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Abstract – Hexagonal structure is different from the 
traditional square structure for image representation. The 
geometrical arrangement of pixels on hexagonal structure 
can be described in terms of a hexagonal grid. Uniformly 
separating image into seven similar copies with a smaller 
scale has commonly been used for parallel and accurate 
image processing on hexagonal structure. However, all the 
existing hardware for capturing image and for displaying 
image are produced based on square architecture. It has 
become a serious problem affecting the advanced research 
based on hexagonal structure. Furthermore, the current 
techniques used for uniform separation of images on 
hexagonal structure do not coincide with the rectangular 
shape of images. This has been an obstacle in the use of 
hexagonal structure for image processing. In this paper, 
we briefly review a newly developed virtual hexagonal 
structure that is scalable. Based on this virtual structure, 
algorithms for uniform image separation are presented. 
The virtual hexagonal structure retains image resolution 
during the process of image separation, and does not 
introduce distortion. Furthermore, images can be smoothly 
and easily transferred between the traditional square 
structure and the hexagonal structure while the image 
shape is kept in rectangle.  

Keywords: Hexagonal structure, image scaling, Spiral 
Architecture, parallel processing, image partitioning 

1 Introduction 
  Computer Vision and Image Processing is a 
computationally expensive field in which many operations 
require massive computations, especially when large data 
sets are involved such as those for stereo image matching 
and feature extraction. Parallel processing using a cluster 
consisting of multiple computers is a straightforward 
method to speed up image processing. Cluster-based 
parallel computing has the advantages of low cost and high 
utility. On the other hand, it has the disadvantages of high 
communication latency and irregular load patterns on the 
computing nodes [1]. Its performance mainly depends on 
the amount of and the structure for communications 
between processing nodes. Therefore, image separation or 
partitioning for task dividing is critical in a parallel 
algorithm for image processing.  

Many types of image partitioning have been proposed [2] 
on traditional square image structure such as Row Partition, 
Column Partition and Block Partition. All of these partition 
methods do not intend to separate an image into similar 
copies (or sub-images). Hence, when the sub-images are 
assigned to various computer nodes for parallel processing, 
the load-balancing is not guaranteed.  

The method for image partitioning presented in [3] is based 
on a hexagonal image structure, called Spiral Architecture 
(SA) [4], which is inspired from anatomical considerations 
of the primate’s vision. It partitions the input image 
uniformly into a number of sub-images as required based 



on an operation, called Spiral Multiplication defined on SA. 
Each sub-image is a near (or similar) copy of the input 
image with a smaller scale, while all of the sub-images are 
mutually exclusive and the original image information is all 
kept in the sub-images. Every sub-image can be processed 
independently and in parallel by an individual node without 
data exchange between the nodes. Furthermore, the 
workload on every node is almost the same as that on any 
other node because of the uniform partition. Consequently, 
the computational complexity is greatly reduced and the 
processing time is significantly shortened. However, our 
previous work shown in [3] has the following shortcomings. 
First of all, the shape of input images is hexagon-like and 
does not coincide with rectangular shape of traditional 
images. Secondly, the image partition method uses on the 
Spiral Multiplication that is computationally expensive. 
Thirdly, images are represented on a mimic Spiral 
Architecture that introduces a loss on image resolution and 
creates image distortion when the sub-images have a rotated 
angle from the original image.  

In order to take the advantages and suppress the 
disadvantages of SA, in this paper, we propose a novel 
method for uniformly separating image into four similar 
sub-images based on a newly defined virtual hexagonal 
image structure [5]. The hexagonal structure can be 
smoothly converted from the square structure without 
changing the image shape. In this virtual structure, 
hexagonal pixels can be easily located through simple 
computations. It avoids the necessity of using a Spiral 
Multiplication to compute pixel locations and hence avoids 
the need to build a large table to record the location 
information. This virtual structure hardly changes the image 
resolution and almost does not introduce image distortion.  

The rest of this paper is organized as follows. In Section 2, 
we briefly review the Spiral Architecture. In Section 3, we 
introduce the construction of a new virtual hexagonal 
structure. A new technique for uniform image partition is 
presented in Section 4. Experimental results are 
demonstrated in Section 5. We conclude in Section 6. 

