortex PF around robot R2 and applies its inputs in order to avoid a collision; these inputs
are given by (18). This projection of the repulsive field by one robot on another is visualised in Fig. 2. The dynamics of
the relative velocities become

V̇r =
V 2
θ

r
+ 2

(
λ

Vrelr2

)
VrVθ − κ (30a)

V̇θ =
−VrVθ
r

+

(
λ

Vrelr2

)
V 2
r . (30b)

As can be observed, if the robot R1 does not project a repulsive field, that is, if λ = 0, and if the robots are moving such
that the collision conditions are satisfied, then, R2 will collide with R1. This is also supported by the discussion in
Sec. 3.1.

The conditions when collision is avoided are identified in the following theorem.
Theorem 3.3. Given the PF parameters κ, λ > 0, if the initial separation distance, r0, between the attacking and
cooperative robots satisfies r0 ≥

√
3λV , where V is the linear speed of each robot, then, the cooperative robot is able

to avoid colliding with the attacking robot.

Proof. Based on the dynamics (30), collision avoidance is demonstrated by analysing the Lyapunov function

VLAtck = κr +
1

2
V 2
θ +

1

2
V 2
r , (31)

9
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with equilibrium conditions r = Vr = Vθ = 0; these equilibrium conditions are similar to those selected in Case 1.
From (30) as well as the relation ṙ = Vr, the derivative of VLAtck becomes

V̇LAtck =
3λ

Vrelr2
V 2
r Vθ. (32)

First, the case when the robots are initially on a head-on collision course is considered. Let Vr(t = 0) = −2V and
Vθ(t = 0) = 0, then, there exists a time interval, 0 < t ≤ t1, when V̇LAtck > 0, since, during this interval, from (30b),
the relative acceleration V̇θ > 0. Thus, in this interval, the equilibrium point is unstable, indicating that collision is
avoided.

Since the states Vr, Vθ satisfy the condition (22), let, at t = t1, Vθ(t = t1) = 2V , Vr = 0, and r(t = t1) = r1 > 0.
Now, the cooperative robot R1 stops projecting the vortex repulsive field, since the triggering condition given in (15a)
does not hold. Thus, at t = t1, the dynamics (30) become

V̇r =
V 2
θ

r
− κ, V̇θ =

−VrVθ
r

. (33)

Now, if for some t = t2 ≥ t1, the separation distance r and the relative velocity Vθ are such that V̇r < 0 then, the
attacking robot begins to approach the cooperative robot. However, the cooperative robot again projects the repulsive
field and the collision avoidance maneuver starts again. Since, for t ≥ t2, Vθ > 0, the derivative of the Lyapunov
function again satisfies V̇LAtck > 0, thus, indicating an unstable equilibrium (r, Vr, Vθ) = 0.

This result holds for any λ, κ > 0 and r0.

Suppose the initial conditions are Vr(t = 0) < 0 and Vθ(t = 0) < 0. Now, V̇LAtck < 0, indicating a possibility of the
equilibrium states being stable. However, by imposing conditions on the parameter λ and the initial separation distance
r0, it may be possible that the robots have a non-zero separation distance at the time instant when VLAtck = 0. As used
in the proof of Theorem 3.1, compute the ratio

V̇LAtck
ṙ

=
3λ

Vrelr2
VrVθ ≤

3λ

2r20
Vrel.

Thus, for a chosen λ > 0, if

r0 ≥
√
3λV ⇒ V̇LAtck

ṙ
< 1, (34)

indicating that r cannot go to zero before VLAtck reaches a minimum, implying that there will be a non-zero separation
distance between the attacking and cooperative robots.

Note that VLAtck reaches a minimum when Vθ = 0, since, for Vr(t = 0) < 0 and Vθ(t = 0) < 0, the relative
acceleration V̇θ > 0, from (30b). Denote this time instant as t = t3. Now, if Vr(t = t3) < 0, it has already been shown
that collision does not occur. On the other hand, if Vr(t = t3) ≡ 0, depending on the magnitudes of the parameters, the
robots are still separated by a non-zero distance, but are moving parallel to each other.

This analysis shows that the trajectories in the Vr − Vθ space oscillate around Vr = 0 and Vθ > 0, indicating that the
cooperative robot keeps turning away from the attacking robot until the collision avoidance conditions are violated.
Once this happens and the attacking robot maneuvers to collide with the cooperative one, the latter again begins to turn
away to avoid colliding with the former.

