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Abstract—Safety is an important issue of driverless car. Yet, possible to guarantee that the robot will not harm by action,
most current approaches fail to ensure safety even in a fully we can not guarantee to be harmless through inaction.
informed situation. In this paper we discuss how the safety | gection Il we provide a definition of safety and the crieri
criteria apply when the robot uses its on board sensors to ele . . . .
in a environment populated with static and moving obstaclesThe reqylred to evqluate if an approach IS safe or not. Section Il
Sensors can 0n|y provide a partia| and uncertain know|edgefo deﬁnes the notions Of uncertain and |nC0mp|ete World mOdel.
the surroundings. We show that the usual safety notion doesat ~ Section IV explains the effect of uncertainty on safe plagni
apply for this relevant case and discuss which safety guardees and how to manage it. In section V we analyze the safety of a
can be given and how to achieve them. vehicle planning with an incomplete view of the world. Seanti

VII discusses the effects of extra sensorial data on theysafe

l. INTRODUCTION guarantees. Finally section VIII offers some conclusions.

Driverless cars are an interesting robotics applicatioarr 1. SAFETY
a robotics pergpgctwe the main objective is to_ prowdedm)_t Mobiles robots, and especially driverless ground vehjcles
car the capabilities to move alone from a point A to a point gr

in the citv. E . fetv whil g th hicle i i e capable of harming them self and they surrounding en-
In the city. Ensuring satety while moving the VEnICie In &/Clt, ;o jant (pedestrians, animals, other vehicles, theetstre
is the core issue to be solved. Since most robot systemseevi \ﬁ[f

: inhabited in hiahl trolled . his t rastructure, etc...). Motion safety relates on how tdigmaie
In uninhabited areas or in highly controfied environments and, if possible, avoid harmful contact with the environtnen
issue appears as a novel problem to be addressed.

oo : o Definition 1: (Safe motion) A robot is said to be safe if it
The problem of piloting in the city can be split in two:

s . . C can be guaranteed that its motion will not harm himself or its
route planning and trajectory planning. Route planningriesr surroundings.
about defining a route between points an A and B. Trajectopy 4round vehicles such harm can be created in three differe
planning defines the precise motion allowing to traverse tb\%ys:
sequence of streets defined by the route planner. Congiderin
the wide variety of automotive navigation systems avadabl
in the market the problem of route planning (and re-planning
for a single vehicle can be considered solvethis paper
is concerned with the safety of trajectory planning in an

environment such as populated cities.

« Traversing unfit terrain at inadequate speeds can harm the
vehicle itself (running into water, holes, curbs, uneven or
too inclined ground, etc...),

« Colliding with objects over the ground surface (pedes-
trians, animals, other vehicles, walls, poles, trash can,

. : _ etc...),
Previous works discussed the need for_a wide and o_le-. Pushing the vehicle out of its range of dynamic stability
pendable sensory coverage of the surroundings of the eehicl (overturn)

in order to provide enough information to avoid collision . . _ S
[20], [19]. In [17], [22] the required detection ranges fo n any case harm will raise from setting the vehicle in the

typical roads manoeuvres are discussed (u-turns, overtal%grong.zt?‘te (position, Zpteec(;, fe_tc...t)hat ? ?'Ve? ttr']me' Irr:_all)rd.
intersection crossing). Finally works like [9], [11], [3]re 0 avold harm we need fo define the state ot the venhicle in

: . . . . time.
poses different approaches integrating perception, pignn I ] . . . .
and control for driverless vehicles in urban environment. Definition 2: (Vehicle motion planning problem) Given

In this paper we argue that most of existing works dodD initial state x(t), a measure of distancé to a desired

. . s?ateg and a world modelw, define a feasible sequence of
not provide adequate safety guarantees for a driverlessmdro o : .
. L . . : states in time that will generate a safe motion towards the
vehicle evolving in environments such as a city. We will sho

.\gesired state.

that the usual notion of safety based on inevitable cohism]_ e vehicle motion olannina oroblem is an optimization
states does not apply when the vehicle plans based on ips P 9p P