2 Spiral Architecture 
 On Spiral Architecture, an image is represented as a 
collection of hexagonal pixels. Each pixel has only six 
neighbouring pixels with the same distance to it. Each pixel 
is identified by a number of base 7 called a spiral address. 
The numbered (or addressed) hexagons form the cluster of 
size 7n, where n is a positive integer. These hexagons 
starting from address 0 towards address 7n tile the plane in 
a recursive modular manner along a spiral-like curve. As an 
example, a cluster with size of 72 and the corresponding 
spiral addresses are shown in Figure 1. The image space 
formed on the Spiral Architecture always has a hexagon-
like shape. This shortcoming restricts the applications of 

image processing on hexagonal structures. Our approach in 
this paper will overcome this disadvantage.  

 

Figure 1. Spiral Architecture with spiral addressing 

Two algebraic, useful and important operations have been 
defined on Spiral Architecture based on spiral addresses. 
They are Spiral Addition and Spiral Multiplication. These 
two operations correspond to two transformations on Spiral 
Architecture, which are translation and rotation with a 
scaling. Spiral Multiplication is also often applied to 
uniformly separate images on Spiral Architecture for 
parallel processing. In this paper, we perform an algorithm 
for image partition on a hexagonal structure without using 
computationally expensive Spiral Multiplication. Our 
algorithm will maintain the important property that none of 
image (intensity) information is lost during the separation 
process.  

3 Virtual Hexagonal Structure 
 In this section, we review the construction of a new 
virtual hexagonal structure [5].  

 

Figure 2. The structure of a single hexagonal pixel 

To construct hexagonal pixels, each square pixel is first 
separated into 7×7 smaller pixels, called sub-pixels. To be 
simple, the light intensity for each of these sub-pixels is set 



to be the same as that of the pixel from which the sub-pixels 
are separated. Each virtual hexagonal pixel is formed by 56 
sub-pixels arranged as shown in Figure 2. To be simple, the 
light intensity of each constructed hexagonal pixel is 
computed as the average of the intensities of the 56 sub-
pixels forming the hexagonal pixel when necessary.  

Figure 3 shows a collection of seven hexagonal pixels 
constructed with spiral addresses from 0 to 6. From Figure 
3, it is easy to see that the hexagonal pixels constructed in 
this way tile the whole plane without and spaces and 
overlaps.  

From Figure 3, it can be easily computed that the distance 
from pixel 0 to pixel 1 or pixel 4 is 8. The distance from 
pixel 0 to pixel 2, pixel 3, pixel 5 or pixel 6 is 

.06.847 22  �  

which is close to 8. Hence, the feature of equal distance is 
almost retained and hence this construction hardly 
introduces image distortion. 

 

Figure 3. A cluster of seven hexagonal pixels  

Through this paper, we assume that original images are 
represented on a square structure arranged as 16M rows and 
16N columns, where M and N are two positive integers. 
This assumption guarantees that sub-images to be obtained 
in this paper has exactly the same size and are of a 
complete rectangle shape. M = 0 corresponds to the first 
(top) row and N = 0 corresponds to the first (left) column. 
Let the centre of the virtual hexagonal structure be located 
at the middle of 8M-th row and (8M +1)-th row, and at 8N-
th column. Let us denote the light intensity of the square 
pixel at row m and column n by Q(m,n), where 0 ��m < 

16M and 0 ��n < 16N. Here, we use row 0 to represent the 
1st row and column 0 to represent the 1st column and so 
forth.  

Note that there are (7 × 16M =) 112M rows and (7 × 16N 
=) 112N columns in the virtual square structure consisting 
of virtual sub-pixels obtained from the original square 
pixels. Let us construct the first hexagonal pixel using the 
56 sub-pixels with centre located in the middle of rows 
56M-1 and 56M and at column 56N-1 of the virtual square 
structure. This first pixel is called the central hexagonal 
pixel in the hexagonal structure. It is corresponding to the 
pixel with spiral address 0 in the Spiral Architecture. After 
the 56 sub-pixels for the first hexagonal pixel are allocated, 
all sub-pixels for all hexagonal pixels can be assigned. For 
our uniform partition algorithms, the assignment of sub-
pixels to corresponding hexagonal pixels is not explicitly 
required. We do not need to compute the intensities for the 
virtual hexagonal pixels. After image processing for 
uniform partition, the intensity of each square pixel can be 
computed as the average of the light intensities of the 7 × 7 
sub-pixels separated from this square pixel.  

