

Efficient Architecture for Collision Detection
between Heterogeneous Data Structures

Application for Vision-Guided Robots

Jesse Himmelstein
Guillaume Ginioux

Etienne Ferré

Kineo CAM
Toulouse, France

{jh, gg, ef}@kineocam.com

Alireza Nakhaei
Florent Lamiraux

Jean-Paul Laumond
LAAS-CRNS

Toulouse, France
{anakhaei, florent, jpl}@laas.fr

Abstract—Many collision detection methods exist, each
specialized for certain data types under certain constraints. In
order to enable rapid development of efficient collision detection
procedures, we propose an extensible software architecture that
allows for cross-queries between data types, while permitting the
time and memory optimizations needed for high-performance. By
decomposing collision detection into well-defined algorithmic and
data components, we can use the same tree-descent algorithm to
execute proximity queries, regardless the data type. We validate
our implementation on a path planning problem in which a vision
guided humanoid represented by an OBB tree explores a
dynamic environment composed of voxel maps.

Keywords— collision detection, software design, robot
navigation

I. INTRODUCTION
This paper deals with the integration of multiple kinds of

geometric objects into a collision detector in the context of
robot motion planning. We do not contribute new collision
detection algorithms, but rather a generic framework for
evaluating proximity queries between heterogeneous data
structures.

A. Motivation
Collision detection plays a critical role in many domains

such as robotics, Product Lifecycle Management (PLM),
computer graphics, and virtual environment. Applications
including mobile robotics, robotic surgery, and humanoid
robots are active areas of research that rely heavily on
collision detection.

A robot can use path planning along with vision sensors to
navigate in unknown environments. A single path planning
computation invokes collision and distance tests so frequently
that such tests often represent a performance bottleneck. In
order to insure its reactivity, a well-optimized collision
detector must therefore be integrated into such a robot
solution.

Such optimization may be achieved through specialization
of collision detection code to handle a single geometric data

representation (or perhaps a small number of them). Through
intimate knowledge of the limitations, assumptions, and
implications of both a given geometry type and its
implementation, the collision detection code can avoid
extraneous tests and optimize the remaining ones. If necessary,
extra data structures may be built upon the geometry data to
accelerate the process even more.

This process tightly binds the collision detection algorithm
to the data representation, and becomes a problem once a new
geometry type is added to the mix. To consider not only the
tests between two objects of the new type, but also between
the new and old types, a user of a dedicated collision detector
is faced with two imperfect choices: create a second collision
detection algorithm specialized for the new collision tests
(which must be independently tested and maintained), or
convert the new data type to the old one before running the
tests.

This second approach may seem appealing, but would in
fact sacrifice many of the advantages of the “natural” model
representations. In our case, for example, we could convert a
voxel map into a triangle soup and then let the existing OBB
tree collision routine handle it. But since a bounding volume
hierarchy must be rebuilt each time the model changes,
frequent updates to the voxel map would impose a significant
performance penalty.

We decided upon a third approach, to create a software
architecture that supports any number of geometry types as
well as all the optimizations necessary to achieve high
performance. Applications for this architecture include PLM
which deals with polyhedrons and polygon soups,
bioinformatics in which atoms can be modeled as spheres, as
well as robotics. The last domain is the one that we will
develop in this article by applying our framework to detection
between voxels and polygon soups.

B. Related Work
The collision detection problem has been extensively

978-1-4244-2287-6/08/$25.00 ©2008 IEEE

studied in many different contexts. The tight performance
constraints placed on a collision checker (both in terms of time
and space complexity) have lead to specialized collision
detection structures and algorithms for many different
geometry representations. For a presentation on the state of the
art, we refer the reader to [1].