3.4 Collision avoidance for non-point cooperative robots with bounded inputs

The results presented so far consider the robots to be points. In this section, the analysis on collision avoidance is
extended to cooperative robots that are defined by circles of radius RRob > 0 and also have limits on their accelerations.
This analysis will aid in determining:

i. the influence of limits that naturally bound the acceleration inputs that can be applied by a robot, when the input
commanded by the repulsive field is greater than this limit;
ii. the amount of space that is needed by a robot while performing the collision avoidance maneuver, both against other
mobile robots as well as stationary obstacles; and
iii. the role of the PF parameters λ and κ in the case of avoiding collision with an attacking robot.

10
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First, the relation between the acceleration inputs calculated using the vortex potential field and limits on these inputs is
derived. From (17) and (18), for a cooperative robot Ri, it can be seen that if the separation distance r is very small,
then clearly the inputs will have large magnitudes. As discussed in Sec. 3.3.1, it is this relation that enables point robots
to turn away and avoid a collision even if their initial separation distance is very small. However, if these inputs are
bounded, say according to |FxRiRep, FyRiRep| ≤ Flim, then, for small values of r, the inputs become saturated at Flim.

In such cases, similar to (34), for a chosen repulsive field parameter λ and by setting Vrel = 2V , by introducing another
design parameter r∗ > 0, the robots’ inputs can be defined as the output of the function

FxRiRep =

−
λ

Vrelr2
(
2VrVθ cos θi − V 2

r sin θi
)

if r > r∗

−Flimsign
(
2VrVθ cos θi − V 2

r sin θi
)

otherwise
(35a)

FyRiRep =

−
λ

Vrelr2
(
2VrVθ sin θi + V 2

r cos θi
)

if r > r∗

−Flimsign
(
2VrVθ sin θi + V 2

r cos θi
)

otherwise
. (35b)

The design parameter r∗ can be expressed in terms of a minimum initial separation distance and the acceleration
limit Flim that ensures that robots, each of radius RRob, can avoid “grazing” each other while performing the collision
avoidance maneuver. To do so, consider two such cooperative robots, R1 and R2, as shown in Fig. 3. Let these robots
be initially separated by a distance 2l ≤ r∗ and also be moving on a head-on collision course, so that the relative speed
is the highest at Vrel = 2V . As has been proved in Theorem 3.1, the robots begin to turn away from each other to avoid
a collision. However, given their initial separation distance, the magnitudes of the inputs to each robot become Flim. As
a result, the robots trace a circle with radius

Rturn =
V 2

Flim
. (36)

This result is derived using the expression

Rturn =

∣∣∣∣∣
(
ẋ2 + ẏ2

) 3
2

ẋÿ − ẏẍ

∣∣∣∣∣,
where, ẋ, ẏ and ẍ, ÿ are the velocity and acceleration components in Cartesian space and are given by (1) and (2),
respectively.

Since the robots are homogeneous, the value Flim is the same for each robot. Owing to this homogeneity, the motions
of the two robots are symmetric. Now, the point when the separation distance is the smallest, denoted by the distance
2d in Fig. 3, can be shown to satisfy

d =
√
R2

turn + l2 −Rturn. (37)

This occurs at the time-instant defined by t = t1 in the proof of Theorem 3.1. Thus, the circles traced by the robots
touch each other if the initial separation distance l = 0, which implies collision.

For the robots to avoid grazing each other, the distance d should satisfy 2d ≥ 2RRob, which, in turn, leads to

Rturn ≤
l2 −R2

Rob

2RRob
⇒ Flim ≥

2RRobV
2

l2 −R2
Rob

. (38)

This result clearly indicates that if the initial difference
(
l2 −R2

Rob

)
is small, the robot radius RRob and speed V are

large, then, the acceleration limit has to be proportionately large for the robots to turn away from each other and avoid a
collision. Note that if Flim is large, then, the radius Rturn is also small.

In the case of a non-cooperative robot that is moving at a constant velocity, the acceleration limit should satisfy

Flim ≥
4RRobV

2

l2 − 4R2
Rob

, (39)

which is larger than what is required when two cooperative robots are avoiding each other. This too should be expected
since it is only the cooperative robot that is performing the collision avoidance maneuver.