4 Uniform Image Separation 
 In this section, we will perform algorithms for 
separating image represented on the virtual hexagonal 
structure into four sub-images that look similar and have 
exact the same image size. The idea is to define rows and 
columns as images represented on the square structure. 
Then, each sub-image is a collection of hexagonal pixels 
from every second row and column. It is not as obvious as 
in the square structure to find the column and the row of 
each hexagonal pixel. It is not obvious either to know 
which pixels form the first row or the first column of a sub-
image. We follow the following three steps for the uniform 
image separation. We first define the rows and columns on 
the virtual hexagonal structure, and propose an algorithm 
for computing the row and column of the hexagonal pixel 
that a given sub-pixel belongs to. Then we present an 
algorithm for the extraction of the first sub-image. In the 
third step, algorithms for construction of the second, the 
third and the fourth sub-images are proposed. After the 
process for image separation, to be simple, the sub-images 
represented on hexagonal structure can be mapped back to 
the square structure using the pseudo code below. 

for (int m = 0 ; m<16*M ; m++) { 
 for (int n=0 ; n<16*N, j++) { 
  int k=0 ; 

Q[m][n]=0 ; 
for (i=0 ; i<7 ; i++) 

   for (j=0 ; j<7 ; j++) { 
    k=k+1 ; 
    Q[m][n]=(Q[m][n]+P[7*m+i][7*n+j]) ; 
   } 
  } 



  Q[m][n]=Q[m][n]/k ; 
} 

 } 
 
Note that, for better display result, a better method for 
assignments of intensity values of sub-pixels is required 
through a better interpolation technique. This is, however, 
beyond the discussion and the objectives of this paper. 

4.1 Pixel row and column   

 Assume a given sub-pixel is at row p and column q. 
Let R and C represent the number of rows and number of 
columns needed to move from the central hexagonal pixel 
to the hexagonal pixel containing the given sub-pixel taking 
into account the moving direction corresponding to the 
signs of R and C. Here, pixels on the same column are on 
the same vertical line. For example, as shown in Figure 4, 
pixels with addresses 43, 42, 5, 6, 64, 60 and 61 are on the 
same column with C = 1. The row with R = 0 consists of the 
pixels on the horizontal line passing the central pixel and on 
the columns with even C values, and the pixels on the 
horizontal line passing the pixel with address 3 and on the 
columns with odd C values. Other rows are formed in the 
same way. For example, pixels with addresses 21, 14, 2, 1, 
6, 52, 50 and 56 are on the same row with R = 1. Figure 5 
show rows in a hexagonal structure consisting of 49 
hexagons. Following the algorithm proposed in [6], the C 
and R corresponding to the given sub-pixel can be 
computed from P1, P2, Q1 and Q2 defined below.  
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4.2 Construct the first sub-image 

 Let h be an arbitrary given hexagonal pixel on a 
hexagonal structure. Let us denote the values of C and R 
corresponding to h by Ch and Rh respectively. Then the first 
sub-image S1 is formed by the hexagonal pixels that satisfy 
the following conditions.  
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From the above representation, we can see that any 
hexagonal pixel must be on the column with even C value; 
and if the pixel falls onto column with even C/2 value then 
R value for the pixel must be even as well, otherwise R 
must be odd. 

 

Figure 4. Columns on a hexagonal structure 

 

 

Figure 5. Rows on a hexagonal structure 

The arrangement of the hexagonal pixels in S1 is made as 
follows. We keep the location of the central pixel (with C = 
0 and R = 0) unchanged, and move any other hexagonal 
pixel towards the central pixel by its half distance from it. 
Note that the distance between two adjacent columns is 7 
sub-pixels long, and the distance between two adjacent rows 
is 8 sub-pixels long. Hence, any pixel belonging to S1 
except the central pixel will move by |Ch|/2*7 sub-pixels 
leftwards (or rightwards when Ch is negative) then by 
|Rh|/2*8 upwards (or downwards when Rh is negative).  

 
After the above-mentioned procedure, the first sub-image 

is formed and it is sitting in the middle of the original image 
area. In order to fit all four sub-images onto the same image 
area after the four sub-images are formed, in the next step, 



we move S1 to the left up corner of the original image area 
such that S1 will exactly occupy the top 8M rows and left 8N 
columns of the original rectangular image area. Note that 
the new centre of S1 will be located in the middle of rows 
28M-1 and 28M and at column 28N-1 of the virtual square 
structure. Hence, to move the S1 to the left up corner, we 
need only move all sub-pixels in S1 upwards by 28M sub-
pixels and leftwards by 28N sub-pixels.  

