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Abstract— In adaptive output feedback control based on al-
most strictly positive real (ASPR) conditions, a technical difficulty
arises when the controlled multi-input multi-output (MIMO)
system is non-square. To overcome this, the idea of multirate
sampled-data control has been proposed. That is, through careful
choice of faster input sampling rates create a lifted discrete-
time system which has the same number of inputs and outputs
and does not give rise to the causality constraint. The output
feedback based adaptive control strategy can then be applied to
this lifted system under certain conditions. In this report, we
propose a robust adaptive controller design scheme for non-
square MIMO systems using the multirate sampling strategy
without the causality problem.

Keywords—adaptive output feedback control, multirate
sampled-data control, MIMO systems, almost strictly positive real

I. INTRODUCTION

Adaptive output feedback control design based on almost
strictly positive real (ASPR) conditions has several practical
advantages and has been applied successfully to many in-
dustrial processes. The design procedure for such adaptive
control scheme, however, requires a technical assumption that
the systems to be controlled must be square, i.e., the number
of inputs must be equal to the number of outputs [1], [2], [3],
[4], [5]. Although this requirement is automatically satisfied
to SISO plants [6], [7], [8], it can be quite restrictive because
in many practical MIMO systems, the number of inputs is
less than that of the outputs, especially in cases where several
control objectives are to be achieved. As a countermeasure
to this problem, the application of digital control with a
multirate sampling scheme has been considered on purpose
in order to obtain a multirate system with square structure so
as to accommodate existing adaptive control strategies [9]. By
carefully selecting different sampling rates, the method ensures
that the resultant systems after lifting [10], [11] are square
(with the same number of inputs and outputs) without causality
constraint.

In this paper, we present a robust adaptive controller design
scheme for non-square MIMO systems using the multirate
sampling strategy. Considering the ASPR based adaptive out-
put feedback control of discrete time systems, the controlled
system should be proper so that the causality problem in the
controller appears in general. We propose a design scheme of
robust adaptive control which can solve the causality problem
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Fig. 1. The multirate sampled-data system

and show that all the signals in the closed loop system are
bounded.

II. MULTIRATE SAMPLING AND LIFTING

Consider a continuous-time, linear, time-invariant plant Gc

with m inputs and p outputs.

ẋc(t) = Acxc(t) + Bcuc(t) + ηc(t), (1)
yc(t) = Cxc(t), (2)

where xc∈ Rn is a state vector, yc∈ Rp and uc∈ Rm are
output and input vectors, respectively, and ηc is a disturbance.
We assume that p > m and Bc is partitioned according to the
input uc as follows:

Bc = [bc1 bc2 · · · bcm], uc = [uc1, uc2, · · · , ucm]T ,

in which bci, i = 1, · · · , m are n-dimensional column vectors.
The system Gc is a typical non-square system so that

one can not directly apply the ASPR based adaptive output
feedback strategy. To overcome this problem, the use of multi-
rate sampling and lifting techniques has been presented [9] in
order to derive a square lifted discrete time system.

Consider choosing all outputs uniformly with a single
period, say, T , and update the inputs uc1, uc2, · · · , ucm through
zero-order holds with fast periods T/q1, T/q2, · · ·, T/qm,
respectively. Here q1, q2, · · · , qm are all positive integers and
are chosen to satisfy

q1 + q2 + · · ·+ qm = p. (3)

We remark that such qi’s always exist (if m < p) and are
non-unique; e.g., if m = 2 and p = 5, there are four possible
(q1, q2) pairs satisfying (3); they are (1, 4), (2, 3), (3, 2), and
(4, 1).

Denoting the correspondingly discretized system by G, the
obtained multirate discrete-time system depicted in Figure 1
can be expressed by

G = ST GcHmr,
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where ST is an ideal sampler with period T (vector-valued),
and Hmr is the multirate zero-order hold operator defined as

Hmr = diag[HT/qi
]i=1,···,m

with HT/qi
being the synchronized zero-order hold with period

T/qi. Note that y is single-rate with period T (y = ST yc), but
u is multirate with each component having a different period;
we can write

u =




u1

...
um


 , uci = HT/qi

ui, i = 1, 2, · · · , m.

Next, consider lifting this multirate system to arrive at a
time-invariant one with the single period T .