Thus, based on the acceleration capacity of the robot, their initial separation distance and hence, r∗, can be suitably
selected.
Remark 3.6. Free Space Needed: The result (38) and (36) can be used to determine the space that is needed by a
cooperative robot to avoid collisions with other robots/obstacles in its vicinity. Since a robot turns away from obstacles

11
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X

Y

R1(t = 0)

R2(t = 0)

R1(t = t1)

R2(t = t1)

Rturn

Rturn

2l2d

Figure 3: A pair of cooperative robots defined by circles avoiding colliding with each other

at its limit Flim, then it traces a circle of radius Rturn; this can happen if the obstacles are at distances that satisfy (38).
Consider a scenario where a cooperative robot is at the open side of an enclosure closed on 3-sides. In this scenario,
since the direction of turn of the robot is fixed, the free space that will be needed by the robot to avoid colliding with
any edge is the area traced by a semi-circle of radius (Rturn +RRob).

3.5 Collision Avoidance between Multiple Robots

Proof of collision avoidance using the vortex repulsive field can be directly extended when multiple robots are involved.
Collision amongst multiple robots can occur when the condition to activate the repulsive field, (15a), is true for several
pairs of robots. Now, the closed-loop dynamics of pairwise relative velocities are examined and the proof of Theorem 3.1
is applied to show that for each pair, collision is avoided. Note that when N > 2 robots are involved, the number of
pairwise relative velocities, Vr and Vθ, are N(N − 1)/2, each.

For simplicity, let the robots be defined as points. Now, the inputs for collision avoidance for each robot Ri, i =
1, · · · , N , are given by

FxRiRep = −λ
∑

j| cos γij<0

Vrij
Vrelijr2ij

(2Vθij cos θij − Vrij sin θij) (40a)

FyRiRep = −λ
∑

j| cos γij<0

Vrij
Vrelijr2ij

(2Vθij sin θij + Vrij cos θij), (40b)

where, j = 1 · · ·N, i 6= j; for the pair of robots Ri and Rj , rij denotes the separation distance between them; Vrij
and Vθij are the relative velocities; θij is the LOS angle; and Vrelij is the relative speed, given by (16). The following
identities hold for a pair of robots Ri and Rj , for which the triggering condition, cos γij < 0, is true:

FxRijRep = −FxRijRep, FyRijRep = −FyRijRep,

θji = π + θij , Vrij = Vrji, Vθij = Vθji. (41)

12
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In the same spirit as Theorem 3.1, collision avoidance between multiple point robots can be proved by defining the
Lyapunov function

VLRepMult =
∑

i,j| cos γij<0

(
rij +

1

2

(
V 2
θij + V 2

rij

))
(42)

and evaluating its derivatives along the trajectories of the relative accelerations and that of the separation distance, given
by ṙij = Vrij . Using (41) and after simplification, it can be shown that

V̇LRepMult = −
∑
|Vrij |

(
1 +

3N ′λ

Vrelijr2ij
VrijVθij

)
, (43)

where, N ′ is the number of cooperative robots that are performing the collision avoidance maneuvers. Now, using the
same arguments as used in proving Theorem 3.1, it can be shown that the equilibrium conditions rij = Vrij = Vθij = 0
are unstable for any pair of robots. Thus, collision is avoided between any pair of robots that are on a collision course.

Remarks: For robots bounded by circles and with bounded inputs, the results of Sec. 3.4 hold in the multiple robots
case as well. The coefficient 3N ′, in (43), appears when a pair of cooperative robots are avoiding each other, N ′ = 2 in
(52), as well as when a single cooperative robot is maneuvering to avoid colliding with a non-cooperative robot, N ′ = 1
in (27).

3.6 Implementation

As suggested in [9], with the use of potential fields, a robot can avoid collisions and navigate to its goal if its heading
angle, φRi, is controlled to achieve the desired heading angle, φRiDes, given by

φRiDes = tan−1

FyRiAtt +
∑
j

FyRijRep

FxRiAtt +
∑
j

FxRijRep

. (44)

In the context of this paper, FxRiAtt and FyRiAtt are given by (8), while FxRiRep and FyRiRep are calculated using (17)
and (18).