 

4.3 Construct other sub-images 

 The second sub-image S2 consists of all hexagonal 
pixels that are one hexagonal above or below the pixels in 
S1. The third sub-image S3 consists of all hexagonal pixels 
that are next to the pixels in S1 but sitting at the left-bottom 
side. Similarly, the fourth sub-image S4 consists of all 
hexagonal pixels that are next to the pixels in S1 but sitting 
at the right-bottom side. Let us now construct sub-images 2 
trough 4 one after another in the following.  

4.3.1 Construction of S2 
 To construct S2, we first translate all sub-pixels 
downwards by 8 sub-pixels. By doing so, the first 
hexagonal pixel (with spiral address 4 as shown in Figure 
1) of S2 that is the one right above the central pixel with 
spiral address 0 is moved to the central position with C and 
R both equal to 0. After the translation, the bottom 8 rows 
in the virtual square structure will be moved out from the 
original image area. In order not to lose any image 
information after the translation, we fill the top 8 rows of 
the virtual square structure by those sub-pixels at the 
bottom 8 rows while performing the translation. The pseudo 
code for this movement is shown as follows. 

The pseudo code for the translation is described as follows.  

for (i = 0 ; i<M1 ; i++) { 
 for (j = 0 ; j<N1 ; j++) { 

Temp[i][j]=P[i][j] ; 
P[i][j]=255 ;  

 } 
} 
for (i = 0 ; i<M1 ; i++) { 
 for (j = 0 ; j<N1 ; j++) { 
  if (0<= i <8)  
   P[i][j]=P[M1-8+i][j] ; 
  else 
   P[i][j]=P[i-8][j] ;  
 } 
} 
 
We can now use exactly the same algorithm as shown in 

Subsection 4.2 to construct S2 and display it in the middle of 
the original image area. The next step then is to move S2 to 
the right up corner of the original image area such that S2 

will exactly occupy the top 8M rows and right 8N columns 
of the original rectangular image area.  

 

4.3.2 Construction of S3 
 To construct S3, we first translate all sub-pixels 
rightwards by 7 sub-pixels, and then upwards by 4 sub-
pixels. By doing so, the first hexagonal pixel (with spiral 
address 2 as shown in Figure 1) of S3 is moved to the 
central position. Again, in order not to lose any image 
information after the translation, the sub-pixels that will be 
moved out from the image area must be filled into the 
pixels that will not be translated from any other sub-pixels. 
The pseudo code for this movement is shown as follows. 

for (i = 0 ; i<M1 ; i++) { 
 for (j = 0 ; j<N1 ; j++) { 

Temp[i][j]=P[i][j] ; 
P[i][j]=255 ;  

 } 
} 
for (i = 0 ; i<M1 ; i++) { 
 for (j = 0 ; j<N1 ; j++) { 
  if (M1-4<= i <M1) { 
   if (j < 7) 
    P[i][j]=P[i-M1+4][N1-7+j] ; 
   else 
    P[i][j]=P[i-M1+4][j-7] ; 
  } 
  else { 

if (j<7) 
    P[i][j]=P[i+4][N1-7+j] ; 
   else 
    P[i][j]=P[i+4][j-7] ; 

} 
  } 

} 
 

We can now use exactly the same algorithm as shown in 
Subsection 4.2 to construct S3 and display it in the middle 
of the original image area. The next step then is to move S3 
to the left bottom corner of the original image area such that 
S3 will exactly occupy the bottom 8M rows and left 8N 
columns of the original rectangular image area.  

4.3.3 Construction of S4 
 
 The construction of S4 is almost the same as the 

construction of S3. We first translate all sub-pixels leftwards 
by 7 sub-pixels, and then upwards by 4 sub-pixels. By doing 
so, the first hexagonal pixel (with spiral address 6 as shown 
in Figure 1) of S4 is moved to the central position.  

 
We can then use exactly the same algorithm as shown in 

Subsection 4.2 to construct S4 and display it in the middle of 
the original image area. The next step then is to move S4 to 



the right bottom corner of the original image area such that 
S4 will exactly occupy the bottom 8M rows and right 8N 
columns of the original rectangular image area.  

 

5 Experimental Results 
 The above algorithms for uniform image separation on 
the newly developed virtual hexagonal structure are 
implemented using C++ programming language and tested 
on a desktop of Pentium IV, 2.8GHz CPU and 480MB 
memory. Experimental results of the proposed image 
partitioning algorithms on grey-level images are presented 
here.  

A sample image, called “building” with size of 384*384 is 
shown in Figure 6. An example of image separation into 
four sub-images on the virtual hexagonal structure is shown 
in Figure 7. 

