
HAL Id: inria-00294750
https://inria.hal.science/inria-00294750

Submitted on 10 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Achievable safety of driverless ground vehicles
Rodrigo Benenson, Thierry Fraichard, Michel Null Parent

To cite this version:
Rodrigo Benenson, Thierry Fraichard, Michel Null Parent. Achievable safety of driverless ground
vehicles. 10th IEEE International Conference on Control, Automation, Robotics and Vision, Dec
2008, Hanoi, Vietnam. �inria-00294750�

https://inria.hal.science/inria-00294750
https://hal.archives-ouvertes.fr


Achievable safety of driverless ground vehicles
Rodrigo Benenson

INRIA Rocquencourt / Mines Paris
78153 Le Chesnay Cedex, France

rodrigo.benenson@inria.fr

Thierry Fraichard
INRIA Rhônes-Alpes

38334 St Ismier Cedex, France
thierry.fraichard@inria.fr

Michel Parent
INRIA Rocquencourt

78153 Le Chesnay Cedex, France
michel.parent@inria.fr

Abstract—Safety is an important issue of driverless car. Yet,
most current approaches fail to ensure safety even in a fully
informed situation. In this paper we discuss how the safety
criteria apply when the robot uses its on board sensors to evolve
in a environment populated with static and moving obstacles. The
sensors can only provide a partial and uncertain knowledge of
the surroundings. We show that the usual safety notion does not
apply for this relevant case and discuss which safety guarantees
can be given and how to achieve them.

I. I NTRODUCTION

Driverless cars are an interesting robotics application. From
a robotics perspective the main objective is to provide the robot
car the capabilities to move alone from a point A to a point B
in the city. Ensuring safety while moving the vehicle in a city
is the core issue to be solved. Since most robot systems evolve
in uninhabited areas or in highly controlled environments this
issue appears as a novel problem to be addressed.

The problem of piloting in the city can be split in two:
route planning and trajectory planning. Route planning worries
about defining a route between points an A and B. Trajectory
planning defines the precise motion allowing to traverse the
sequence of streets defined by the route planner. Considering
the wide variety of automotive navigation systems available
in the market the problem of route planning (and re-planning)
for a single vehicle can be considered solved1. This paper
is concerned with the safety of trajectory planning in an
environment such as populated cities.

Previous works discussed the need for a wide and de-
pendable sensory coverage of the surroundings of the vehicle
in order to provide enough information to avoid collisions
[20], [19]. In [17], [22] the required detection ranges for
typical roads manoeuvres are discussed (u-turns, overtakes,
intersection crossing). Finally works like [9], [11], [3] pro-
poses different approaches integrating perception, planning
and control for driverless vehicles in urban environment.

In this paper we argue that most of existing works does
not provide adequate safety guarantees for a driverless ground
vehicle evolving in environments such as a city. We will show
that the usual notion of safety based on inevitable collision
states does not apply when the vehicle plans based on its
sensors input. We argue that in such relevant case it is only

1Deciding the route for a large group of vehicles consideringthe current
road network status and the probable futures still being an interesting open
problem.

possible to guarantee that the robot will not harm by action,
we can not guarantee to be harmless through inaction.

In section II we provide a definition of safety and the criteria
required to evaluate if an approach is safe or not. Section III
defines the notions of uncertain and incomplete world model.
Section IV explains the effect of uncertainty on safe planning
and how to manage it. In section V we analyze the safety of a
vehicle planning with an incomplete view of the world. Section
VII discusses the effects of extra sensorial data on the safety
guarantees. Finally section VIII offers some conclusions.

II. SAFETY

Mobiles robots, and especially driverless ground vehicles,
are capable of harming them self and they surrounding en-
vironment (pedestrians, animals, other vehicles, the streets
infrastructure, etc...). Motion safety relates on how to mitigate
and, if possible, avoid harmful contact with the environment.

