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Abstract— Information fusion in fingerprint recognition has
been studied in several papers. However, only a few papers
have been focused on sensor interoperability and sensor fusion.
In this paper, these two topics are studied using a multisensor
database acquired with three different fingerprint sensors.
Authentication experiments using minutiae and ridge-based
matchers are reported. Results show that the performance drops
dramatically when matching images from different sensors. We
have also observed that fusing scores from different sensors
results in better performance than fusing different instances
from the same sensor1.

Keywords—Fingerprint, sensor interoperability, sensor fusion,
minutiae, ridge.

I. INTRODUCTION

Personal authentication in our networked society is becom-
ing a crucial issue [1]. Due to its permanence and uniqueness,
fingerprint recognition is widely used in many personal identi-
fication systems, not only in forensic environments, but also in
a large number of civilian applications such as access control
or on-line identification. Furthermore, due to the low cost and
reduced size of new fingerprint sensors, several devices of
daily use (i.e. mobile telephones, PC peripherals, etc.) already
include fingerprint sensors embedded.

Several results related to information fusion for fingerprint
verification have been presented [2-5]. However, only few
papers have been focused on sensor fusion and interoperability
[6-8]. In this paper, we study these two topics using minutiae
and ridge-based matchers. The rest of the paper is organized
as follows. Sensor interoperability and fusion topics are briefly
addressed in Sects. II and III, respectively. Experiments and
results are described in Sect. IV. Conclusions are finally drawn
in Sect. V.

1This work has been carried out while F. A.-F. was guest scientist at
University of Twente
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Fig. 1. Processing steps of the MINDTCT package of the NIST Fingerprint
Image Software 2 (NFIS2).

Fig. 2. Processing steps of the ridge based verification system. From left to
right: original image, filtered image with filter orientation θ = 0, tessellated
image, and FingerCode.

II. SENSOR INTEROPERABILITY

When a user interacts with a biometric system, a feature
set is extracted from the raw data acquired by the sensor. This
feature set is expected to be an invariant representation of the
person. However, the feature set is sensitive to several factors
[7]: i) changes in the sensor; ii) variations in the environment;
iii) improper user interaction; or iv) temporary alterations of
the biometric trait. Factors ii and iii can be eliminated with a
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Fig. 3. Architecture of the proposed fingerprint verification system.

quality checking process while iv can be alleviated by using
a periodic template update process, but the effect of changing
the sensor has not been extensively studied.

Sensor interoperability in biometrics can be defined as the
capability of a recognition system to operate with different
sensors. Most biometric systems are designed under the as-
sumption that the data to be compared are obtained from a
unique sensor and are restricted in their ability to match or
compare biometric data originating from different sensors. As
a result, changing the sensor may affect the performance of
the system, as demonstrated in several studies. Martin et al. [9]
reported a significant difference in performance when different
microphones are used during the training and testing phases of
a speaker recognition system. Ross et al. [7] studied the effect
of matching fingerprints acquired with two different fingerprint
sensors, resulting in a significant drop of performance. Alonso
et al. [10] studied the effect of matching two signatures
acquired with two different Tablet PCs, resulting in a drop of
performance when samples acquired with the sensor providing
the worst signal quality are matched against samples acquired
with the other sensor.

Recent progress has been made in the development of
common data-exchange formats to facilitate the exchange
of feature sets between vendors. The sensor interoperability
problem is being addressed by standardization bodies. In
2002, the INCITS M1 Biometrics committee 2 was formed
by ANSI and also, the Sub-Committee 37 was formed by the
Joint Technical Committee 1 3 of ISO/IEC, including Working
Groups related to biometric technical interfaces and data
exchange formats. Regarding fingerprints, their standardization
activities have resulted in the ANSI-INCITS 378 [11] and the
ISO/IEC 19795-2 standards, both for minutiae-based
templates. However, little effort has been invested in the
development of algorithms to alleviate the problem of sensor
interoperability. Some approaches to handle this problem
are given in [7]. One example is the normalization of raw
data and extracted features. Interoperability scenarios should
also be included in vendor and algorithm competitions,
such as in the Minutiae Interoperability Exchange Test
- MINEX [8]. The MINEX evaluation is intended to
assess the viability of the INCITS 378 templates as the
interchange medium for fingerprint data. The MINEX
evaluation reported different trials using two variants
of the INCITS-378 format implemented by 14 vendors.

2http://m1.incits.org/
3www.jtc1.org

Proprietary minutiae-based templates were also included in
the evaluation. A number of interesting conclusions were
extracted from this evaluation: i) proprietary templates
always perform better than standard ones; ii) some
template generators produce standard templates that are
matched more accurately than others and some matchers
compare more accurately than others, but the leading vendors
in generation are not always the leaders in matching and
vice-versa; and iii) performance is sensitive to the quality of
the dataset, both in proprietary and standard templates.