 

Figure 6. A sample image, “building” 

In Figure 7, it can be seen clearly that four sub-images have 
exactly the same size, look identical and are still in the 
shape of a square. There are no gaps between the sub-
images and no overlapping among the sub-images. All 
information of the original image is maintained during the 
whole separation process based on the hexagonal structure. 
The resolution of the whole image represented on the 
virtual hexagonal image structure and shown in Figure 7 is 
almost the same as that for Figure 6.  

As an illustration, the results of a further partitioning 
process are displayed in Figure 8 that contained 16 similar 
sub-images.  

 

 

Figure 7. The “building” image is uniformly separated into 
four sub-images of equal size and represented on a virtual 

hexagonal structure 

 

 

Figure 8. 16 similar sub-images separated from the “building” 

Note that the row and column numbers of the original 
image do not have to be the same for image separation. 
Figure 9 shows four sub-image images partitioned from a 
512*384 image. 



The total time to complete the computation for image 
separation for an image is less than 1 second. Compared 
with the method introduced in [7] that takes minutes to 
complete a rotation, a great improvement has been achieved 
using this new virtual structure. 

 

Figure 9. Four similar sub-images separated from a 512*384 a 
car image 

 

6 Conclusions and Discussion 
 In this paper, we have developed algorithms to 
uniformly separate an image represented on hexagonal 
structure into four sub-images. The partitioned sub-images 
look similar. It is important to know that the arrangement of 
the pixels in the sub-images does not change their 
symmetry relationship in the original image. For example, if 
in the original image a pixel A was in one of the 6 
neighbouring directions as shown in Figures 4 and 5 
corresponding to another pixel B belonging to the same 
sub-image, pixel A is in exactly the same direction 
corresponding to pixel B in their sub-image. Another 
example is that if three pixels C, D and E belong to the 
same sub-image pixel set and if the distance between C and 
D was the same as the distance between C and E in the 
original image, then in their sub-image, these two distances 
are still the same. Furthermore, we do not split any 
hexagonal pixel during the whole process, and hence all 
pixel information including the intensity values are 
maintained. The importance of uniform partition has been 
demonstrated in many papers addressing parallel image 
processing on hexagonal image structure. The maintenance 
of the symmetry property after image separation is critical 
for image processing such as finding gradient and its 
magnitude that request neighbouring information for the 
computations.  

One may argue that on the traditional square image 
structure, we can also separate image uniformly into four 
parts by simply split every four pixels evenly into four sub-

images. However, the sub-images obtained in this way also 
split the virtual hexagonal pixels and hence no longer hold 
the features of hexagonal structure. Therefore, those 
algorithms and applications developed based on hexagonal 
structure and proved to be more accurate or faster have lost 
their groundwork to be applied to these sub-images. 

In this paper, we have also improved our translation 
algorithms proposed in [6] by placing the pixels moved out 
from the image area onto the empty region of the image 
area. This keeps all image information after image 
translation. The translation process and the separation 
process are both reversible. The original image can be fully 
reconstructed from the separated sub-images using inverse 
algorithms if needed.  

Another contribution in this paper is a proposal to scale 
down an image to four times smaller images based on the 
hexagonal structure. Scaling operation is with the 
operations for image separation.  

In our implementation, we implicitly adopt the ideas of two 
operations defined on Spiral Architecture, namely spiral 
addition and spiral multiplication, and use them for image 
separation. However, we do not perform these two 
operations to avoid a large amount of time requested for the 
complex computations on the virtual structure. This is very 
different from any of previous approaches, and has 
significantly improved the performance in terms of speed 
and complexity.  

Another advantage of using this new approach is that the 
image shape is consistent with the traditional shape of a 
rectangle. This make it easier and more flexible for image 
processing based on hexagonal structure using images 
captured and displayed on square structure.  

As we do not compute the light intensities for virtual 
hexagons, image resolution is maintained during the 
separation process, and we save the processing time and 
memory storage.  

As there are simple non-overlapping mappings between the 
sub-pixels and the square pixels, and the mappings between 
the sub-pixels and the hexagonal pixels, the results of image 
processing on the hexagonal structure can be easily mapped 
back to the square structure for display.  

We list other future work related to this paper as follows.  

A better approximation of light intensity for sub-pixels is 
needed to reduce the loss during the image conversion. This 
is to be done using a more accurate light interpolation 
technique. 

On Spiral Architecture, we have performed image 
separation into any given number of sub-images. This work 



can be extended to the virtual hexagonal structure discussed 
in this paper.  
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