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Abstract— In this paper sensitivity minimization problem is
considered for a class of unstable time delay systems. Our goal
is to find a stable controller stabilizing the feedback system and
giving rise to smallest H

∞ norm for the sensitivity function.
This problem has been solved by Ganesh and Pearson (1986) for
finite dimensional plants using Nevanlinna-Pick interpolation. We
extend their technique to include possibly unstable time delay
systems. Moreover, we illustrate suboptimal solutions, and their
robust implementation.

Keywords—strong stabilization, time-delay, sensitivity mini-
mization, H-infinity control

I. INTRODUCTION

In feedback control applications, sometimes it is desirable to

have a stable controller which internally stabilizes the closed-

loop. There are many practical reasons why we want the

controller itself to be stable, [19]. A necessary and sufficient

condition for the existence of a stable controller stabilizing

the feedback system for a given plant is the parity interlacing

property, [20]. Design of such controllers is known as strong

stabilization problem and several methods are available for

its solution for MIMO or SISO finite dimensional plants, [2-

5,9,11,12,14-17,22,23] as well as different classes of SISO

time delay systems, [8], [18], under H∞, H2 or other op-

timization constraints. Notably, the design methods in [1],

[7] give optimal stable H∞ controllers for finite dimensional

SISO plants as a solution to weighted sensitivity minimization

problem, other methods provide sufficient conditions to find

stable H∞ controllers.

In this paper, the method of [7] is generalized for a class

of time-delay systems. The plants we consider may have

infinitely many right half plane poles. Optimal and suboptimal

stable H∞ controllers are obtained for the weighted sensitivity

minimization problem using the Nevanlinna-Pick interpolation.

In section II, the control problem is defined and the structure

of the plant is given. In section III we summarize our earlier

results on the necessary and sufficient conditions to write the

plant in the given structure for a class of possibly unstable

time-delay systems. Main results are given in section IV. An

example can be found in section V, and concluding remarks

are made in last section.

II. PROBLEM DEFINITION

Given a single-input-single-output linear time invariant

plant P , sensitivity function of the feedback system is defined

as S := (1+PC)−1, where C is the controller to be designed.

We say that the feedback system is stable if S, PS,CS are

stable transfer functions (i.e. they are in H∞). Moreover, if

a stable controller, C ∈ H∞, stabilizes the feedback system,

then C is said to be strongly stabilizing, [19]. For a given plant

P , the set of all strongly stabilizing controllers is denoted by

S∞(P ).
For a given minimum phase function W (s), the prob-

lem of weighted sensitivity minimization by stable controller

(WSMSC) is to find

γs = inf
C∈S∞(P )

‖W (1 + PC)−1‖∞, (1)

= ‖W (1 + PCγs
)−1‖∞ (2)

where γs is the minimum H∞ cost for WSMSC and Cγs
∈

S∞(P ) is the corresponding optimal strongly stabilizing con-

troller.
We assume that the transfer function of the plant can be

factored as

P (s) =
mn(s)

md(s)
No(s) (3)

where md, mn are inner (all-pass) functions, mn is finite

dimensional and md is infinite dimensional; No is outer

(minimum phase) and possibly infinite dimensional.
In section IV, we will obtain the optimal controller Cγs

∈
S∞(P ) for the WSMSC problem, where the plant P admits a

factorization of the form (3). But first, in the next section, we

shall illustrate how this factorization can be done for a class

of possibly unstable systems with time delays.

III. PLANT FACTORIZATION FOR TIME DELAY SYSTEMS

In this section, we summarize some preliminary results from

[10] on the factorization of SISO time-delay systems in the

form (3).
The plants we consider in this paper are assumed to be in

the form

P (s) =
R(s)