X X o Oblem with constraints. In our application the ggalvill
sensors input. We argue that in such relevant case it is o I . . . :
cHange in time, following a sequence of inflexion points of
. _ _ the roads defined during route planning. Therld modelis
Deciding the route for a large group of vehicles considetimg current . f th Id built f . d bl
road network status and the probable futures still beingnéerésting open a representation of the wor uilt from input data ava

problem. to the robot (sensors, a priori information, communication



etc...). Since the planning relates to defining future staie and provide no guarantee that in the next iteration at lemet o
the vehicle, the world model needs to provide informatiotmajectory free of collision exists. Since it can not guaean
about the future state of the world. A sequence of statesthmt no collision will occur, it fails to respect definitionahd
time is named darajectory. A trajectory is saidfeasibleif it should be considered as non safe.
exists a sequence of commands that allows the robot to reach
such states in time. 1. BUILDING A WORLD MODEL FROM SENSORS

The safety of the motion does not only depends on the

, . . ..~ In order to solve the robot motion problem (see definition
defined trajectory, but also on how the world model is bu%e P (

we need to be able to evaluate two values. Let:fg the

Ate of the vehicle. Thed(g(t), z(t)) is the distance between
fhe current state and the desired gaed@t). This distance
measure is used by the motion planner to search trajectories
A. Safety criteria reaching the goal. The second valuér(t), w(t)) € [0,1]

In order to analyze the safety of robotic systems thr&yaluates the harm caused by setting the vehicle in the state
criteria have been proposed [6]: x(t) given a prediction of the world state at timeThe notion

1) Considering the motion of the robot of harm and its mapping to the function(z(t),w(t)) are

2) Considering the motion of the surrounding environmerrffghly application dependent, for instance passing ovedra ¢
3) Considering an infinite time horizon may be fatal for a car, but harmless for a tank. This second

The first criterion indicates that the limitati ¢ the rob value allows the motion planner to search for safe trajéztor
e first criterion indicates that the limitation of the rébo 5 v 0 the definition 1 we expect  to

motion needs o be con5|der_ed n the_ motion planning (maﬁ(e able to guarantee for a planned trajectory
imum acceleration/deceleration, maximum speed, adherenc
; T = {(@t).h), @t2).t2), ..., (z(0c),00)} that
constraints, etc...). -
M .. h x(ti),w(ti)) =0 V(I(tz), ti) cm.
The second criterion indicates that the presence of movin - . L . .
: . . “Definition 3: (Traversable space in time)A point p in
and static obstacles around the vehicle has to be taken intg = . . L .
o . . pace is considered traversable at timéf for any vehicle
account. The future position of surrounding objects needsstatex(t) that covers the poin the harm valugh(z(t), w(t))
be considered in order to predict the free space available. P ’

RN . . " is zero.
The last criterion indicates that, since the relative rm)tl(ll_huS one of the main concerns of a percention module. is
of the robot cannot be changed arbitrarily (first two cragri ' P P '

at any point in the time the vehicle could be in course to aenstlmatmg and predlctmg the traversable space in t|me_.
An usual notion used when concerned on safe trajectory

inevitable collision. Without any particular assumptiom the T L .
yp P Rlannlng is the concept ahevitable collisions stat€ICS).

real world checking collisions over a finite time horizon cal o ) . o : .
not guarantee that the robot is not in such inevitable cotiis Def|n|t_|on 4 (Inewtaplg C9II|S|0n sFate)A state Is .c0n5|d-
state [7]. It should be noted however that in many scenarioEfed in .|ne\_/|table collision if gll trajectories resultinfom _
is possible to define a finite set of verifications (computegt)o the application of any the possible commands sequencesto thi

that will guarantee harmless behavior over an infinite timate, lead to a C_OH'S'On'
horizon [1], [12], [2]. In our case, since we are also concerned on the good of