III. FUSION OF SENSORS

Multibiometric systems refer to biometric systems based
on the combination of a number of instances, sensors, rep-
resentations, units and/or traits [12]. Several approaches for
combining the information provided by these sources have
been proposed in the literature [13], [14]. However, fusion
of data from different sensors has not been extensively an-
alyzed. Chang et al. [15] studied the effect of combining
2D and 3D images acquired with two different cameras for
face recognition. Marcialis et al. [6] reported experiments on
fusing the information provided by two different fingerprint
sensors. Alonso et al. [10] studied the effect of combining the
signatures acquired with two different Tablet PCs. Fusion of
sensors offers some important potentialities [6]: i) the overall
performance can be improved substantially, ii) population cov-
erage can be improved by reducing enrollment and verification
failures and iii) it may discourage fraudulent attempts to spoof
biometric systems, since deceiving a multisensor system by
submitting fake fingers would require different kinds of fake
fingers for each sensor. But there are some drawbacks as
well: the cost of the system may be higher and more user
cooperation is needed.

IV. EXPERIMENTS

A. Fingerprint matchers

In the experiments reported in this paper, we use both the
minutiae-based NIST Fingerprint Image Software 2 (NFIS2)
[16] and the ridge-based fingerprint matcher [17] developed
in the Biometrics Research Lab. at Universidad Autonoma de
Madrid, Spain.

For minutiae extraction with NFIS2, we have used the
MINDTCT package, sketched in Fig. 1. For fingerprint match-
ing, we have used the BOZORTH3 package, which computes
a similarity matching score sm between the minutiae from
a template and a test fingerprint. We normalize sm into the
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Fig. 4. Fingerprint samples of two different users of the database. Fingerprint images are plotted for the same finger for i) Atmel thermal (left), ii) Digital
Persona optical (upper right) and iii) Polaroid optical (lower right).

[0, 1] range by tanh(sm/cm), where cm is a normalization
parameter chosen heuristically to evenly distribute the impostor
and score distributions into [0, 1]. For detailed information
of MINDTCT and BOZORTH3, we refer the reader to [16].
We have also used the automatic quality assessment software
included in the NIST Fingerprint Image Software 2 [16], [18].
This software computes the quality of a given fingerprint
based on the minutiae extracted by the MINDTCT package.
A fingerprint is assigned one of the following quality values:
5 (poor), 4 (fair), 3 (good), 2 (very good) and 1 (excellent).

The ridge-based matcher uses a set of Gabor filters to
capture the ridge strength as described in [2]. The variance
of the filter responses in square cells across filtered images is
used as feature vector. This feature vector is called FingerCode
because of the similarity to previous research works [2]. The
automatic alignment is based on the system described in [19].
A dissimilarity matching score sr is then computed as the
Euclidean distance between the two aligned FingerCodes. No
image enhancement is explicitly performed, but it is implicitly
done during the Gabor filtering stage since Gabor filters are
known to be appropriate to remove the noise and preserve true
ridge/valley structures [20]. The output score sr is normalized
into a similarity score in the [0, 1] range by exp(−sr/cr),

where cr is a normalization parameter chosen heuristically
to evenly distribute the impostor and score distributions into
[0, 1]. The processing steps of the ridge based verification
system are shown in Fig. 2.

In this paper we focus on fingerprint verification using these
matchers. The system architecture of a fingerprint verification
application is depicted in Fig. 3.

B. Database and protocol

A fingerprint database has been acquired at the University
of Twente using three different sensors: i) Atmel (sweeping
thermal), with an image size of 360 × 800 pixels; ii) Digital
Persona UareU (optical), with an image size of 500 × 550
pixels; and iii) Polaroid (optical), with an image size of
300 × 302 pixels. From now on, they will be referred to
as sensor1 (Atmel Sweep), sensor2 (Digital Persona) and
sensor3 (Polaroid). For our experiments, we have used a
subcorpus of 100 fingers. For each finger, 12 impressions with
each sensor have been acquired, resulting in three datasets of
1200 fingerprint images each (one dataset per sensor). Some
example fingerprints from this database are shown in Fig. 4.
We consider the different fingers as different users enrolled
into the system. The following comparisons are performed



for each fingerprint matcher and for each sensor: i) genuine
matchings: each fingerprint image is considered as an enroll-
ment fingerprint which is compared to the remaining images
of the same finger, avoiding symmetric matches, resulting in
100 × 12 × 11/2 = 6, 600 genuine scores per matcher and
per sensor; and ii) impostor matchings: the second fingerprint
image of each finger is compared with three images of the
remaining fingers, resulting in 100×99×3 = 29, 700 impostor
scores per matcher and per sensor.