To handle the kind of Product Lifecycle Management
(PLM) path planning problems discussed in [2], high
performance Oriented Bounding Box (OBB) trees that deal
with unstructured polygon soup models are ideal [3-5]. Other
bounding volumes that would work well include AABB trees
[6, 7] and k-DOPs [8]. Since high-fidelity polygon soup
models are available for the mobile robot and certain obstacles
in the robot’s environment, it is also a natural choice for the
“static” portion of the robot’s collision detection solution.

The autonomous humanoid robot uses stereo vision and
occupancy grids to construct a unified 3D environment [16,
17]. For dynamic environments, voxel maps provide very fast
collision detection [9]. By organizing them hierarchically,
such a map can be dynamically updated in a memory and time
efficient manner while the robot explores its environment [10].

C. 8BContributions
Our central contributions are the following:
• Defining an algorithm that descends a pair of trees in

tandem in order to perform generic collision detection,
while dispatching all concrete proximity tests to
specialized handlers.

• Creating an extensible hierarchical structure suitable
for space-partitioning and bounding-volume methods
that allows for custom optimized data structures.

D. 9BOutline
We begin in Section XIIX by introducing a general collision

detection procedure and describe how our framework
implements that procedure. To discuss the framework itself in
more detail, we describe the tree descent algorithm in
Section XIIIX, and the geometrical tree structure in Section XIVX.

In Section XVX, we validate our work on a vision-guided
humanoid robot that explores dynamic environments using a
combination of voxel and polyhedral models. Finally, we
conclude with opportunities for future work in Section XVIX.

II. 1BCOLLISION DETECTION ALGORITHM ANALYSIS
By analyzing a typical example of collision detection in

practice, we can identify the essential procedures and data
structures needed by a generic framework.

A. 10BCollision Detection Example
In order to illustrate how collision detection typically

functions, we begin with the simple example of testing two
polyhedrons against each other. Consider two polygon soup
models A and B, composed of unordered sets of triangles. We
would like to know if they collide or not.

As described in [5, 11, 12], to avoid testing each triangle
from A against each from B, bounding volumes can be placed

around each set of triangles. In this example, OBBs are used.
Only if the OBBs of A and B overlap do we need to test their
triangles against each other. XAlgorithm 1 X describes such a
function, and XFigure 1X lays out the tests needed if A has 3
triangles and B only 2.

A B

A.3 B.1A.1 B.2A.2

A - B

A – B.1 A – B.2

A.1 – B.1 A.2 – B.1 A.3 – B.1 A.1 – B.2 A.2 – B.2 A.3 – B.2

Figure 1 Testing polyhedrons. Take two polyhedrons, A and B, the first
composed of 3 triangles and the second only 2. Given a bounding volume
around each polyhedron, it is possible to reduce the number of tests that must
be executed in order to test for collision. First, the bounding volumes are
tested against each other. If they overlap, then one of them (e.g. A) is tested
against each triangle of the other. Only if an overlap is detected again, are the
triangles from A tested against the triangle of B. The execution can be
represented by the bottom flow diagram.

An example execution is the following: A’s OBB is tested
against B’s, and they are found to overlap. A’s OBB is then
checked against B’s first triangle. No overlap is detected, so
the second triangle is tried. This time, they are found to
overlap, so A’s triangles are checked one-by-one against B’s
second triangle. At the third an overlap is detected, and the
algorithm terminates.

It is easy to see that in this reduced example we need three
kinds of tests: OBB-OBB, OBB-triangle, and triangle-triangle.
The overlaps() function referenced in XAlgorithm 1X would
need to distinguish between them in order to carry out the
correct calculation.
function test(a, b) : Boolean
 Boolean collides = false
 if overlaps(a, b)
 if isOBB(b)
 foreach c in children(b)

 collides = collides or test(a, c)
 end foreach

 else if isOBB(a)
 foreach c in children(a)
 collides = collides or test(c, b)
 end foreach
 else
 // both a and b are triangles
 collides = true
 end if

 end if

return collides

end function
Algorithm 1 Simple polyhedron-polyhedron collision procedure. The types of
a and b could de OBBs or triangles.