When evolving in a environment populated by static arige vehicle its_elf, we will should speak if “inevitable dagea
moving obstacles all of the traditional approaches to robgfete’- We will loosely use both terms as exchangeable.
motion (nearest diagram, dynamic windows, velocity obst2trictly, we are concgrned on aqumg reachlng states avher
cles) fail to respect such criteria, and thus, fail to ensuf(t), w(t)) # 0 (which, depending on the application, may
harmless motion [6]. This occurs even when supposing”?fIUde more _that just collision states). In order to ensure
perfect knowledge of the present and future of the world. S&fety the trajectory planner should, at least, only preduc

As an example we can analyze the system proposed in [gg]';}jectorles are free of inevitable damage states.

They suppose that the world model built with they sensors
is complete and that it correctly classify static obstaced A.
pedestrian. With each new sensor measurement the worldVhen using on board sensors the robot is fundamentally
model is updated and the vehicle updates its planned thanited to access only an incomplete and uncertain represen
jectory. The trajectory is generated from a set of predefingation of the world. This means that some surrounding areas
kinodynamically feasible control commands sequences. Raill be left unobserved (due to sensing range or occlusions,
each element of this set the collision with the world model see figure 1), that the relative position of obstacles wilhbée
checked and a distance between the final state and the desireckssarily known with precision (distribution of prolaipi
future state is measured. Trajectories leading to colligice of collision over the space) and that the uncertainty in the
disregarded and the sequence of commands leading nearegrédliction of future positions of moving obstacles will gro
the desired state (the goal) is selected. While announcad asnonotonously (since we do not know they future state).
approach for “secure driving in dynamic environments”sthiBeyond a certain point in the future nothing can be told about
method fails to consider the future motion of the pedestriathe traversable space.

and used, and how the vehicle executes in the real world t
trajectory. The safe motion of the robot is a propriety of th
perception-planning-control trio.

Incompleteness
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Figure 2. Predicting non traversable space in time. Theorebelow the
plane was observed, the region on top is predicted

Figure 1. lllustration of observed and unobserved areas

uncertain world model one could define such cost component
Definition 5: (Incomplete world model) A world modekv  using the integral of the vehicle trajectory over the pralitgth
is considered incomplete #i(x(t),w(t)) is not defined for distribution (in a spirit similar to [16]), as described ihet
every possible paift, z(t)). equation 1.
Sinceh is not defined everywhere, an incomplete world model
can lead to incomplete or suboptimal plans.

B. Uncertainty safety _cost = Z (P(h(x(t;),w(t;)) = 0) — 0.5)
Sensors are corrupted by noise, thus relative distance mea- (z(ts),ti)€m B

sures to static obstacles will be uncertain. Also the stste e i . . . .

mate of moving obstacles will be noisy. Even if a determigist >ince defining a collision free trajectory up to infinity does

model existed for the moving obstacles, the initial undetya "0t Make sense, let us search for the trajectory to infinity

in the current state estimate will propagate in time. In marfith the lowest probability of collision. This approach istn

applications stochastic models are used to predict theomotPUitable for multiple reasons. First we should remember tha

of moving obstacles (e.g. motion of pedestrians or driveng) the Primary aim of planning is reaching a specific point. The

thus position uncertainty grows in time. In an uncertainldor €St function will trade off collision risk with getting ne=

model the traversability of a point at an instant becomes to the goal, which undesirable if ensuring safety is a must. O

a probability value. the other hand, if collision risk has a very important height
Definition 6: (Uncertain world model) A world modelw ~COMPpared to reaching the goal, then generated trajectoifies

is considered uncertain wheh(z(), w(t)) is not available be unsatisfactory. When observing an empty area the safest

but the probability distributionP (i (z(t), w(t))) is. trajegtory is_to stop as soon as possible. Using directl;pdm
function neither provides satisfactory safety nor satisfey
IV. UNCERTAIN WORLD trajectories to reach the goal.