C. Results

In Fig. 5 we can see the quality distribution of the datasets
used for the experiments provided by the NFIS2 software (see
Sect. IV-A). The NFIS2 software uses the extracted minutiae
to compute the quality of a given fingerprint [16], [18]. We
observe that the dataset acquired with the thermal sweeping
sensor has better quality than the datasets acquired with
the two optical sensors, although it is known that sweeping
sensors have to reconstruct the fingerprint image from slices,
which usually results in spurious artifacts [21].
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Fig. 5. Quality distribution of the datasets used for the experiments provided
by the NFIS2 software.

Individual sensors. In Fig. 6 we plot the verification per-
formance of the two matchers on the three different datasets
according to the experimental protocol defined in Sect. IV-
B. We observe that the minutiae-based matcher performs
better than the ridge-based matcher. It is known that minutiae
are more discriminative than other fingerprint features [21].
Interestingly, the performance on sensor 1 (thermal sweeping)
is better than the performance on sensor 2 (optical) for the
minutiae-based matcher, although sweeping sensors may result
in errors and spurious artifacts (due to the reconstruction
process that they perform) [21].

Also worth noting, the minutiae-based matcher results
in the best performance on the sensor3 (Polaroid optical),
whereas the ridge-based matcher performs best on the
sensor1 (Atmel thermal). Due to the acquisition process of

a sweeping sensor, there is practically no rotation [21]. Since
the alignment performed in our ridge-based matcher only
accounts for translation [19], this should be the reason of the
improved performance observed with respect to the optical
sensors.
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Fig. 6. Verification performance of the two matchers.

Sensor Interoperability Experiments. We study the effects of
sensor interoperability by following the experimental protocol
of Sect. IV-B for the individual sensors but considering differ-
ent sensors for enrolment and testing. Verification performance
results are given in Table I. It can be observed that when
matching images from different sensors, the performance drops
dramatically for both the minutiae- and ridge-based matchers.
The best performance is obtained when matching images from
sensors of the same technology (i.e. sensor2 and sensor3).
However, in all cases the performance is insufficient for
practical applications (EER higher than 40%).

To evaluate the effects of the fingerprint quality in the
interoperability of sensors, we have next considered only users
with medium to high quality genuine fingerprint samples (i.e.
quality label of 3, 2 or 1, according to the labeling assessed
by the NFIS2 software, see Sect. IV-A), as in the MINEX
evaluation [8]. Verification performance results considering
only images of good quality are given in Table II. Also in
this case, the performance dramatically decreases for both
matchers. In our experiments, we observe that image quality
does not play a primary role in the drop of performance
found when matching images from different sensors, both in
the minutiae- and the ridge-based matcher.

Sensor Fusion Experiments. We compare fusion of different
sensors with fusion of different instances of each sensor, in



testing
EER % s1 (thermal) s2 (optical) s3 (optical)

enrolm. minut. ridge minut. ridge minut. ridge
s1 8.76% 15.46% 47.71% 55.19% 45.61% 54.05%
s2 47.66% 50.89% 9.44% 18.03% 40.55% 43.65%
s3 44.61% 52.07% 39.26% 46.53% 6.34% 21.85%

TABLE I

ERROR RATES OF THE INDIVIDUAL MATCHERS (MINUTIAE- AND

RIDGE-BASED) IN TERMS OF EER FOR THE EXPERIMENTS EVALUATING

INTEROPERABILITY OF SENSORS. s1, s2 AND s3 STAND FOR sensor1

(THERMAL), sensor2 (OPTICAL) AND sensor3 (OPTICAL), RESPECTIVELY.

testing
EER % s1 (thermal) s2 (optical) s3 (optical)

enrolm. minut. ridge minut. ridge minut. ridge
s1 6.25% 15.62% 54.47% 61.89% 47.35% 57.99%
s2 47.95% 56.93% 3.99% 17.05% 37.58% 47.59%
s3 43.66% 59.18% 37.35% 50.11% 2.86% 22.63%

TABLE II

ERROR RATES OF THE INDIVIDUAL MATCHERS (MINUTIAE- AND

RIDGE-BASED) IN TERMS OF EER FOR THE EXPERIMENTS EVALUATING

INTEROPERABILITY OF SENSORS CONSIDERING ONLY GOOD QUALITY

IMAGES. s1, s2 AND s3 STAND FOR sensor1 (THERMAL), sensor2 (OPTICAL)

AND sensor3 (OPTICAL), RESPECTIVELY.

order to reveal the real benefits of considering information
provided from different sensors [10], [14]. In this work we
have used a simple fusion approach at match-score level based
on the mean rule. The use of this simple fusion rule is
motivated by the fact that complex trained fusion approaches
do not clearly outperform simple fusion approaches, e.g. see
[3].

