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Abstract—This paper develops a “Non-locality” Preserving 
Projection (NLPP) technique for feature extraction. In contrast 
to the existing Locality Preserving Projection (LPP), a technique 
based on the characterization of the local scatter, NLPP is a 
method based on the characterization of the non-local scatter. 
Intuitively, NLPP should be more effective than LPP when the 
non-local information plan a dominant role in discrimination. 
NLPP is tested using the PolyU palmprint database and the 
experimental results show that NLPP outperforms PCA, LDA 
and LPP. 
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I.  INTRODUCTION 
Recently, He et al [1, 2] proposed a method called Locality 

Preserving Projections (LPP) and applied it to face recognition. 
LPP is a linear subspace method derived from Laplacian 
Eigenmap [3]. It results in a linear map that optimally preserves 
local neighborhood information in a certain sense. This map 
can be viewed as a linear discrete approximation to a 
continuous map that naturally arises from the geometry of the 
manifold [1]. Therefore, it can be said that He et al’s method 
built a bridge from manifold learning to subspace learning. In 
contrast with most manifold learning algorithms, a remarkable 
advantage of LPP is that it can generate a simple and 
efficiently-computable linear map, like that of PCA or LDA. 
This map is also effective, yielding encouraging results on face 
recognition tasks. 

LPP is modeled based on the characterization of “locality”. 
The objective function of LPP is to minimize the local quantity, 
i.e., the local scatter of the projected data. This criterion, 
however, cannot guarantee to yield good projections for 
classification in some cases. Figure 1 (a) and (b) gives two 
cases where two clusters of samples are uniformly distributed 
in two ellipses 1C  and 2C  . If the locality radius is set as the 
length of the semi-major axis of the larger ellipse, the direction 

1w  is optimal according to the criterion of LPP, since after all 
samples being projected onto 1w , the local scatter is minimal. 
In Case (a), 1w  is a suitable projection direction for 
classification, but in Case (b), 1w  is unsuitable since the 
projected samples overlap on this direction. It can be seen that 
in both cases, the non-local quantity, i.e., the inter-cluster 

scatter, provides important information for discrimination. In 
this paper, we will explore ways to characterize the “non-
locality” and then to utilize the resulting non-local information 
for classification purpose. 
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Figure 1.  Illustration of two clusters of samples in two-dimensional space and 
the projection directions 
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II. FUNDAMENTALS 

A. Characterization of the Local Scatter 

Recall that in PCA, in order to preserve the global 
geometric structure of data in a transformed low-dimensional 
space, the global scatter of samples is considered. Instead, if 
we aim to discover the local structure of data, the local scatter 
(or intra-locality scatter) of samples should be considered. 
The local scatter can be characterized by the mean square of 
the Euclidean distance between any pair of the projected 
sample points that are within any local δ -neighborhood 
( 0>δ ). Specifically, two samples ix  and jx  are viewed 
within a local δ -neighborhood provided that δ<− 2|||| ji xx . 
Let us denote the set }||||),{(U 2 δδ <−= jiji xx . After the 

projection of ix  and jx  onto a direction w , we get their 
images iy  and jy . The local scatter of is then defined by 
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where LM  is the number of sample pairs satisfying 
δ<− 2|||| ji xx .  

Let us define the adjacency matrix H, whose element is 
given below: 
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It is obvious that the adjacency matrix H is a symmetric 
matrix. 

By virtue of the adjacency matrix H, Eq. (1) can be 
rewritten by 
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where M is the number of training samples. It follows from 
Eq. (3) that  
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LS  is called the local scatter (covariance) matrix.  

Due to the symmetry of H, it follows that  

LS  = 
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where ),,,( 21 MxxxX = , and D is a diagonal matrix 
whose elements on diagonal are column (or row since H is a 
symmetric matrix) sum of H, i.e., ∑

=
=

M

j
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1

. HDL −=  is 

called Laplacian matrix in [1-3]. 

It is obvious that L and LS  are both real symmetric 
matrices. From Eqs. (4) and (6), we know that 0≥wSw L

T  for 
any nonzero vector w . So, the local scatter matrix LS  must be 
non-negative definite.  

 In the above discussion, we use δ -neighborhoods to 
characterize the “locality” and the local scatter. This way is 
geometrically intuitive but unpopular because it is hard to 
choose a proper neighborhood radius δ  in practice. To void 
the difficulty, the method of K-nearest neighbors is always 
used instead in real-world applications. The K-nearest 
neighbors method can determine the following adjacency 
matrix H, with elements given by: 









=

otherwise0

ofnieghborsnearestKamongis

ofnieghborsnearestKamongisif,1

ji

ij

ij andH xx

xx        (7) 

The local scatter can be characterized similarly by K-
nearest neighbor adjacency matrix if Eq. (2) is replaced by Eq. 
(7). 