T (s)
=

∑n
i=1 Ri(s)e

−his

∑m
j=1 Tj(s)e−τjs

(4)
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where Ri and Tj are finite dimensional, stable, proper transfer

functions, and time delays hi, τj are assumed to be positive

rational numbers, with 0 ≤ h1 < . . . < hn and 0 ≤ τ1 <

. . . < τm.
Definition 3.1: Consider R(s) =

∑n
i=1 Ri(s)e

−his as de-

fined above. Let di be the relative degree of Ri(s). Then,

1) if d1 < max {d2, . . . , dn}, R(s) is called as retarded-

type time-delay system (RTDS),

2) if d1 = max {d2, . . . , dn}, R(s) is called as neutral-type

time-delay system (NTDS),

3) if d1 > max {d2, . . . , dn}, R(s) is called as advanced-

type time-delay system (ATDS).
The following lemma gives a necessary and sufficient condi-

tion when a NTDS has finitely many unstable zeros.
Lemma 3.1: ([10]) Assume that R(s) is a NTDS with

no imaginary axis zeros and poles, then the system, R, has

finitely many unstable zeros if and only if all the roots of the

polynomial, ϕ(r) = 1+
∑n

i=2 ξir
h̃i−h̃1 has magnitude greater

than 1 where

ξi = lim
ω→∞

Ri(jω)R
−1
1 (jω) ∀ i = 2, . . . , n,

hi =
h̃i

N
, N, h̃i ∈ Z+, ∀ i = 1, . . . , n.

By the following corollary, all SISO time-delay systems

with finitely many unstable zeros are obtained.
Corollary 3.1: ([10]) The time-delay system R has finitely

many unstable zeros if and only if R is a RTDS or R is a NTDS

satisfying Lemma 3.1. Time-delay systems with finitely many

unstable zeros are defined as F -systems.
We define the conjugate of R(s) =

∑n
i=1 Ri(s)e

−his

as R̄(s) := e−hnsR(−s)MC(s) where MC is inner, finite

dimensional whose poles are poles of R. The time-delay

system R̄ has finitely many unstable zeros if and only if R

is a ATDS or Lemma 3.1 is satisfied by R̄. The time-delay

system R whose conjugate R̄ has finitely many unstable zeros

is defined as an I-system.
The class of SISO time-delay systems with factorization (3)

is given by the following lemma.
Lemma 3.2: ([10]) If R is an F system and T is an I

system in (4), then P can be factored as (3). If R and T

are irreducible and have no common factors, then P has

factorization (3) if and only if R and T are F and I system

respectively.
In this paper, the plant P , defined by (4), is assumed to

satisfy the following:

A.1 Ri and Tj are stable, proper, finite dimensional transfer

functions. The delays, hi, τj are rational numbers such

that 0 ≤ h1 < h2 < . . . < hn, and 0 ≤ τ1 < τ2 < . . . <

τm, with h1 = τ1 = 0.

A.2 R and T have no imaginary axis zeros.

A.3 R and T are F and I system respectively.

Under the above conditions P can be factored as in (3),

md = MT̄

T

T̄
, mn = MR, No =

R

MR

MT̄

T̄
.

The zeros of the inner function MR are right half plane zeros

of R. The unstable zeros of T̄ (s) are the same as the zeros of

the inner function MT̄ . The conjugate of T has finitely many

unstable zeros since T is a I-system.

As an example, consider the following time-delay system:

ẋ(t) = −x(t)− 2ẋ(t− 2) + 2x(t− 2) + u(t),

y(t) = 4x(t− 3)− 2ẋ(t− 2) + 2x(t− 2) + u(t)

(5)

which has the transfer function

P (s) =
(s+ 1) + 4e−3s

(s+ 1) + 2(s− 1)e−2s
.

The plant P can be written in the form of (4),

P =
R

T
=

R1e
−h1s +R2e

−h2s

T1e−τ1s + T2e−τ2s
,

=
1e−0s +

(

4
s+1

)

e−3s

1e−0s +
(

2(s−1)
s+1

)

e−2s
.

Note that P satisfies assumption A.1 (i.e., h1 = τ1 = 0) and

A.2 since it has no imaginary axis zeros and poles. The relative

degree of R2 is larger than R1, therefore, R is a RTDS and has

finitely many unstable zeros (it is an F system). The conjugate

of T is

T̄ (s) = e−2sT (−s)

(

s− 1

s+ 1

)

,

= 2 +

(

s− 1

s+ 1

)

e−2s. (6)

Note that T̄ is NTDS which satisfies Lemma 3.1. So, T̄ has

finitely many zeros and hence T is an I system. Therefore,

the plant P satisfies assumption A.3. It can be shown that R

has two unstable zeros at sR1,2
= 0.3125 ± 0.8548j. Also,

T has infinitely many unstable poles converging to ln
√
2 ±

j(k+ 1
2 )π as k → ∞, which shows that the plant P has finitely

many unstable zeros and infinitely many unstable poles. By the

small-gain theorem, it is clear that T̄ has no unstable zeros.