Let v be a discrete-time signal defined on the time set
{0, 1, 2, · · ·}:

v = {v(0), v(1), v(2), · · ·}.
and consider the q-fold lifting operator Lq which maps v into
v as follows [10], [11]:

v =







v(0)
v(1)

...
v(q − 1)


 ,




v(q)
v(q + 1)

...
v(2q − 1)


 , · · · ,




.

The inverse lifting operation, L−1
q is also defined obviously.

In order to get a lifted system which is single-rate with
period T , we lift the input ui by Lqi to get ui. The lifted
input u(k) is given by

u(k) =




u1(k)
...

um(k)


 .

Thus the lifted system G which maps u(k) into y(k) can be
expressed as:

G = G




L−1
q1

. . .
L−1

qm




This G is the m×m square system, based on (3) and is time-
invariant. The state-space model of G can be derived based on
the results in [12], [13] as follows:

x(k + 1) = Ax(k) + Bu(k) + ηd(k), (4)

y(k) = Cx(k), (5)

where

A = eAcT , B =
[

B1 B2 · · · Bm

]
C = Cc, Bi =

[
Aqi−1

i Bi · · · AiBi Bi

]
Ai = eAcT/qi , bi =

∫ T/qi

0

eActBci dt, i = 1, 2, · · · , m.

ηd(k) =
∫ (k+1)T

kT

eAc{(k+1)T−τ}ηc(τ ) dτ

Due to the choice of sampling rates, the causality constraint
in the lifted controller (mapping y into u) will not arise [12].

III. ADAPTIVE CONTROL DESIGN

The robust adaptive controller is designed for the lifted
square system G in (4) and (5).

A. Problem Statement

Consider the lifted, but square system G in (4) and (5);
We shall recall a few definition concerning the ASPR-ness of
discrete systems in order to proceed.

Definition 1: (Almost Strictly Positive Realness [2], [5])
The square plant G in (4) and (5) is called almost strictly
positive real (ASPR) if there exists a static output feedback
such that the resulting closed loop system is strictly positive
real (SPR). Explicitly, G is ASPR if there exists a control input
with a feedback gain Θ∗,

u(k) = −Θ∗y(k) + v(k), (6)

(v is any external input) such that the resulting closed loop
system from v(k) to y(k),

x(k + 1) = Aclx(k) + Bclv(k), (7)
y(k) = Cclx(k) + Dclv(k), (8)

with

Acl = A−BΘ∗(I + DΘ∗)−1C, Bcl = B(I + Θ∗D)−1,
Ccl = (I + DΘ∗)−1C , Dcl = D(I + Θ∗D)−1,

(9)
is SPR.

Definition 2: (Strong ASPR-ness [9]) The square plant G
is called strongly ASPR if there exists a static output feedback,

u(k) = −Θ∗y(k) + v(k),

such that the closed loop system with state matrices
(Acl, Bcl, Ccl, Dcl) as given in (9) is SPR and, in addition,
a transformed closed loop system with ṽ = (I + Θ∗D)−1v as
input,

x(k + 1) = Aclx(k) + Bṽ(k) (10)
y(k) = Cclx(k) + Dṽ(k) (11)

is also SPR.
The sufficient conditions for G to be ASPR are easily

obtained by translating the conditions given for continuous-
time systems [14] as follows.

ASPR Conditions:
(1) The relative MacMillan degree of the system is n/n,

where n is the dimension of the A-matrix.
(2) The plant is minimum-phase.

Furthermore, for strong almost strictly positive realness, an
additional condition is required [9]:

(3) D + DT > 0.

We shall impose the following assumptions on the lifted
model G in (4) and (5).

Assumption 1: The plant G given in (4) and (5) is control-
lable and observable.
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This assumption can be related to controllability and ob-
servability of the original continuous-time system and a non-
pathological sampling condition [13], [12].

Assumption 2: For the plant G given in (4) and (5) with
ηd(k) ≡ 0, there exists a known static feedforward compen-
sator (PFC) D such that the resulting augmented system with
a state-space model,

x(k + 1) = Ax(k) + Bu(k), (12)
ya(k) = y(k) + Du(k) = Cx(k) + Du(k), (13)

is strongly ASPR.
Assumption 3: The disturbance ηd(k) can be represented

as

ηd(k) = Bη(k) (14)
Assumption 4: Denoting η(k) = [η1, · · · , ηm], there exist

positive constant β∗
i such that

|ηi(k)| ≤ β∗
i (15)

It should be noted that under Assumption 2, there exists a
static output feedback with a feedback gain matrix Θ̃

∗
e > 0,

u(k) = −Θ̃∗
eya(k) + v(k)

such that the resulting closed loop system, after an input
transformation ṽ = (I + Θ̃∗

eD)−1v,

x(k + 1) = Aacx(k) + Bṽ(k),
ya(k) = Cacx(k) + Dṽ(k),

is SPR. Where

Aac = A − BΘ̃∗
e(I + DΘ̃∗

e)−1C,

Cac = (I + DΘ̃∗
e)−1C.