Definition 1: (Safe motion)A robot is said to be safe if it
can be guaranteed that its motion will not harm himself or its
surroundings.
For ground vehicles such harm can be created in three different
ways:

• Traversing unfit terrain at inadequate speeds can harm the
vehicle itself (running into water, holes, curbs, uneven or
too inclined ground, etc...),

• Colliding with objects over the ground surface (pedes-
trians, animals, other vehicles, walls, poles, trash can,
etc...),

• Pushing the vehicle out of its range of dynamic stability
(overturn).

In any case harm will raise from setting the vehicle in the
wrong state (position, speed, etc...) at a given time. In order
to avoid harm we need to define the state of the vehicle in
time.

Definition 2: (Vehicle motion planning problem) Given
an initial state x(t0), a measure of distanced to a desired
stateg and a world modelw, define a feasible sequence of
states in time that will generate a safe motion towards the
desired state.
The vehicle motion planning problem is an optimization
problem with constraints. In our application the goalg will
change in time, following a sequence of inflexion points of
the roads defined during route planning. Theworld modelis
a representation of the world built from input data available
to the robot (sensors, a priori information, communications,



etc...). Since the planning relates to defining future states of
the vehicle, the world model needs to provide information
about the future state of the world. A sequence of states in
time is named atrajectory. A trajectory is saidfeasibleif it
exists a sequence of commands that allows the robot to reach
such states in time.

The safety of the motion does not only depends on the
defined trajectory, but also on how the world model is built
and used, and how the vehicle executes in the real world this
trajectory. The safe motion of the robot is a propriety of the
perception-planning-control trio.

A. Safety criteria

In order to analyze the safety of robotic systems three
criteria have been proposed [6]:

1) Considering the motion of the robot
2) Considering the motion of the surrounding environment
3) Considering an infinite time horizon

The first criterion indicates that the limitation of the robot
motion needs to be considered in the motion planning (max-
imum acceleration/deceleration, maximum speed, adherence
constraints, etc...).

The second criterion indicates that the presence of moving
and static obstacles around the vehicle has to be taken into
account. The future position of surrounding objects needs to
be considered in order to predict the free space available.

The last criterion indicates that, since the relative motion
of the robot cannot be changed arbitrarily (first two criteria)
at any point in the time the vehicle could be in course to an
inevitable collision. Without any particular assumption on the
real world checking collisions over a finite time horizon can
not guarantee that the robot is not in such inevitable collision
state [7]. It should be noted however that in many scenarios it
is possible to define a finite set of verifications (computations)
that will guarantee harmless behavior over an infinite time
horizon [1], [12], [2].

When evolving in a environment populated by static and
moving obstacles all of the traditional approaches to robot
motion (nearest diagram, dynamic windows, velocity obsta-
cles) fail to respect such criteria, and thus, fail to ensure
harmless motion [6]. This occurs even when supposing a
perfect knowledge of the present and future of the world.

As an example we can analyze the system proposed in [8].
They suppose that the world model built with they sensors
is complete and that it correctly classify static obstaclesand
pedestrian. With each new sensor measurement the world
model is updated and the vehicle updates its planned tra-
jectory. The trajectory is generated from a set of predefined
kinodynamically feasible control commands sequences. For
each element of this set the collision with the world model is
checked and a distance between the final state and the desired
future state is measured. Trajectories leading to collision are
disregarded and the sequence of commands leading nearest to
the desired state (the goal) is selected. While announced asan
approach for “secure driving in dynamic environments”, this
method fails to consider the future motion of the pedestrians

and provide no guarantee that in the next iteration at least one
trajectory free of collision exists. Since it can not guarantee
that no collision will occur, it fails to respect definition 1and
should be considered as non safe.