Now P can be written as in (3) where

md(s) =
T (s)

T̄ (s)
,

mn(s) = MR(s) =
s2 − 0.6250s+ 0.8283

s2 + 0.6250s+ 0.8283
,

No(s) =
R(s)

MR(s)

1

T̄ (s)
. (7)

Note that MR is an inner function and all its zeros are unstable

zeros of R. Since T̄ has no unstable zeros, MT̄ is equal to one.

In the next section, stable H∞ controllers are obtained for

plants in the form (3).

IV. STABLE H∞ CONTROLLER DESIGN

In this section, the results of [7] are extended for plants

with infinitely many unstable modes. The internal stability

problem of closed-loop system can be reduced to interpolation

problem on the sensitivity function [20]. This reduction is

valid also for plants with infinitely many unstable poles and



zeros. Assume that P (s) = mn(s)
md(s)

No(s) is as defined above

with finite dimensional inner mn, infinite dimensional inner

md, outer No. Note that the plant has finitely many unstable

zeros and may have infinitely unstable poles. Let the weighting

function, W , be minimum phase, then the closed-loop system

is internally stable if and only if there exists SW ∈ H∞,

SW = W (1 + PC)−1 satisfying

SW (s) = md(s)Fγ(s) (8)

where Fγ ∈ H∞, and

md(si)Fγ(si) = W (si), (9)

for all zeros of mn(s), si ∈ C+, i = 1 . . . , N . Moreover,

‖SW ‖∞ = ‖Fγ‖∞. Optimal weighted sensitivity is the one

which corresponds to an Fγ whose H∞ norm is the smallest

among all stable functions satisfying (9).

When the controller in the weighted sensitivity minimiza-

tion problem defined above is restricted to be stable, then we

must have

Cγ =
W − SW

SWP
=

(W − γmdF )N−1
o

γmdFP
,

=
(W − γmdF )N−1

o

γmnF
∈ H∞

where F ∈ H∞ and F−1 ∈ H∞ with ‖F‖∞ ≤ 1 and it

satisfies the interpolation conditions

F (si) =
W (si)

γmd(si)
=

ωi

γ
, i = 1, . . . , N (10)

for the smallest possible γ > 0. Conversely, if there exists such

an F , then optimal stable H∞ controller Cγs
for WSMSC

problem (1) can be obtained from SW . The optimal H∞ cost

for (2) is γs, which is the smallest γ value for which a unit

F ∈ H∞ satisfying (10) can be found. (We say that a function

F ∈ H∞ is a unit if F−1 ∈ H∞ and ‖F‖∞ ≤ 1). Note that the

above transformation reduces the WSMSC problem for plants

with infinitely unstable modes into an interpolation problem,

by a unit in H∞, with finitely many interpolation conditions.

The solution of the interpolation problem with unit is

given in [7] using the Nevanlinna-Pick approach, [6,13,21],

as follows. Define

G(s) = − lnF (s) F (s) = e−G(s). (11)

Now, we want to find an analytic function G : C+ → C+

such that

G(si) = − lnωi + ln γ − j2πmi =: νi, i = 1, . . . , N

where mi is a free integer due to non-uniqueness of the

complex logarithm. Note that when ‖F‖∞ ≤ 1 the function G

has a positive real part hence it maps C+ into C+. Now if the

extended right-half plane is transformed onto the closed unit

disc in the complex plane by one-to-one conformal mapping

z = φ(s), then the transformed interpolation conditions are

f(zi) =
ωi

γ
, i = 1, . . . , N (12)

where zi = φ(si) and f(z) = F (φ−1(z)). The transformed

interpolation problem is to find a unit with ‖f‖∞ ≤ 1 such

that interpolation conditions (12) are satisfied. By the following

transformation,

g(z) = − ln f(z), (13)

the interpolation problem can be written as,

g(zi) = νi, i = 1, . . . , N.