Let us suppose by now that we have access to a complete but
uncertain world model. As previously mentioned, this means -
that a given vehicle state in time is associated to a proipabilB- Probability threshold
distribution of the harm valu®(h(z(t), w(t))). Since we seek

for harmless motion (wheré(xz(¢), w(t)) = 0) we are in . .~ ° . ' .
particular interested in the valug(h(z(t), w(t)) = 0). dlstrlput|on needs to be_ thre;holded in ord_er_ to define arpina
function over space time (in a spirit similar to [23], for

If any moving obstacle exists in the world it future positiorIJ stance). Doing so is equivalent to providing a conseveat
uncertainty will grow monotonously in time. Supposing thagstimatioﬁ of the traversable space (see figure 2). We want
the moving obstacles have a reachable space that cover QUrs _ire that if some area in space time is prédicted as
(think of pedestrian and human drivers), some point in tqre

future the whole world model will become uninformative; aversable, it will be such in reality. By thresholding we

wingure that the vehicle will always evolve in areas were a
any traversable area may have become non traversable. "ﬁ L . . )
; . . . collision is considered highly unlikely and that the are&eve
senses does it makes then to verify that no collision willupcc . 4 .
. ! L - .a collision could occur will be left unvisited.
up to infinity? Can we define an inevitable collision state in o _ ]
an uncertain world? D_efmmop 7: (Conservative \{vorld mong)A yvorld _model
_ w’ is considered a conservative approximationwofif and

A. Cost function only if h(z(t),w' (t)) = 0 = h(z(t), w(t)) = 0 Ve (t)Vi.

An usual approach to safety consist on including it @bhresholding P(h(z(t),w(t)) = 0) allows to convert an
part of a cost function over the possible trajectories. On amcertain world model into a certain world model by using

In order to provide guarantees on safety, the probability



the function®’ described in equation 2.

W (h((x(t), w(t))) = h(x(t), w'(t) =

{o, if P(h(x(t), w(t)) = 0) < Pinreshold;
)7

2
argmazx P(h(z(t),w(t)) @

otherwise.

We expecth’ (and thus, the selected threshold) to provide
a conservative approximation of the real world (inaccdssib
through sensors).

When using a threshold over an incomplete and uncert%"ﬁure 3. Trajectories resulting from some stopping contscfor a vehicle.

. . . . ots are eqwdlstant in time
world model, it is likely that, over time, the predicted wabrl
collapses into a completely non traversable area. In thigexo
the notion of inevitable collision states does not applyisTh
issue will be discussed in section V.

B. Dynamic world

When the environment may include moving objects using
stopping commands can not, by itself, ensure avoiding-colli
sions.

Since the robot knows only a fraction of the world it is  Imitating manoeuvresideally one would desire to have
probable that it has not enough information to define a singkécess to the present and future position of all the suriagnd
definitive plan from its current state to the goal. Even if ipbstacles. When such information is available the notion of
did, as new information is acquired a better plan could B#nitating manoeuvre” has been proposed as a collision free
generated. This leads to the notionpafrtial motion planning trajectory over an infinite time [12]. However this approach
[15], [14]. The denomination “partial” indicates that, ke is brittle since imitating a single moving obstacle couldde
the usual approaches, the plan does not reach the goal (Bugolliding with another obstacle, and thus is not deseabl
hopefully, leads towards it). Using a best effort approdeh t cluttered environments with arbitrary obstacles motions.

V. INCOMPLETE WORLD

robot initially computes a partial plan to reach the goal ties Finite time horizon: Knowing the motion from now
robots moves a new plan is computed to extend or enhargeinfinity of all the moving obstacles does not provide by
the previous one. itself a tractable way of detecting inevitable collisionates.