III. B UILDING A WORLD MODEL FROM SENSORS

In order to solve the robot motion problem (see definition
2) we need to be able to evaluate two values. Let bex(t) the
state of the vehicle. Thend(g(t), x(t)) is the distance between
the current state and the desired goalg(t). This distance
measure is used by the motion planner to search trajectories
reaching the goal. The second valueh(x(t), w(t)) ∈ [0, 1]
evaluates the harm caused by setting the vehicle in the state
x(t) given a prediction of the world state at timet. The notion
of harm and its mapping to the functionh(x(t), w(t)) are
highly application dependent, for instance passing over a car
may be fatal for a car, but harmless for a tank. This second
value allows the motion planner to search for safe trajectories.

Based on the definition 1 we expect to
be able to guarantee for a planned trajectory
π = { (x(t1), t1), (x(t2), t2), . . . , (x(∞),∞) } that
h(x(ti), w(ti)) = 0 ∀(x(ti), ti) ∈ π.

Definition 3: (Traversable space in time)A point p in
space is considered traversable at timet if for any vehicle
statex(t) that covers the pointp the harm valueh(x(t), w(t))
is zero.
Thus, one of the main concerns of a perception module, is
estimating and predicting the traversable space in time.

An usual notion used when concerned on safe trajectory
planning is the concept ofinevitable collisions state(ICS).

Definition 4: (Inevitable collision state)A state is consid-
ered in inevitable collision if all trajectories resultingfrom
the application of any the possible commands sequence to this
state, lead to a collision.

In our case, since we are also concerned on the good of
the vehicle itself, we will should speak if “inevitable damage
state”. We will loosely use both terms as exchangeable.
Strictly, we are concerned on avoiding reaching states where
h(x(t), w(t)) 6= 0 (which, depending on the application, may
include more that just collision states). In order to ensure
safety the trajectory planner should, at least, only produce
trajectories are free of inevitable damage states.

A. Incompleteness

When using on board sensors the robot is fundamentally
limited to access only an incomplete and uncertain represen-
tation of the world. This means that some surrounding areas
will be left unobserved (due to sensing range or occlusions,
see figure 1), that the relative position of obstacles will benot
necessarily known with precision (distribution of probability
of collision over the space) and that the uncertainty in the
prediction of future positions of moving obstacles will grow
monotonously (since we do not know they future state).
Beyond a certain point in the future nothing can be told about
the traversable space.



Figure 1. Illustration of observed and unobserved areas

Definition 5: (Incomplete world model) A world modelw
is considered incomplete ifh(x(t), w(t)) is not defined for
every possible pair(t, x(t)).
Sinceh is not defined everywhere, an incomplete world model
can lead to incomplete or suboptimal plans.

B. Uncertainty

Sensors are corrupted by noise, thus relative distance mea-
sures to static obstacles will be uncertain. Also the state esti-
mate of moving obstacles will be noisy. Even if a deterministic
model existed for the moving obstacles, the initial uncertainty
in the current state estimate will propagate in time. In many
applications stochastic models are used to predict the motion
of moving obstacles (e.g. motion of pedestrians or drivers)and
thus position uncertainty grows in time. In an uncertain world
model the traversability of a pointp at an instantt becomes
a probability value.

Definition 6: (Uncertain world model) A world modelw
is considered uncertain whenh(x(t), w(t)) is not available
but the probability distributionP (h(x(t), w(t))) is.

IV. U NCERTAIN WORLD

Let us suppose by now that we have access to a complete but
uncertain world model. As previously mentioned, this means
that a given vehicle state in time is associated to a probability
distribution of the harm valueP (h(x(t), w(t))). Since we seek
for harmless motion (whereh(x(t), w(t)) = 0) we are in
particular interested in the valueP (h(x(t), w(t)) = 0).

If any moving obstacle exists in the world it future position
uncertainty will grow monotonously in time. Supposing that
the moving obstacles have a reachable space that cover ours
(think of pedestrian and human drivers), some point in the
future the whole world model will become uninformative:
any traversable area may have become non traversable. What
senses does it makes then to verify that no collision will occur
up to infinity? Can we define an inevitable collision state in
an uncertain world?