Define φ(νi) =: ζi. If we can find an analytic function g̃

mapping unit disc onto unit disc, satisfying

g̃(zi) = ζi i = 1, . . . , N

then the desired g(z), hence f(z) and F (s) can be constructed

from g(z) = φ−1(g̃(z)). The problem of finding such g̃

is the well-known Nevanlinna-Pick problem, [6,13,21]. The

condition for the existence of an appropriate g can be given

directly: there exists an analytic g mapping the unit disc onto

right half plane if and only if the Pick matrix PN×N ,

P (γ, {mi})i,k =

[

2 ln γ − lnωi − ln w̄k + j2πmk,i

1− ziz̄k

]

(14)

is positive semi-definite, where mk,i = mk −mi are integers.

In [7], it is mentioned that the possible integer sets {mi} are

finite and in all possible integer sets {mi}l, l = 1, . . . , r, there

exists a minimum value, γs, such that P (γs, {mi}l) ≥ 0.

A. Optimal Stable H∞ Controller Design Algorithm for Plants

with Infinitely Unstable Modes:

1) Write the plant in the form of (3):

If the plant is a SISO time-delay system, obtain its

transfer function and re-write it in the form of (4).

If R and T satisfy Assumptions A.1-A.3, do the

factorization of the plant as (3).

2) Find the zeros si i = 1, . . . , N of mn(s).
3) Calculate ωi, and using a conformal mapping φ calculate

zi for i = 1, . . . , N .

4) For all possible integer sets {mi}l, l = 1, . . . , r, find γs
such that the Pick matrix (14) is positive semi-definite.

5) Obtain optimal interpolation function gγs
(z) and fγs

(z)
by transformation (13), see e.g. [6,21].

6) Calculate Fγs
(s) = fγs

(φ(s)) and SW,γs
(s) using Fγs

and γs in (8).

7) The optimal stable H∞ controller for plants with in-

finitely unstable modes can now be written as

Cγs
=

W − SW,γs

SW,γs
P

.

Note that this controller achieves the optimal H∞ norm

γs which is the minimum value for WSMSC problem.



B. Remarks:

1) Clearly, stable H∞ controller design is also applicable to

infinite dimensional plants with finitely many right half plane

poles and zeros. In this case it is possible to write the plant as

P (s) =
mn(s)

md(s)
No(s) (15)

where mn and md are finite dimensional inner functions whose

zeros are C+ zeros and poles of plant P respectively; No is

outer, i.e. the minimum phase part of the plant P . For time-

delay systems (4), this case means that R and T are F systems.

Stable H∞ controller design for plants (15) is the same as in

[7]. The main difference is that the term md in SW is finite

dimensional. There are many plants with the above structure,

such as,

ẋ(t) =

nA
∑

i=0

Aix(t− hA,i) +Bu(t),

y(t) = Cx(t) + du(t) (16)

where Ai ∈ Rn×n, i = 1, . . . , nA and B,C, d are real

valued vectors of appropriate dimensions. The state vector has

dimension is x(t) := [x1(t), . . . , xn(t)]
T and the time-delays

satisfy

0 ≤ hA,1 < . . . < hA,i < . . . < hA,nA
.

Optimal stable H∞ controller can be found for the plant (16).

2) Note that optimal stable H∞ controller is unique and it is

not rational. For practical purposes, rational approximation of

the optimal controller can be done with desired error bound or

a rational controller can be searched in the set of suboptimal

controllers determined from the suboptimal solutions of the

Nevanlinna-Pick problem.