The criteria mentioned in section Il imply that while theEven if the vehicle can stop without having a collision with
plan may be “partial” in the space dimension, it needs to [##y moving or static obstacle, nothing prevents that a few
collision free over an infinite time horizon. To do so it is pnl Seconds later a moving obstacle collide with the stopped
necessary to ensure that every state of the p|an is colligg@n Vehicle. Defining a time horizon beyond which the vehicle
and that the last state of the partial plan is not an inewtabs guaranteed to be collision free is an open problem in the
collision state [13]. Verifying if a planned state will gemée general case. If it is possible to define a timen the future
or not an inevitable collision is not a trivial problem, sinwe beyond which no moving obstacle will approach the stopped
need to do verification over an infinite time horizon. vehicle, then verifying a collision of the stopping trajest
until the vehicle stops and beyong is enough to ensure
safety. This is approach used by [2] where it is supposed that
the world is only populated by static obstacles and driasrle

When the robot evolves in a static environment using a s@thicles, and the partial plan of every vehicle is perfectly
of stop trajectories will provide safety, since we know thatnown. At each re-planning step the trajectories of every
the vehicle will be able to stop before colliding and themehicle are verified to be collision free with the previously
no collision can occur (see figures 3 and 4). For this cag#anned ones and the re-planned ones. Since both the pseviou
computing over a finite time horizon provides a guarantee ovand the new partial plans finish with the vehicles stopped, it
an infinite time horizon. Considering that a wall could appeds possible to guarantee that the system is safe.
at the frontier of the observed space, safety in an incomplet Best effort:Unless proof of the contrary an moving obsta-
world is guaranteed if the unobserved space is consideredcis may be present at the frontier of the observed space If w
non traversable [1]. only have a partial knowledge of the surrounding environmen

Swerving: Instead of stopping [21] proposed swerving conservative world model needs to suppose the presence
the expected static obstacles, thus allowing higher spgitds of moving obstacles at the frontiers of the unobserved area.
the same sensors range. This approach makes strong assiighitout information about the non observed moving obstacle
tions on the maximum size and density of static obstacles, thve can not compute an avoidance trajectory. The best effort
it is not suitable for highway or city like environments sinc consists then in ensuring that the vehicle is able to stolpowit
the presence of a traffic jam (total road blockage) on a singlelliding. By itself, this does not ensure avoiding cothiss, a
direction road would generate a collision. moving obstacle could collide the vehicle immediately maite

A. Static world



stops. Using stopping commands in this case can ensure tha&lease note that while the safe trajectory leads to stopping
we will not harm by action, but only by inaction (“car on ait does not mean that the vehicle will necessarily stop. As
railroad” scenario). This is the approach used in [13], [4]. the vehicle starts moving, the new sensors measuremenmts wil
In this approach we need to make assumptions about #adend its world model. This allows it to replace the current
moving objects that will appear, we need a model. This modeajectory (in execution) with a new safe trajectory. By ripi
predicts the possible (not the likely) presence of obssaitle so repeatedly the vehicle will drive continuously towarks t
time. The simplest possible model consist on “any obstaclggal and will not stop unless necessary (blocking obstacle)
anywhere, in any direction” but with a bounded maximurdvhen using this approach the vehicle will automatically
speed. Depending on the specific application the model cagapt its speed and behavior to the surrounding environment
become arbitrarily complex. For instance, in an urban stenaconsidering both the observed and unobserved space. It will
it could be reasonable to consider that no vehicle drivegaga drive slowly in cluttered and uncertain situation, andéasin
the defined circulation directions. Doing so limits the poles unlittered certain environments.
appearance of moving obstacles and thus allows for planning
higher speeds within the incomplete world model. A. Unexpected events
Theorem 1:If every moving obstacle uses a conservative
world model and plans to stops before entering in a harmflg.él

state thgn no collision Wou_ld occur and the overall system “Bven using a conservative approach unexpected events will
be considered safe (see figure 4).

Proof: Let a and b be sensing moving objects. Bothhappen. As previously mentioned, if an area predicted as

. . 4 raversable is discovered as non traversable the harmless
objects have a conservative world model with respect to t

S . otion guarantee is lost. Maybe the vehicle will be able
real world. The policy indicates that, since the world msde g y

i detectsh it h traiect o avoid the collision. If not, it is important to be able to
areé conservaiive, as soon asdetectso It has a rajeclory ., qiqer the cost of a collision. Crashing towards a trash ca
allowing it to stop without collidingb or any other object.