A. Cost function

An usual approach to safety consist on including it as
part of a cost function over the possible trajectories. On an

Figure 2. Predicting non traversable space in time. The region below the
plane was observed, the region on top is predicted

uncertain world model one could define such cost component
using the integral of the vehicle trajectory over the probability
distribution (in a spirit similar to [16]), as described in the
equation 1.

safety_cost =
∑

(x(ti),ti)∈π

(P (h(x(ti), w(ti)) = 0) − 0.5)

(1)
Since defining a collision free trajectory up to infinity does

not make sense, let us search for the trajectory to infinity
with the lowest probability of collision. This approach is not
suitable for multiple reasons. First we should remember that
the primary aim of planning is reaching a specific point. The
cost function will trade off collision risk with getting nearer
to the goal, which undesirable if ensuring safety is a must. On
the other hand, if collision risk has a very important height
compared to reaching the goal, then generated trajectorieswill
be unsatisfactory. When observing an empty area the safest
trajectory is to stop as soon as possible. Using directly thecost
function neither provides satisfactory safety nor satisfactory
trajectories to reach the goal.

B. Probability threshold

In order to provide guarantees on safety, the probability
distribution needs to be thresholded in order to define a binary
function over space time (in a spirit similar to [23], for
instance). Doing so is equivalent to providing a conservative
estimation of the traversable space (see figure 2). We want
to ensure that if some area in space time is predicted as
traversable, it will be such in reality. By thresholding we
ensure that the vehicle will always evolve in areas were a
collision is considered highly unlikely and that the areas where
a collision could occur will be left unvisited.

Definition 7: (Conservative world model)A world model
w′ is considered a conservative approximation ofw if and
only if h(x(t), w′(t)) = 0 ⇒ h(x(t), w(t)) = 0 ∀x(t)∀t.
ThresholdingP (h(x(t), w(t)) = 0) allows to convert an
uncertain world model into a certain world model by using



the functionh′ described in equation 2.

h′(h((x(t), w(t))) = h(x(t), w′(t)) =
{

0, if P (h(x(t), w(t)) = 0) < pthreshold,

argmax P (h(x(t), w(t))), otherwise.
(2)

We expecth′ (and thus, the selected threshold) to provide
a conservative approximation of the real world (inaccessible
through sensors).

When using a threshold over an incomplete and uncertain
world model, it is likely that, over time, the predicted world
collapses into a completely non traversable area. In this context
the notion of inevitable collision states does not apply. This
issue will be discussed in section V.

V. I NCOMPLETE WORLD

Since the robot knows only a fraction of the world it is
probable that it has not enough information to define a single
definitive plan from its current state to the goal. Even if it
did, as new information is acquired a better plan could be
generated. This leads to the notion ofpartial motion planning
[15], [14]. The denomination “partial” indicates that, unlike
the usual approaches, the plan does not reach the goal (but,
hopefully, leads towards it). Using a best effort approach the
robot initially computes a partial plan to reach the goal. Asthe
robots moves a new plan is computed to extend or enhance
the previous one.

The criteria mentioned in section II imply that while the
plan may be “partial” in the space dimension, it needs to be
collision free over an infinite time horizon. To do so it is only
necessary to ensure that every state of the plan is collisionfree
and that the last state of the partial plan is not an inevitable
collision state [13]. Verifying if a planned state will generate
or not an inevitable collision is not a trivial problem, since we
need to do verification over an infinite time horizon.

A. Static world

When the robot evolves in a static environment using a set
of stop trajectories will provide safety, since we know that
the vehicle will be able to stop before colliding and then
no collision can occur (see figures 3 and 4). For this case,
computing over a finite time horizon provides a guarantee over
an infinite time horizon. Considering that a wall could appear
at the frontier of the observed space, safety in an incomplete
world is guaranteed if the unobserved space is considered as
non traversable [1].