B. 11BTree Structure
Although the example just given applies only to polygon

soups, many different geometry types employ hierarchical
structures to carry out collision detection. In general, all
bounding-volume and spatial partitioning techniques use a
divide and conquer strategy [1]. Both bottom-up and top-down
approaches result in the same type of hierarchical structure.

In our framework, this hierarchical structure is termed a test
tree whose elements can be leaves (triangles, in the previous
example) or branches (OBBs). In order to support a wide
range of geometries, a branch can have any number of
children. Test trees are discussed further in Section XIVX.

C. 12BComparison and Descent
Given the generic tree structure, it is possible to generalize

the procedure presented in XAlgorithm 1 X. First, two elements
are tested against each other. If no overlap is detected, then the
function returns false. If the elements do overlap and they
are both leaves (e.g. collision between two triangles), then the
procedure simply returns true. Otherwise, it is necessary to
explore further in the tree to determine if a collision exists.
One of the two elements is chosen for expansion, and the
procedure is called recursively for each of its children, or until
a collision is found.

We call this algorithm test tree descent and it forms the core
of our framework. Section XIIIX describes it in greater detail.

D. 13BProximity Queries
In the previous example, we have only checked if A and B

collide. Other common tasks include listing all of the
collisions between A and B (i.e. a list of pairs of overlapping
triangles), and finding the distance between A and B if they do
not collide.

Each of these tasks is an example of a proximity query, and
modifies not only the test tree descent but also the kind of
information returned by proximity tests between the elements.
In the previous example, only a simple overlap test was
required between elements, which might be faster than
calculating the distance between them.

E. 14BFramework Architecture
As a whole, the architecture of the framework can be

decomposed into three parts (XFigure 2X). The core is the test
tree descent algorithm, which is immutable and applies equally
to test trees of any geometry. It uses the test tree element
interface to traverse the test trees.

For all tests between test tree elements, the tree descent
algorithm refers to a bank of proximity tests. A proximity test
generally takes two elements as input and outputs the distance
between them. The result of the test depends on the proximity
query posed. The proximity tests are organized by the type of
geometrical elements that they take as input (e.g. OBB-
triangle, or triangle-triangle).

Tree Descent

Test Tree A Test Tree B

Proximity Tests

Figure 2 Framework architecture. The tree descent algorithm always
references two elements at a time, one from each test tree. To test for collision
and distances between elements, it calls on one of a number of proximity tests,
organized into a bank. Each proximity test is specialized to analyze the
interaction between two types of geometric objects. In the diagram, the dashed
borders around the test trees and the proximity tests are used to indicate that
the user can extend those portions of the architecture.

III. 2BTEST TREE DESCENT
Through a defined test tree element interface and a bank of

user-defined proximity tests, the test tree descent algorithm
can be cleanly separated from the data upon which it
functions. It consists only of generic logic, and requires no
direct modification from the user.

A. 15BDispatch and detection
Given two test tree elements, we must be able to analyze

their interaction for collision and distance results. Since the
test tree elements do not necessarily have knowledge of each
other, this is an example of a multiple dispatch problem.
Approaches to resolve this problem vary by programming
language. For C++, [13] discusses it and proposes several new
solutions.

In addition to the classic definition, however, we have the
requirement that the proximity tests (program logic) should be
separated from test tree elements (data structures) in order to
define multiple tests between elements. If multiple proximity
tests exist for the same pair of elements, then the user should
be able to decide, at runtime, which ones are used. Such
dynamism facilitates the implementation of custom collision
detection logic, but prevents us from implementing the
multiple dispatch using methods based on C++ templates,
which would hardcode the dispatch logic during compilation.

Our solution is based on a simple function table, indexed by
element type (Figure 3), that dispatches proximity tests at
runtime. The user can register and unregister proximity test
objects with the dispatcher at runtime. For any pair of test tree
elements, a single lookup retrieves the address of the object
whose virtual function handles the given pair. Since C++
provides only weak support for reflection, a virtual method
was added to the test tree element interface that receives a
unique identifier, assigned by the dispatcher upon registration.