) . creates less harm than crashing a wall. Crashing an animal is
Conversely as soon dsdetectsa it already has a trajectory better tolerated than crashing persons. If a collision bexo
allowing to stop without colliding. Bothw and b can stop

: . . i?evitable, it is desirable that the robot does not treatheac
without colliding, and the same applies to any couple

X . ; . ; . ._possible smash equally.
moving objects in the world. By induction since every movin quatly

. . - L This means that the perception system needs at least to
object can stop without colliding, when one object is stahpe . . . i
- . . o - “localize the vehicle with respect to the planning goal (for
it is guaranteed that no other object will collide it, andghu : . .
: P . planning) and to the plan currently in execution (for cohtro
is a safe state over an infinite time horizon.

If we ensure that the vehicle is able to stop given th%urposes), to estimate the traversgble space in time and to
constantly monitor the cost of possible collisions.

possible appearance of an obstacle with a given maximu h lanni i id model. the ol
speedv,, and an obstacle appears coming faster than expected, en ptantr;]m?t(r)]ver %Ctons_ﬁ r]:/ah Ve wor tlm:)h e, the ptag'
then the vehicle will not be able to stop before the collisiof ¢! €XPeCts nat the Tobot will follow exactly the compulte

Depending on the manoeuvrability of the vehicle, the ctutt raj.ec.tory. Failing to do so would nullify any safety guaﬁm
¢ @s imply that the control module needs to provide a pre-

of the scene and the speed of the re-planning algorithm th: . . . L
vehicle may or may not be able to avoid the obstacldse Q|ctable bou_nd on its tracking error. This b_ound IS integrat
in the planning stage to ensure that the trajectory is sada ev

safety guarantees are as good as the mddafety depends . .
not only on the planning algorithm but also on perceptioWIth errors on the (_:ontrol. If the control unexpe_ctedl;_/sfan_
and control modules). If the predicted traversable spacefis to respect the predicted bound leave the robot in a situation

available, the guarantees that the motion of the vehiclebeil equivalent to a violation of the conservative property o th
harmless, are lost world model, and a collision may or may not occur.

Whatever are the passive or active measures taken, in the
al world accidents will occur (e.g. “falling crane” sceiod.

VI. SAFE PLANNING B. Safe perception-planning-control
Based on the discussion of the previous sections we obtainyiost of the previous works in the field will fail to respect
the following definition. the definition 8. For instance [23] proposed a planning netho

Definition 8: (Safe trajectory for driverless car) Inanin-  in dynamic environments able to deal with an incomplete and
complete and uncertain world model of a dynamic environmegcertain world model. However they do not take into account
a trajectory is considered safe if: the unobserved area of the environment (non conservative

« Each state is collision free with respect to a conservatiwsstimation), and provide no guarantee that the vehicle will

prediction of the traversable space in time, not collide if their probabilistic re-planning method fail

« The sequence of states respects the vehicle capabilities,n [5] a perception-planning duo was proposed to move in an

« Its last state has speed zero. incomplete and uncertain world model. The approach is aimil
With the information available and without doing strongo the one described here. However they algorithm resttiets
assumptions on the non observed areas, this is approach wilbvement of obstacle to constant speed vectors. Such approx
ensure that no harm by action is done. imation is non conservative over the obstacles considered i



time time time

A A A
- - .-
space space space
(a) stop in front of wall (b) stop in front of moving obstacle (c) both moving obstacles apply the

same safety logic

Figure 4. Multiple scenarios of two obstacles in one spaogedsion. Blue and red lines are obstacles in time

with other sources, we say it estimates a “complementediworl
model”.