Swerving: Instead of stopping [21] proposed swerving
the expected static obstacles, thus allowing higher speedswith
the same sensors range. This approach makes strong assump-
tions on the maximum size and density of static obstacles, thus
it is not suitable for highway or city like environments since
the presence of a traffic jam (total road blockage) on a single
direction road would generate a collision.

Figure 3. Trajectories resulting from some stopping commands for a vehicle.
Dots are equidistant in time

B. Dynamic world

When the environment may include moving objects using
stopping commands can not, by itself, ensure avoiding colli-
sions.

Imitating manoeuvres:Ideally one would desire to have
access to the present and future position of all the surrounding
obstacles. When such information is available the notion of
“imitating manoeuvre” has been proposed as a collision free
trajectory over an infinite time [12]. However this approach
is brittle since imitating a single moving obstacle could lead
to colliding with another obstacle, and thus is not desirable in
cluttered environments with arbitrary obstacles motions.

Finite time horizon: Knowing the motion from now
to infinity of all the moving obstacles does not provide by
itself a tractable way of detecting inevitable collisions states.
Even if the vehicle can stop without having a collision with
any moving or static obstacle, nothing prevents that a few
seconds later a moving obstacle collide with the stopped
vehicle. Defining a time horizon beyond which the vehicle
is guaranteed to be collision free is an open problem in the
general case. If it is possible to define a timetl in the future
beyond which no moving obstacle will approach the stopped
vehicle, then verifying a collision of the stopping trajectory
until the vehicle stops and beyondtl is enough to ensure
safety. This is approach used by [2] where it is supposed that
the world is only populated by static obstacles and driverless
vehicles, and the partial plan of every vehicle is perfectly
known. At each re-planning step the trajectories of every
vehicle are verified to be collision free with the previously
planned ones and the re-planned ones. Since both the previous
and the new partial plans finish with the vehicles stopped, it
is possible to guarantee that the system is safe.

Best effort:Unless proof of the contrary an moving obsta-
cles may be present at the frontier of the observed space. If we
only have a partial knowledge of the surrounding environment
a conservative world model needs to suppose the presence
of moving obstacles at the frontiers of the unobserved area.
Without information about the non observed moving obstacle
we can not compute an avoidance trajectory. The best effort
consists then in ensuring that the vehicle is able to stop without
colliding. By itself, this does not ensure avoiding collisions, a
moving obstacle could collide the vehicle immediately after it



stops. Using stopping commands in this case can ensure that
we will not harm by action, but only by inaction (“car on a
railroad” scenario). This is the approach used in [13], [4].

In this approach we need to make assumptions about the
moving objects that will appear, we need a model. This model
predicts the possible (not the likely) presence of obstacles in
time. The simplest possible model consist on “any obstacle,
anywhere, in any direction” but with a bounded maximum
speed. Depending on the specific application the model can
become arbitrarily complex. For instance, in an urban scenario
it could be reasonable to consider that no vehicle drives against
the defined circulation directions. Doing so limits the possible
appearance of moving obstacles and thus allows for planning
higher speeds within the incomplete world model.

Theorem 1:If every moving obstacle uses a conservative
world model and plans to stops before entering in a harmful
state then no collision would occur and the overall system can
be considered safe (see figure 4).

Proof: Let a and b be sensing moving objects. Both
objects have a conservative world model with respect to the
real world. The policy indicates that, since the world models
are conservative, as soon asa detectsb it has a trajectory
allowing it to stop without collidingb or any other object.
Conversely as soon asb detectsa it already has a trajectory
allowing to stop without colliding. Botha and b can stop
without colliding, and the same applies to any couple of
moving objects in the world. By induction since every moving
object can stop without colliding, when one object is stopped,
it is guaranteed that no other object will collide it, and thus it
is a safe state over an infinite time horizon.