Further, since the system (Aac, B, Cac, D) is SPR, there exist
positive symmetric matrices P = P T > 0, Q = QT > 0 and
appropriate matrices L and W such that based on the Kalman-
Yakubovich Lemma, the following hold:

AT
acPAac − P = −LLT − Q,

AT
acPB = CT

ac − LWT ,
BT PB = D + DT − WWT .

(16)

Our objective in this paper is to design a robust adaptive
controller that ensures the boundedness of all signals in the
control system for G with disturbances under Assumptions 1
to 4.

B. Controller Design Procedure

The robust adaptive controller is designed as follows:

u(k) = ue(k) + ur(k) (17)
ue(k) = −Θe(k)y(k) (18)

uri(k) = −βi(k)sgn (yai(k)) , i = 1, 2, · · · , p (19)

where uri(k) is the i-th element of ur(k) and yai(k) is the
i-th element of ya(k), i.e.

ur(k) = [ur1(k) · · · urp(k)]T ,

ya(k) = [ya1(k) · · · yap(k)]T
(20)

The feedback gain matrix Θe(k) in (18) is adaptively adjusted
by the following parameter adjusting law:

Θe(k) = ΘIe(k)+ΘPe(k) (21)
ΘIe(k) = ΘIe(k − 1)+ya(k)y(k)T ΓIe−σΘIe(k) (22)

ΘPe(k) = ya(k)y(k)T ΓPe (23)

with ΓIe = ΓT
Ie > 0, ΓPe = ΓT

Pe > 0 and σ > 0. The
gains in the robust adaptive controller (19) are adjusted by
the following parameter adjusting law:

βi(k) = βIi(k) + βPi(k) (24)

βIi(k) = βIi(k − 1)sgn (yai(k))
+γβIi |yai(k)| − σβiβIi(k) (25)

βPi(k) = γβP i |yai(k)| (26)

with γβIi > 0, γβP i > 0 and σβi > 0. The parameter adjusting
laws (22) and (25) can be rewritten by

ΘIe(k) = σ̄ΘIe(k − 1) + σ̄ya(k)y(k)T ΓIe (27)

βIi(k) = σ̄βiβIi(k − 1)sgn (yai(k))
+σ̄βiγβIi |yai(k)| (28)

with 0 < σ̄ = 1
1+σ < 1 and 0 < σ̄βi = 1

1+σbetai
< 1.

It is noted that ya(k) in (19), (21) and (24) cannot be
directly obtained from measured signals because of a causality
problem arising from the direct feedthrough term D in (13).
However, ya(k) can be generated by using available signals
from (13) and (17) to (28) without the causality problem as
follows:

ya(k) =
(
I + Dy(k)T Γey(k) + DΓβ

)−1

× (y(k)−σ̄DΘIe(k−1)y(k)−Db(k−1)) (29)

where

ΓIe =ΓT
Ie > 0, ΓPe = ΓT

Pe > 0, γβIi > 0, γβP i > 0
Γe = σ̄ΓIe + ΓPe, Γβ = diag

{
γβ1 , γβ2 , · · · , γβp

}
γβi = σ̄βiγβIi + γβP i , i = 1, 2, · · ·, p

b(k − 1)=




σ̄β1βI1(k − 1)
σ̄β2βI2(k − 1)

...
σ̄βpβIp(k − 1)




C. Stability Analysis

Consider the following ideal control input:

u∗(k) = u∗
e(k) + u∗

r(k) (30)
u∗

e(k) = −Θ∗
ey(k), (31)

Θ∗
e =

(
I + Θ̃∗

eD
)−1

Θ̃∗
e = Θ̃∗

e

(
I + DΘ̃∗

e

)−1

(32)

u∗
r(k) = −




β∗
1sgn (ya1(k))

β∗
2sgn (ya2(k))

...
β∗

2 sgn (yap(k))