To ensure φRi → φRiDes, the angular speed, ωRi in (1b), can be designed as the output of the controller

ωRi = Kp (φRiDes − φRi) , (45)

where, Kp > 0 is the control gain. This control law can also be chosen as a Proportional-Integral controller so that
bounded disturbances acting on the robot can be suppressed.

In this section, it is shown that the implementation, (44) and (45), leads to collision avoidance between robots as well as
navigation towards the goal location. For ease of understanding, these cases are considered separately. First, the case
of navigating towards the goal is considered, that is, in (44), the repulsive field components are set to zero. Thus, as
discussed in Sec. 3.1, from the expressions for FyRiAtt and FxRiAtt, as given by (8), the desired heading angle for robot
Ri becomes

φRiDes = tan−1
(
κ sin (θi)

κ cos (θi)

)
implying

φRiDes = θi or φRiDes = θi + π. (46)

Since it has been shown in Sec. 3.1 that the relative velocity states Vθ = 0 and Vr < 0 are stable equilibrium states, the
valid solution for the heading angle is φRiDes = θi.

Now, consider the case of collision avoidance between a pair of cooperative robotsRi andRj . using the vortex repulsive
field. By setting FyRiAtt = 0 and FxRiAtt = 0 in (44) and from (17) and (18), the desired heading angle for Ri becomes

φRiDes = tan−1
(
2Vθ sin θi + Vr cos θi
2Vθ cos θi − Vr sin θi

)
. (47)

The desired heading angle for Rj can be similarly derived. Using the result θj = θi + π, it can be shown that

tanφRiDes = tanφRjDes, (48a)

13
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implying,

φRiDes = φRjDes or (48b)
φRiDes = π + φRjDes. (48c)

Since the repulsive field is triggered only when robots are on a collision path, their heading angles cannot be the
same, thus the solution (48b) does not hold. As a result, the heading angles of the two cooperative robots satisfy
φRiDes = π + φRjDes, implying that while they are on a collision course, they turn away from each other. This result
also matches with that derived in Sec. 3.4.

When only robot Ri is cooperative and robot Rj is either non-cooperative or attacking, a similar analysis can be
performed to find a relation between φRiDes and the heading angle of robot Rj . When Rj is non-cooperative,
φRjDes = φRj ∀ t ≥ 0, since Rj does not change its path. When Rj is attacking, φRjDes = θi. As has been proved in
the earlier sections, collision is avoided between the cooperative robot and both non-cooperative or attacking types of
robots.

Note that while calculating φRiDes, either in (47) or in (46), the PF parameters κ and λ do not appear, indicating that
these parameters do not influence the desired heading angle. However, from the closed-loop dynamics of the relative
velocities Vr and Vθ, it can be seen that the PF parameters affect the magnitudes of these relative velocities, which in
turn, determine φRiDes.

These theoretical results are supported by experimental, which are presented next.

4 Experimental Results

The dynamic vortex PF algorithm is implemented on the QBOT 2E mobile robot platform by Quanser1. All experiments
are conducted in the Autonomous Vehicles Research Studio2, also from Quanser. Some of the key features of the robot
and the Studio are listed in Table 1.

Table 1: Key parameters of the experimental platform

QBOT 2E mobile robot

2RRob 35 cm
Vmax 0.7 m/s

Chosen robot speed V 0.17 m/s
On-board computer Raspberry Pi with integrated WiFi

Studio

Workspace volume 3.5× 3.5× 2 (in m)
Motion capture Optitrack Flex 13 localization cameras

Within the Studio, all robots are localised in the same coordinate frame. The position, velocity, and orientation of
each robot are determined using the motion capture system and transmitted by WiFi to a central computer, where the
collision avoidance algorithm is implemented. The angular speed, ω, which is given by the control law (45), of the
robot and its constant linear speed, V , are obtained by driving the wheels of the robot independently. These states are
related by the kinematic relations

V =
vR + vL

2
, ω =

vR − vL
d

, vR,L = ωR,Lrw, (49)

where, vR,L are the linear speeds of the right and left wheels; d is the distance between the wheels; and rw is the radius
of each wheel.

In all the experimental results, once the robots reach within 20 cm of their goal locations, they stop. This setting has
support in Remark 3.1, since the speeds of the robots are kept constant throughout. Also, for all cases, the paths of
the robots in the X − Y space, the trajectories of the relative velocities in the Vr − Vθ space, and the evolution of the
separation distance, r, are shown.