B. Characterization of the Non-local Scatter 

In contrast to the characterization of the local scatter, the 
non-local scatter (i.e., the inter-locality scatter) can be 
characterized by the mean square of the Euclidean distance 
between any pair of the projected sample points that are 
outside any local δ -neighborhood ( 0>δ ).  

Let us denote the set }||||),{(U 2 δδ ≥−= jiN ji xx . The non-
local scatter is defined by 
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where NM  is the number of elements in δ
NU .  

By virtue of the adjacency matrix H in Eq. (2) or (7), the 
non-local scatter can be rewritten by 
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It follows from Eq. (9) that  
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NS  is called the non-local scatter (covariance) matrix. It is 
easy to show NS  is also a non-negative definite matrix.  

Let us define the matrix 
MMijN H ×−= )1(H .  Similar to the 

derivation of Eq. (6), we have  

    NS  = T
N XXL                            (12) 

where NNN HDL −= , ND  is a diagonal matrix whose 
elements on diagonal are column (or row) sum of NH , i.e., 
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III. METHODS  

A. Locality Preserving Projection (LPP)  

Let us define the matrix TXDXS =D . LPP seeks to 
minimize the local scatter under the condition that the 
projection axes are DS -orthogonal. The optimization model of 
LPP is given by [1, 2]  
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If the local scatter matrix DS  is non-singular, the criterion 
in Eq. (14) can be minimized directly by calculating the 
generalized eigenvectors of the following generalized eigen-
equation: 

wSwS DL λ=                                    (15) 

The projection axes of LPP can be selected as the 
generalized eigenvectors dwww ,,, 21  of wSwS DL λ=  
corresponding to d smallest positive eigenvalues 

dλλλ ≤≤≤ 21  . 

Otherwise, we can perform PCA first and make DS  non-
singular in the PCA-transformed space. Then, LPP can be 
performed based on PCA-transformed data. 

B. “Non-locality” Preserving Projection (NLPP) 

Let us redefine the matrix TXXDS ND = . NLPP seeks to 
maximize the non-local scatter under the condition that the 
projection axes are DS -orthogonal. The optimization model of 
NLPP is  
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If the local scatter matrix DS  is non-singular, the criterion 
in Eq. (14) can be maximized directly by calculating the 
generalized eigenvectors of the following generalized eigen-
equation: 

wSwS DN λ=                                   (18) 

The projection axes of NLPP can be selected as the 
generalized eigenvectors dwww ,,, 21  of wSwS DN λ=  
corresponding to d largest positive eigenvalues 

dλλλ ≥≥≥ 21  . 

Otherwise, similar to the operation in LPP, PCA is first 
used for dimension reduction and then NLPP is performed in 
the PCA-transformed space. 

 

IV. EXPERIMENTS 
The proposed method is tested using the PolyU palmprint 

database which contains 600 grayscale images of 100 different 
palms with six samples for each palm [4]. Six samples from 
each of these palms were collected in two sessions, where the 
first three were captured in the first session and the other three 
in the second session. The average interval between the first 
and the second sessions is two months. In our experiments, the 
central part of each original image was automatically cropped. 
The cropped images was resized to 128×128 pixels and pre-
processed by histogram equalization. Figure 2 shows some 
sample images of two palms. 

According to the protocol of this database, the images 
captured in the first session are used for training and the images 
captured in the second session for test. Thus, for each palm 
class, there are three training samples and three testing 
samples. PCA [5], LDA [6], LPP and NLPP are, respectively, 
used for palm feature extraction. Note that LDA, LPP and 
NLPP all involve a PCA phase due to the singularity issues. In 
this phase, the number of principal components, m, is set as 
120. The K-nearest neighborhood parameter K in LPP and 
NLPP is chosen as K = 2. After feature extraction, a nearest 
neighbour classifier with cosine distance is employed for 
classification. The maximal recognition rate of each method 
and the corresponding dimension are listed in Table 1. This 
table shows that NLPP outperforms PCA, LDA and LPP. The 
recognition rate of NLPP is up to 99.7%, i.e., there is only one 
sample missed.  
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Figure 2.      Samples of the cropped images in PolyU Palmprint database 

 

TABLE I.  THE MAXIMAL RECOGNITION RATES (%) OF PCA, LDA, LPP 
AND NLPP ON POLYU PALMPRINT DATABASE AND THE CORRESPONDING 

DIMENSIONS 

Method PCA LDA LPP NLPP 

Recognition rate 86.0 97.7 98.7 99.7 

Dimension 90 95 95 100 

V. CONCLUSION 
In this paper, we propose a “non-locality” preserving 

projection technique (NLPP) and demonstrate its effectiveness 
for feature extraction using the PolyU palmprint database. 
Actually, the “locality” and “non-locality” can be characterized 
under a unified framework, e.g. maximizing the non-local 
scatter and minimizing the local scatter at the same time. We 
will perform this work and publish the results in another paper. 
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