 (33)
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The closed loop system with control input in (17) can be
represented by

x(k + 1)= Ãx(k) + B∆u(k) (34)

ya(k)= C̃x(k) + D∆u(k) − Dη(k) (35)

where

Ã=A − BΘ∗
eC, C̃ = (I − DΘ∗

e)C (36)
∆u(k)=∆ue(k) + ∆ur(k) + η(k) + u∗

r(k) (37)
∆ue(k)=ue(k) − u∗

e(k) = −∆Θe(k)y(k) (38)

∆Θe(k)=Θe(k) − Θ∗
e. (39)

∆ur(k)=ur(k) − u∗
r(k) (40)

Since it follows from (32) that

I − DΘ∗
e = I − DΘ̃∗

e(I + DΘ̃∗
e)−1

= (I + DaΘ̃∗
e)−1 �= 0 (41)

we have from (36) and (32) that

Ã = A − BΘ̃∗
e(I + DΘ̃∗

e)−1C = Aac, (42)
C̃ = (I + DΘ̃∗

e)−1C = Cac, (43)

Thus, since the system (Aac, B, Cac, D) is SPR, there exist
positive symmetric matrices P = P T > 0, Q = QT > 0 such
that the Kalman-Yakubovich Lemma in (16) is satisfied.

Now, consider the following positive definite function V (k),

V (k)=V1(k) + V2(k) + V3(k) (44)

V1(k)=xT (k)Px(k) (45)
V2(k)= tr

{
σ̄∆ΘIe(k − 1)Γ−1

Ie ∆ΘIe(k − 1)T
}

(46)

V3(k)=
p∑

i=1

σ̄βiγ
−1
βIi

∆β2
Ii(k − 1) (47)

where

∆ΘIe(k) = ΘIe(k) − Θ∗
e, ∆βIi(k) = βIi(k) − β∗

i (48)

Define ∆V (k) by

∆V (k)= V (k + 1) − V (k) =
3∑

i=1

∆Vi(k) (49)

∆Vi(k)= Vi(k + 1) − Vi(k), i = 1, 2, 3 (50)

First, we consider the difference ∆V1. We have from (34),
(45) and Kalman-Yakubovich Lemma in (16) that

∆V1(k)≤−λmin [Q] ‖x(k)‖2 − ‖x(k)T L + ∆u(k)T W‖2

+2yT
a (k)∆u(k) + 2ηT (k)DT ∆u(k) (51)

Next, consider the difference ∆V2. From (27) and (48), we
have

∆ΘIe(k − 1) = σ̄−1∆ΘIe(k) − ya(k)y(k)T ΓIe (52)

Thus ∆V2(k) can be expressed as

∆V2(k)=− (σ̄−1 − σ̄
)
tr
{
∆ΘIe(k)Γ−1

Ie ∆ΘIe(k)T
}

+2tr
{
∆ΘIe(k)y(k)ya(k)T

}
−σ̄tr

{
ya(k)y(k)T ΓIey(k)ya(k)T

}
(53)

Since

∆ΘIe(k)= ∆Θe(k) − ya(k)y(k)T ΓPe (54)
∆Θe(k)= Θe(k) − Θ∗

e (55)
∆Θe(k)y(k) =−∆ue(k) (56)

it follows that

∆V2(k) ≤ − (σ̄−1 − σ̄
)
λmin

[
Γ−1

Ie

] ‖∆ΘIe(k)‖2

−λmin [σ̄ΓIe + ΓPe] ‖ya(k)‖2‖y(k)‖2

−‖ya(k)‖2y(k)T ΓPey(k) − 2ya(k)T ∆ue(k)
(57)

Next, consider the difference ∆V3. From (28) and (48), we
have

∆βIi(k − 1) = σ̄−1
βi

∆βIi(k)sgn (yai(k)) − γβIiyai(k) (58)

Thus ∆V3(k) can be expressed as

∆V3(k) = −
p∑

i=1

(σ̄−1
βi

− σ̄βi)γ
−1
βIi

∆βIi(k)2

−
p∑

i=1

σ̄βiγβIiyai(k)2

+2
p∑

i=1

∆βIi(k)sgn (yai(k)) yai(k). (59)

Further, since

∆βIi(k) = ∆βi(k) − γβP i |yai(k)| (60)
∆βi(k) = βi(k) − β∗

i (61)
∆βi(k)sgn (yai(k)) yai(k) = −∆uri(k)yai(k) (62)