1https://www.quanser.com/products/qbot-2e/
2https://www.quanser.com/products/autonomous-vehicles-research-studio/
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4.1 Case 1 - Results

Two cooperative robots, R1,2, are initially at rest at positions (x, y)R10 and (x, y)R20, respectively. For each robot, its
goal locations is selected as the initial position of the other. They are also oriented such that, if they move at a constant
velocity, they are on a head-on collision course. The PF parameters were set at λ = 10 and κ = 10.

Figure 4: Collision avoidance by a pair of cooperative robots initially on a head-on collision course. As time progresses,
the shade of the circles becomes lighter; this visualisation idea is borrowed from [16].

The reciprocal nature of collision avoidance is evident from the paths traced by the robots in the X − Y space (depicted
as shaded circles) shown in Fig. 4. Each robot turns to its right in order to avoid collisions; this direction of turn is
decided by the choice of the signs of the gradients that define the inputs. As can also be seen in the trajectory of the
relative velocities in the Vr −Vθ space, there are no stable equilibria in the {Vr < 0 and Vθ = 0} domain, thus ensuring
that the conditions for collision are never satisfied. In addition, the robots do not display any oscillatory behaviour as
well; this can also be observed in the results that follow.

To generate the graph in the Vr − Vθ space, the values of these states are divided by the set-speed V . Moreover, once
the condition Vr = 0 holds, the triggering condition becomes invalid and the robots deactivate the repulsive fields. They
then move to their respective goal locations based on the inputs from the Attractive PF. Since the robots have non-zero
radii, the parameter λ is tuned during experimentation, so that they avoid collisions. This is equivalent to changing the
parameter r∗ in the expression of the inputs given by (35). Setting λ = 5 led to the robots colliding with each other,
while for λ ≥ 10, they were able to maintain non-zero separation distance between themselves. Thus, for larger λ, the
robots could turn away faster from each other. The expressions (35) and (39) support this choice.

The case of 3 cooperative robots is presented next. Each robot is initially located at the vertex of an (almost) equilateral
triangle; their goal locations are the mid-points of the sides opposite to their respective vertices. The results are shown
in Fig. 5 and support the theoretical discussion presented in Sec. 3.5. The aspect that stands out in this case is the
behaviour of the three robots, which follows the “symmetric roundabout” behaviour as described in [4] and which
can be seen in the figure on the left in Fig. 5. As can be seen, the three robots begin to trace a circle in the clockwise
direction leading to this behaviour. This behaviour is visualised in Fig. 3; since this behaviour occurs for each pair, the
resulting motion in X − Y space appears as though the robots are following a roundabout.

In fact, the robots considered pair-wise follow the discussion presented in Sec. 3.4. Each robot begins to trace a circle
passing through the vertex of the triangle in the clockwise direction. Thus, if the initial separation and PF parameters
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Figure 5: Collision avoidance by three cooperative robots all of which are initially on a collision course.

are chosen according to the results in Sec. 3.4, then none of these circles intersects with any other, leading to collision
avoidance amongst all robots. It is emphasised that no rules are stated that define the direction of turn of each robot, but
appear naturally based on the choices of the signs of the gradients, defined in (18).

4.2 Case 2 - Results

The results of a cooperative robot, R1, avoiding a collision with a non-cooperative robot, R2, are shown in Fig. 6. The
robots are initially on a head-on collision course. As can be seen, the robot R2 moves towards its goal, which is the
initial position of R1, at a constant velocity and does not maneuver even though R1 is on its path. R1, on the other
hand, projects the dynamic vortex PF around R2 and maneuvers around it, since the triggering condition becomes true.
As can be seen in Fig. 6, the equilibrium conditions, identified in Theorem 3.2, are not stable.

4.3 Case 3 - Results

The results of a cooperative robot, R1, avoiding a collision with an attacking robot, R2, are shown in Fig. 7. Even here,
the robots are initially on a head-on collision course. The PF parameters are selected such the conditions - identified in
Theorem 3.3 - for R1 to avoid colliding with R2 hold. As can be seen, R2 maneuvers and begins to “chase” R1, while
R1 has already changed its heading angle in order to avoid colliding with R2. In this experiment, once R1 has reached
the vicinity of its goal, it stops moving and only then does R2 collide with it. During experimentation, it was observed
that a lower value of the repulsive PF parameter, λ, resulted in R1 making several (> 2) circular turns before it reached
its goal; however, at no instant was R2 able to collide with R1. This behaviour is equivalent to the oscillatory behaviour
recognised in Sec. 3.3.3.