If we ensure that the vehicle is able to stop given the
possible appearance of an obstacle with a given maximum
speedvm and an obstacle appears coming faster than expected,
then the vehicle will not be able to stop before the collision.
Depending on the manoeuvrability of the vehicle, the clutter
of the scene and the speed of the re-planning algorithm the
vehicle may or may not be able to avoid the obstacles.The
safety guarantees are as good as the model(safety depends
not only on the planning algorithm but also on perception
and control modules). If the predicted traversable space isnot
available, the guarantees that the motion of the vehicle will be
harmless are lost.

VI. SAFE PLANNING

Based on the discussion of the previous sections we obtain
the following definition.

Definition 8: (Safe trajectory for driverless car) In an in-
complete and uncertain world model of a dynamic environment
a trajectory is considered safe if:

• Each state is collision free with respect to a conservative
prediction of the traversable space in time,

• The sequence of states respects the vehicle capabilities,
• Its last state has speed zero.

With the information available and without doing strong
assumptions on the non observed areas, this is approach will
ensure that no harm by action is done.

Please note that while the safe trajectory leads to stopping,
it does not mean that the vehicle will necessarily stop. As
the vehicle starts moving, the new sensors measurements will
extend its world model. This allows it to replace the current
trajectory (in execution) with a new safe trajectory. By doing
so repeatedly the vehicle will drive continuously towards the
goal and will not stop unless necessary (blocking obstacle).
When using this approach the vehicle will automatically
adapt its speed and behavior to the surrounding environment,
considering both the observed and unobserved space. It will
drive slowly in cluttered and uncertain situation, and faster on
unlittered certain environments.

A. Unexpected events

Whatever are the passive or active measures taken, in the
real world accidents will occur (e.g. “falling crane” scenario).
Even using a conservative approach unexpected events will
happen. As previously mentioned, if an area predicted as
traversable is discovered as non traversable the harmless
motion guarantee is lost. Maybe the vehicle will be able
to avoid the collision. If not, it is important to be able to
consider the cost of a collision. Crashing towards a trash can
creates less harm than crashing a wall. Crashing an animal is
better tolerated than crashing persons. If a collision becomes
inevitable, it is desirable that the robot does not treat each
possible smash equally.

This means that the perception system needs at least to
localize the vehicle with respect to the planning goal (for
planning) and to the plan currently in execution (for control
purposes), to estimate the traversable space in time and to
constantly monitor the cost of possible collisions.

When planning over a conservative world model, the plan-
ner expects that the robot will follow exactly the computed
trajectory. Failing to do so would nullify any safety guarantee.
This imply that the control module needs to provide a pre-
dictable bound on its tracking error. This bound is integrated
in the planning stage to ensure that the trajectory is safe even
with errors on the control. If the control unexpectedly fails
to respect the predicted bound leave the robot in a situation
equivalent to a violation of the conservative property of the
world model, and a collision may or may not occur.

B. Safe perception-planning-control

Most of the previous works in the field will fail to respect
the definition 8. For instance [23] proposed a planning method
in dynamic environments able to deal with an incomplete and
uncertain world model. However they do not take into account
the unobserved area of the environment (non conservative
estimation), and provide no guarantee that the vehicle will
not collide if their probabilistic re-planning method fails.

In [5] a perception-planning duo was proposed to move in an
incomplete and uncertain world model. The approach is similar
to the one described here. However they algorithm restrictsthe
movement of obstacle to constant speed vectors. Such approx-
imation is non conservative over the obstacles considered in



(a) stop in front of wall (b) stop in front of moving obstacle (c) both moving obstacles apply the
same safety logic

Figure 4. Multiple scenarios of two obstacles in one space dimension. Blue and red lines are obstacles in time

Figure 5. Example of safe planning in a perceived environment [4]

they work (cars intersection) and can be considered a violation
of the safety criteria and the definition 8.

A solution consistent with definition 8 was presented in [4].
In that work, it is explained how the vehicle can efficiently
estimate its movement, map static obstacles, detect and track
moving obstacles, plan safe trajectories and execute them.All
of it was integrated in a real world vehicle as a proof of
concept prototype. Figure 5 presents an example of the output
of the perception and planning of such algorithm.