∆V3(k) can be evaluated by

∆V3(k)=−
p∑

i=1

(
σ̄−1

βi
− σ̄βi

)
γ−1

βIi
|∆βIi(k)|2

−
p∑

i=1

(σ̄βiγβIi + γβP i) |yai(k)|2

−
p∑

i=1

γβP i |yai(k)|2−2
p∑

i=1

∆uri(k)yai(k) (63)

Finally, from (51), (57)and (63), we have

∆V (k)≤−λmin [Q] ‖x(k)‖2 − ‖x(k)TL + ∆u(k)T W‖2

− (σ̄−1 − σ̄
)
λmin

[
Γ−1

Ie

] ‖∆ΘIe(k)‖2

−λmin [Γe] ‖ya(k)‖2‖y(k)‖2

−‖ya(k)‖2y(k)T ΓPey(k)

−
p∑

i=1

(
σ̄−1

βi
− σ̄βi

)
γ−1

βIi
|∆βIi(k)|2

−
p∑

i=1

γβi |yai(k)|2 −
p∑

i=1

γβP i |yai(k)|2

+2η(k)T DT (∆ue(k)+∆ur(k)+η(k) + u∗
r(k))

+2ya(k)T (η(k) + u∗
r(k)) (64)
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Here, we have

2ya(k)T (η(k) + u∗
r(k))

≤ 2
p∑

i=1

{|yai(k)|β∗
i + |yai(k)|(−β∗

i )}

= 0 (65)
2η(k)T DT η(k)≤ 2β∗2‖D‖ (66)

2η(k)T DT u∗
r(k)≤ 2β∗2‖D‖ (67)

2η(k)T DT ∆ue(k)≤ 2β∗‖D‖‖C‖‖∆ΘIe(k)‖‖x(k)‖
+2β∗‖D‖‖ya(k)‖yT (k)ΓPey(k) (68)

with β∗ =
{
β∗2

1 + β∗2
2 + · · ·+ β∗2

p

}1/2 and

2η(k)T DT ∆ur(k)

≤ 2
p∑

i=1




p∑
j=1

(
β∗

j |dij|
) |∆βIi(k)|




+2
p∑

i=1




p∑
j=1

(
β∗

j |dij|
)
γβP i |yai(k)|


 (69)

where D = [dij] , i, j = 1, · · · , p. Further we have

−‖ya(k)‖2y(k)T ΓPey(k) + 2β∗‖D‖‖ya(k)‖y(k)T ΓPey(k)
≤−λmin [ΓPe] (‖ya(k)‖ − β∗‖D‖)2 ‖y(k)‖2

+λmax [ΓPe] (β∗)2 ‖C‖2‖D‖2‖x(k)‖2 (70)

−
p∑

i=1

γβP i |yai(k)|2 + 2
p∑

i=1




p∑
j=1

(
β∗

j |dij|
)
γβP i |yai(k)|




=−
p∑

i=1

γβP i


|yai(k)| −


 p∑

j=1

β∗
j |dij|






2

+
p∑

i=1

γβP i


 p∑

j=1

β∗
j |dij|




2

(71)

and it follows for any positive constants δ1 and δ2 that

−δ1‖x(k)‖2 + 2β∗‖D‖‖C‖‖∆ΘIe(k)‖‖x(k)‖

=−δ1

{
‖x(k)‖ − β∗ 1

δ1
‖D‖‖C‖‖∆ΘIe(k)‖

}2

+(β∗)2
1
δ1

‖D‖2‖C‖2‖∆ΘIe(k)‖2 (72)

−δ2

p∑
i=1

∆β2
Ii(k) + 2

p∑
i=1




p∑
j=1

(
β∗

j |dij|
) |∆βIi(k)|




=−δ2

p∑
i=1


|∆βIi(k)| − 1

δ2


 p∑

j=1

β∗
j |dij|






2

+
1
δ2

p∑
i=1


 p∑

j=1

β∗
j |dij|




2

. (73)

Thus ∆V (k) can finally be evaluated as

∆V (k)
≤ −{λmin [Q]

−λmax [ΓPe] (β∗)2 ‖C‖2‖D‖2 − δ1

}‖x(k)‖2

−
{(

σ̄−1 − σ̄
)
λmin

[
Γ−1

Ie

]
−(β∗)2

δ1
‖D‖2‖C‖2

}
‖∆ΘIe(k)‖2

−
p∑

i=1

{(
σ̄−1

βi
− σ̄βi

)
γ−1

βIi
− δ2

}
|∆βIi(k)|2

+4 (β∗)2 ‖D‖ +
1
δ2

p∑
i=1


 p∑

j=1

β∗
j |dij|




2

+
p∑

i=1

γβP i


 p∑

j=1

β∗
j |dij|




2

(74)