5 Comparison with a non-vortex PF

Simulation results and a brief analysis are presented when a pair of cooperative robots apply inputs given by the
non-vortex PF, (19). Analogous to the results in Sec. 3.3.1, analysis for this case does not consider the attractive PF.
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Figure 6: A cooperative robot avoiding collision with a non-cooperative robot.

Figure 7: A cooperative robot avoiding collision with an attacking robot.
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Thus, without the vortex field, from (6), in the closed-loop, the relative accelerations become

V̇r =
V 2
θ

r
− 2

(
λ

Vrelr2

)
V 2
r (50a)

V̇θ =
−VrVθ
r

+ 4

(
λ

Vrelr2

)
VrVθ. (50b)

For these dynamics, the equilibrium conditions are the pairs Vr = Vθ = 0 and Vr = −2V, Vθ = 0. The latter is an
equilibrium condition since the relative velocities satisfy (22), thus, even if the magnitude of V̇r is high, the relative
velocity |Vr| ≤ 2V . The existence of this additional equilibrium point is also different from the closed-loop dynamics
(20), which results from the use of the vortex PF.

Lyapunov analysis is performed to analyse the stability of this equilibrium point, since it is the conditions Vr < 0, Vθ = 0
that lead to collision. Thus, if this equilibrium point is unstable, then collision is avoided. From the Lyapunov function

VLNV = r +
1

2
V 2
θ +

1

2
(Vr + 2V )

2 (51)

and its derivative

V̇LNV = Vr
(
1 + α

(
V 2
θ − V 2

r

))
+ 2V V̇r

= Vr
(
1 + αV 2

)
− 2α (Vr + 2V )V 2

r + 2V
V 2
θ

r
. (52)

where, α = 2λ
Vrelr2

> 0. Now, if the robots are initially on a head-on collision course, that is, 0 < Vr(t = 0) ≤
−2V, Vθ(t = 0) = 0, then, from (50b), it can be seen that V̇θ = 0 ∀ t ≥ 0, implying at the robots do not turn away from
each other. Thus, for these initial conditions, which are also the equilibrium conditions, the relative velocity Vr → −2V ,
implying that the derivative V̇LNV = Vr

(
1 + αV 2

)
< 0, and in turn, that the equilibrium point is asymptotically stable

when the collision conditions are satisfied. Thus, the robots collide with each other. This result is in direct contrast
with the use of the vortex PF, where, the closed-loop dynamics have a single equilibrium point Vr = Vθ = 0 and the
inputs derived from the vortex PF ensure that the robots turn away from each other rendering the equilibrium point to
be unstable.

Simulation results showing the trajectories of the robots in the X − Y space, with and without the vortex field, are
shown in Fig. 8. In each case, the robots are initially on a head-on course with the target of one robot set as the initial
position of the other. As is evident, without the vortex field, the robots do not turn and eventually collide with each
other, near the origin; for the results in Fig. 8, the simulation was not stopped though the robots collide. The result with
the vortex field is the same as discussed in the earlier sections: the robots turn away from each other and then move to
their goal locations.

6 Conclusions

In this article, we presented a dynamic vortex PF algorithm for collision avoidance between different types of non-
holonomic robots and multiple robots as well. The algorithm is able to ensure that there are no local minima in the
relative velocity space when a cooperative robot is on a collision path with other cooperative robots, non-cooperative
robots, as well as an attacking robot. For the last case, conditions on the PF parameters were identified such that the
attacking robot is never able to collide with a cooperative robot. The nature of the vortex PF guarantees that robots turn
in the same direction while avoiding collisions with one another, thus lending the robots a reciprocal behaviour. With
the identification of the free space that is needed by a robot with non-zero radius and bounded inputs to avoid collisions,
the algorithm can be extended to robots navigating spaces such as corridors or paths where the robot maybe forced to
turn in one direction. In such cases, the problem of how to select the direction of rotation of the robot would need to be
addressed. This article also considered robots to move at constant linear speeds, thus the algorithm can be extended
when this assumption does not hold.
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Figure 8: Trajectories of the cooperative robots in X − Y space with (left) and without (right) the vortex repulsive PF.
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