A. Maps

There is the usual belief that high precision map will help
robots navigation. These maps are of little use when coedern
about safety. In populated environments such as the cifies,
an area was seen as traversable a few hours ago, little can
be said about if it is currently obstructed or not. Maps of the
static environment are not able to provide reliable infaiora
of the future. Maps can be built to model the usual behavior
of moving objects in a region [25]. This information can then
be used to provide tighter predictions of the moving objects
Using this maps is still a delicate issue. Being built from

Figure 5. Example of safe planning in a perceived envirorin observations it is hard to asses they completeness. Fading

predict a possible path for an obstacle, will lead to violati

of the model and thus to a potential collision. Even worse,
they work (cars intersection) and can be considered a Wolat jn the city, the behavior of pedestrians (for instance) mdy o
of the safety criteria and the definition 8. depends on space but also on time (e.g. the Sunday street

A solution consistent with definition 8 was presented in [4arket) making it less likely to have a complete and reliable
In that work, it is explained how the vehicle can efficientlynay of moving objects paths in space time.

estimate its movement, map static obstacles, detect ackl tra
moving obstacles, plan safe trajectories and execute thém. B Fixed path
of it was integrated in a real world vehicle as a proof of A possible future for driverless vehicles in urban environ-
concept prototype. Figure 5 presents an example of the butment is the deployment of “immaterial tramways” [18], [24],
of the perception and planning of such algorithm. [10]. Restricting the movement of the vehicle to a fixed path
More efficient and effective algorithms may be designedeems to be perceived by humans as a safer option.
Application specific models may provide more information In this configuration the planning is mainly concerned with
about the future. Better sensors will provide larger obastiom speed control, a reduced set of commands ease the planning
areas and less uncertainty, allowing higher speeds. Howegemputation. However the needs for perception (buildirg th
we believe that safety can not be enhanced beyond tlerld model) still being the same (with respect to range
discussed limits. Real world safety is bounded by how go@dverage or prediction capabilities). Knowing the path may
is the robot at estimating the possible futures. provide a thin enhancement in the localization computation
cost and in the collision cost estimate.
With a fixed path the exact same logic discussed on this

In the previous section we discussed safe motion of a rOtﬁHfoer applies. The safety issue is not relevantly modified.
using its on board sensors, a model of its sensor, a mode

of itself and a model of the existing moving objects. For the- Traffic rules

design of a mobile robot it is relevant to understand howmothe The use of traffic rules between humans seems to be a
sources of information may affect the safety. When the robfaictor enhancing the safety on the roads. Supposing that
completes the information observable from its point of viewther vehicles respect the rules, constraint they posgilbliee

VIl. COMPLEMENTED WORLD



movements and thus it is useful information to predict thes]
traversable space. The use of traffic rules per se does not
enhance the safety (since it depends on other vehiclesatespe

of such rules), however it allows the vehicle to be less oasti

in some situations (e.g. not slowing down at an intersectiorfg]
because we have the priority).

D. Vehicle to vehicle communications [10]

The use of vehicle to vehicle communication could enhance
the safety in multiple ways. First, more measurements of tHé!
environment provides more information and thus probably
larger observed areas and less uncertainty. Second, wken th
surrounding moving obstacles are driverless vehicles itoo,
would be possible to obtain they current plans, thus progdi;
much tighter bounds than a naive worst case model [2].

If should be noted that the use of vehicle to vehiclﬁ3]
communications requires to solve a relative positioningppr
lem between the communicating vehicles. How to solve this
problem in an unmodified city still being an open questioﬁl.“]
Even if a reasonable solution is provided, the relativetpmss |15
will have a certain degree of uncertainty that will then be
propagated over the transmitted data, reducing the bewéfits
the exchange. [16]

VIIl. CONCLUSION [17]

Safety is a critical issue for driverless vehicles, howaver
still being a fuzzy aspect in many proposals. All of the dlass
planning methods are arguably unsafe. We reviewed theysafet
issue and how the safety apply to an incomplete and uncert&i#i
world model. While the usual notion of inevitable collision
state has proved useful for analysis, it does not apply when
the robot observes a dynamic world. We have shown that(3f]
is possible to ensure that within the limits of the used world
model the vehicle will not actively harm. The final behavior
obtained by a robot following the suggested approach will lfzel]
as safe as humanly possible.

[22]

(18]
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