Here, suppose that δ1 is chosen such that

(β∗)2 ‖C‖2‖D‖2

(σ̄−1 − σ̄)λmin

[
Γ−1

Ie

] < δ1

< λmin [Q]− λmax [ΓPe] (β∗)2 ‖C‖2‖D‖2 (75)

is satisfied. That is, σ̄, ΓIe and ΓPe are designed such that
there exists a δ1 which satisfies (75). Further suppose that δ2

is chosen such that

0 < δ2 <

p∑
i=1

{(
σ̄−1

βi
− σ̄βi

)
γ−1

βIi

}
p

. (76)

With δ1 and δ2 satisfying (75) and (76), the difference ∆V (k)
can be evaluated as

∆V (k)≤−αV (k) + R (77)

R =4 (β∗)2 ‖D‖ +
1
δ2

p∑
i=1


 p∑

j=1

β∗
j |dij|




2

+
p∑

i=1

γβP i


 p∑

j=1

β∗
j |dij|




2

(78)

α =min



{

λmin [Q]−λmax [ΓPe] (β∗)2 ‖C‖2‖D‖2−δ1

}
λmax [P ]

,

{(
σ̄−1 − σ̄

)
λmin

[
Γ−1

Ie

]− (β∗)2

δ1
‖D‖2‖C‖2

}

λmax

[
Γ−1

Ie

] ,

2∑
i=1

{(
σ̄−1

βi
− σ̄βi

)
γ−1

βIi
− δ2

}
p∑

i=1

γ−1
βIi


 (79)
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Fig. 2. Cart-crane system

Table 1 Parameters of cart-crane system

Parameter Value
g 9.81 [m/s2]

M (mass of the cart) 1.168 + 3 [kg]
m(mass of the crane) 0.071 [kg]

L(length to the center of gravity) 0.358 [m]
I(moment of inertia) 3.025× 10−3 [kg·m2]

c1(damping constant of crane) 0.01 [N·s/rad]
c2(damping constant of cart) 10 [N·s/m]

Consequently we have the following theorem concerning
the boundedness of all the signals in the control system.

Theorem 1: Under Assumptions 1 to 4, all the signals in
the resulting closed loop control system with control input in
(17) are uniformly bounded provided that σ̄, ΓIe and ΓPe are
designed such that inequality (75) is satisfied.

IV. NUMERICAL SIMULATION

In this section, we validate the effectiveness of the proposed
method through numerical simulations for a cart-crane model.
A simple configuration of the cart-crane system is illustrated
in Fig. 2. Parameters of this model are given in Table 1 above.

In this simulation, we assume that a disturbance ηc(t) which
describes the friction on the cart is added in the control input
term.

ηc(t) = −dsgn(ẏ(t)).

Further we assume that the output yc(t) = [φ(t), y(t)]T is
sampled with a period of T = 0.2 [s], but the input signal
uc(t) can be updated through a zero-order hold with a fast
period T/2. Furthermore, to improve the control performance
for the crane angle, we consider a weighted angle, that is, we
generate

ycw(t) =
[

w1 0
0 1

]
yc(t) (80)

as a new output for the controller design. In this simulation, we
set w1 = 20. A PFC, which renders the resulting augmented
system ASPR, is designed as follows:

D = diag[5 × 10−3, 10−3]

for the system with ycw as the output. Parameters in the
adaptive adjusting laws are set to

ΓIe = diag [60, 140] , ΓPe = diag [1, 1] , σ = 0.1
γβI1 = 500, γβI2 = 100, γβP1 = 1, γβP2 = 1

σβ1 = 0.05, σβ2 = 0.01
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Fig. 3. Simulation result: cart position and crane angle
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Fig. 4. Simulation result: control input
Figs. 3 and 4 show simulation results of the proposed

multirate control strategy – vibration of the pendulum is
effectively suppressed and the cart moves smoothly to the
desired position.

V. CONCLUSIONS
In this paper, we proposed a robust adaptive output feedback

controller design scheme for general MIMO systems using the
idea of multirate sampled data control. The proposed robust
adaptive control scheme negates the causality problem and can
be implemented even though the controlled system has an input
direct through pass.
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