3) There are always unstable pole-zero cancellations in the

controller terms,
W−SW,γs

mn
and No from interpolation condi-

tions and factorization respectively. It is not possible to directly

cancel the unstable pole-zeros since the optimal interpolating

function F in SW,γs
is irrational. If the suboptimal controllers

are considered, the interpolating function F can be chosen

as finite dimensional. Exact cancellations are possible for

infinite dimensional plants (15) with finite dimensional F in

the term
W−SW,γs

mn
. If F is finite dimensional and the plant

is a time-delay system with factorization (3), the controller

can be written in a form such that the controller has a finite

impulse response structure which eliminates unstable pole-

zero cancellation problem in
W−SW,γs

mn
and No, see [10]. This

new structure of controller makes possible to implement the

controller practically. The example shows this structure in V.

V. EXAMPLE

Optimal stable H∞ controller for WSMSC problem is

designed for time-delay plant (5) with weighting function

W (s) = 1+0.1s
s+1 . The time-delay system (5) is put in the

form of (7). The zeros of plants are sR1,2
= 0.31 ± 0.85j,

and ω1,2 = 0.79 ∓ 0.42j. This gives the optimal H∞ cost

γs = 1.07.

The algorithm gives the optimal H∞ cost for WSMSC

problem, that is the best value for any stable controller.

Unfortunately, the resulting optimal stable H∞ controller has

internal unstable pole-zero cancellations. If the suboptimal

case is considered, a practical controller can be found.

Consider a suboptimal solution to WSMSC for γ = 1.5
which is larger than the optimal cost, γs = 1.07. By a

numerical search algorithm, a finite dimensional interpolating

function Fsubopt can be found as

Fsubopt(s) =
0.1895s+ 0.7308

s+ 0.7310
.

Note that Fsubopt is a unit with ‖Fsubopt‖∞ ≤ 1 and satisfies

the interpolation conditions Fsubopt(sRi
) = γ−1ωi for i =

1, 2. The corresponding suboptimal sensitivity function can be

obtained as SW,γ = γmdFsubopt. The suboptimal stable H∞

controller is

Cγ =
W − SW,γ

SW,γP
,

=

(

γ−1WF−1
subopt −md

mn

)

1

No

.

Note that there are unstable pole-zero cancellations inside the

parenthesis in the above expression, and in No. It is clear that

when the infinite dimensional plant admits a factorization (15),

exact cancellation inside the parenthesis is possible because all

the terms are finite dimensional. However, the plant in this ex-

ample has an infinite dimensional part, md, so it is not possible

to make exact cancellations in the controller. Nevertheless, the

unstable pole-zero cancellations can be avoided by the method

proposed in [10] as follows:

Cγ =

(

γ−1WF−1T̄ − T

mn

)(

R

mn

)−1

,

= (HT + FT )(HR + FR)
−1

where FT and FR are finite impulse response filters (i.e. their

impulse responses are non-zero only on a finite time interval)

FR(s) =
1.25s+ (2.04s+ 1.69)e−3s

s2 − 0.625s+ 0.828
,

FT (s) =
0.585s+ 0.019− (0.285s− 1.066)e−2s

s2 − 0.625s+ 0.828
,

whose denominators are determined from the zeros of mn. The

impulse responses of FT and FR are given in Figure 1. The

terms, HR and HT , are time-delay systems with no unstable

pole-zero cancellations internally.

Note that if the plant has factorization (15), FT = 0 since

md is finite dimensional. The exact cancellations can be made

in
W−SW,γ

mn
and FR is from unstable pole-zero cancellations

inside No.

VI. CONCLUDING REMARKS

Weighted sensitivity minimization problem by stable H∞

controllers is considered for SISO infinite dimensional plants

with finitely many right half plane zeros and possibly infinitely

many right half plane poles. The optimal stable H∞ controller
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Fig. 1. Impulse Responses of FR and FT

and corresponding optimal H∞ cost are obtained from the

Nevanlinna-Pick interpolation. For this purpose the approach

of [7] is extended to the class of unstable time delay systems

considered here. Suboptimal controllers can be found from

all suboptimal interpolants determined by the Nevanlinna-Pick

solutions, and infinite dimensional suboptimal controllers can

be approximated by finite dimensional ones. It should be noted

that when the plant has infinitely many right half plane zeros,

there will be infinitely many interpolation conditions, and this

approach will not be applicable in such cases. Another open

problem in this area is the extension of the main results to

a two-block H∞ control problem, for example the mixed

sensitivity minimization.
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