For the fusion experiments, we have considered all the avail-
able scores resulting from the experimental protocol defined
in Sect. IV-B. To perform the fusion of different instances
from the same sensor, we make groups of consecutive scores
having the same fingerprint for enrolment. This results in 3,000
genuine scores and 9,900 impostor scores when fusing two
instances; and 1,800 genuine scores and 9,900 impostor scores
when fusing three instances from the same sensor. To perform
the fusion of different sensors, we fuse all the available scores
from each sensor, resulting in 6,600 genuine scores and 29,700
impostor scores.

Verification performance results are given in Table III. We
observe that fusing scores from different sensors is better
than fusing different instances from the same sensor, for
both matchers. This reveals that the complementarity between
different sensors provides capability to recover fingerprints
wrongly recognized by the individual sensors [6]. This behav-
ior has been also observed in other biometric traits [10]. More-
over, the best EER value and the best relative improvement
is obtained in most cases when fusing scores from sensors
with different technology, i.e. sensor1 (thermal) with sensor2
or sensor3 (both optical), revealing another complementarity

minutiae-based ridge-based

s1 8.76% 15.46%
Individual s2 9.44% 18.03%

s3 6.34% 21.85%

s1-s1 6.12% (-30.14%) 13.33% (-13.78%)
Multi-instance s2-s2 6.85% (-27.44%) 15.04% (-16.58%)

s3-s3 4.52% (-28.71%) 17.67% (-19.13%)
s1-s2 3.26% (-62.79%) 10.14% (-34.41%)

Multi-sensor s1-s3 2.75% (-56.62%) 13.08% (-15.46%)
s2-s3 3.71% (-41.48%) 14.72% (-18.36%)

s1-s1-s1 5.02% (-42.69%) 12.56% (-18.76%)
Multi-instance s2-s2-s2 5.64% (-40.25%) 13.63% (-24.40%)

s3-s3-s3 3.94% (-37.85%) 17.66% (-19.17%)
Multi-sensor s1-s2-s3 1.93% (-69.56%) 9.53% (-38.36%)

TABLE III

ERROR RATES OF THE INDIVIDUAL MATCHERS TESTED (MINUTIAE- AND

RIDGE-BASED) IN TERMS OF EER FOR THE EXPERIMENTS EVALUATING

FUSION OF SENSORS. s1, s2 AND s3 STAND FOR sensor1 (THERMAL),

sensor2 (OPTICAL) AND sensor3 (OPTICAL), RESPECTIVELY. THE

RELATIVE PERFORMANCE GAIN COMPARED TO THE BEST INDIVIDUAL

MATCHER INVOLVED IS ALSO GIVEN.

,

based on the technology. Also worth noting, the minutiae-
based matcher obtains higher relative EER improvements than
the ridge-based matcher in all cases.

V. CONCLUSIONS

Sensor interoperability and sensor fusion have been studied
using a minutiae- and a ridge-based fingerprint matchers.
Experiments are reported using a database acquired with three
different fingerprint sensors, one with sweeping thermal and
two with optical technology. We have also used an automatic
quality assessment software which computes the quality of a
given fingerprint based on their extracted minutiae. We have
observed that the overall quality of the dataset acquired with
the thermal sweeping sensor is higher than the quality of the
datasets acquired with the two optical sensors, although it
is known that sweeping sensors usually produces errors and
spurious artifacts due to its acquisition process [21].

The minutiae- matcher performs better than the ridge-
based matcher for all the datasets. Sensor interoperability
experiments show that when matching images from different
sensors, the performance drops dramatically for both matchers.
This problem outlines the importance of system development
and benchmarking using different and heterogeneous data.

Regarding sensor fusion, we have observed for both match-
ers that fusing scores from different sensors results in better
performance than fusing different instances from the same
sensor, revealing the complementarity between different sen-
sors. Moreover, the best relative improvement is obtained when
fusing scores from sensors with different technology, revealing
another source of complementarity. Also worth noting, the
highest relative improvements are always obtained with the
minutiae-based matcher. This should be because minutiae-
based matchers are strongly dependent on image morphology
and quality thus more complementarity information is provided
by different sensors.



ACKNOWLEDGMENTS

This work has been supported by BioSecure NoE and the
TIC2003-08382-C05-01 project of the Spanish Ministry of
Science and Technology. F. A.-F. and J. F.-A. are supported
by a FPI scholarship from Comunidad de Madrid. Authors
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