More efficient and effective algorithms may be designed.
Application specific models may provide more information
about the future. Better sensors will provide larger observation
areas and less uncertainty, allowing higher speeds. However
we believe that safety can not be enhanced beyond the
discussed limits. Real world safety is bounded by how good
is the robot at estimating the possible futures.

VII. C OMPLEMENTED WORLD

In the previous section we discussed safe motion of a robot
using its on board sensors, a model of its sensor, a model
of itself and a model of the existing moving objects. For the
design of a mobile robot it is relevant to understand how other
sources of information may affect the safety. When the robot
completes the information observable from its point of view

with other sources, we say it estimates a “complemented world
model”.

A. Maps

There is the usual belief that high precision map will help
robots navigation. These maps are of little use when concerned
about safety. In populated environments such as the cities,if
an area was seen as traversable a few hours ago, little can
be said about if it is currently obstructed or not. Maps of the
static environment are not able to provide reliable information
of the future. Maps can be built to model the usual behavior
of moving objects in a region [25]. This information can then
be used to provide tighter predictions of the moving objects.
Using this maps is still a delicate issue. Being built from
observations it is hard to asses they completeness. Failingto
predict a possible path for an obstacle, will lead to violation
of the model and thus to a potential collision. Even worse,
in the city, the behavior of pedestrians (for instance) not only
depends on space but also on time (e.g. the Sunday street
market) making it less likely to have a complete and reliable
map of moving objects paths in space time.

B. Fixed path

A possible future for driverless vehicles in urban environ-
ment is the deployment of “immaterial tramways” [18], [24],
[10]. Restricting the movement of the vehicle to a fixed path
seems to be perceived by humans as a safer option.

In this configuration the planning is mainly concerned with
speed control, a reduced set of commands ease the planning
computation. However the needs for perception (building the
world model) still being the same (with respect to range
coverage or prediction capabilities). Knowing the path may
provide a thin enhancement in the localization computation
cost and in the collision cost estimate.

With a fixed path the exact same logic discussed on this
paper applies. The safety issue is not relevantly modified.

C. Traffic rules

The use of traffic rules between humans seems to be a
factor enhancing the safety on the roads. Supposing that
other vehicles respect the rules, constraint they possiblefuture



movements and thus it is useful information to predict the
traversable space. The use of traffic rules per se does not
enhance the safety (since it depends on other vehicles respect
of such rules), however it allows the vehicle to be less cautious
in some situations (e.g. not slowing down at an intersection,
because we have the priority).

D. Vehicle to vehicle communications

The use of vehicle to vehicle communication could enhance
the safety in multiple ways. First, more measurements of the
environment provides more information and thus probably
larger observed areas and less uncertainty. Second, when the
surrounding moving obstacles are driverless vehicles too,it
would be possible to obtain they current plans, thus providing
much tighter bounds than a naive worst case model [2].

If should be noted that the use of vehicle to vehicle
communications requires to solve a relative positioning prob-
lem between the communicating vehicles. How to solve this
problem in an unmodified city still being an open question.
Even if a reasonable solution is provided, the relative positions
will have a certain degree of uncertainty that will then be
propagated over the transmitted data, reducing the benefitsof
the exchange.

VIII. C ONCLUSION

Safety is a critical issue for driverless vehicles, howeverit
still being a fuzzy aspect in many proposals. All of the classic
planning methods are arguably unsafe. We reviewed the safety
issue and how the safety apply to an incomplete and uncertain
world model. While the usual notion of inevitable collision
state has proved useful for analysis, it does not apply when
the robot observes a dynamic world. We have shown that it
is possible to ensure that within the limits of the used world
model the vehicle will not actively harm. The final behavior
obtained by a robot following the suggested approach will be
as safe as humanly possible.
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