B. 16BTree descent
Tree descent follows a simple recursive pattern, addressing

two elements at a time, one from each test tree. First, the
proper detector executes a proximity test on a pair of elements.
Based on the result of the test, and the proximity query chosen,
the tree descent algorithm may choose to stop, back up, or
proceed further down the test trees.

The generality of our framework derives the fact that the
tree descent algorithm is wholly ignorant of the type of data it
is dealing with. All special knowledge of the geometry
concerned is handled by the proximity tests, which can
themselves be dynamically substituted for each other at run
time.

For a more complete description, XAlgorithm 2 X lists pseudo-
code for the procedure.

OBB Triangle B Voxel Voxel
OBB

Triangle
B Voxel
Voxel

class OBBTriangleDetector

function handle(left : OBB, right : Triangle)

end class

class BVoxelOBBDetector

function handle(left : BVoxel, right : OBB)

end class

Figure 3 Proximity test dispatch mechanism. The dispatcher (center) has a
table of proximity tests, organized by the type of test tree elements that a test
can handle. To compare two elements, the dispatcher looks up the two types in
the table and calls the corresponding virtual function on the selected proximity
test. In this example, the OBBTriangleDetector (top) handles an OBB as
the left element and a polyhedron triangle as the right. The
BVoxelOBBDetector (bottom) does the same for bounding voxels and
OBBs.

IV. 3BTEST TREE STRUCTURE
Test tree elements must implement a common interface to

allow the descent algorithm to traverse the tree. They also
must provide specialized information to the proximity tests
that handle them.

A. 17BGeneric traversal
Examination of the pseudo-code in XAlgorithm 2 X reveals that

only one element from each test tree is being compared at
once. Additionally, the test trees are not traversed in a random
fashion. Instead, the algorithm starts at the root nodes and then
either references a element’s first child or a element’s next
sibling. We can exploit this restricted access pattern to allow
for time and memory optimizations.

We define a simple element interface that only allows three
methods for tree traversal to access other elements:
firstChild(), nextSibling(), and parent(). Their
meanings are illustrated in XFigure 4X. Each method returns a
reference to another element, which is used from then on. The

methods hasChildren() and hasNextSibling() simply
provide information about the existence of an element’s
relations.

Figure 4 Element relations and traversal methods. In the restricted tree
traversal pattern used, the highlighted element, A.1, is linked to other elements
in the tree only through three relations: parent(), firstChild(), and
nextSibling().

To illustrate these methods, let us take the example of an
OBB tree. In order to open the custom data structure up to the
tree descent procedure, we define a test tree that contains two
types of elements: OBBs and triangles. An OBB element
always responds true to hasChildren(), and may return
references to triangles or to other OBBs when firstChild()
is called. A triangle element, on the other hand, always replies
false to hasChildren(). Both elements may or may not have
siblings, and respond accordingly.

B. 18BMemory Optimization
Since only one element from a test tree is used at any one

time, the entire tree of element objects need never be
constructed in its entirety. Therefore, it is possible to design
tree structures that are constructed on the fly, or that change
dynamically.

Another advantage of the thin tree element interface is its
proxy support. With this approach, a test tree’s data is not
stored as individual element objects. Instead, the geometry
data is stored separately, often in some optimized fashion. The
element objects themselves simply point to sections of this
data store. Not only does this allow the designer to optimize
the data storage as needed, but the element objects themselves
can be reused.

 To illustrate, consider once again the OBB tree example.
Upon construction, the triangles are sorted by a space-
partitioning algorithm to build a binary tree of OBBs. To
optimize memory, the OBBs are stored in a large array, with
compressed descriptions of their positions and indexes of their
children. Triangles are stored in a similar fashion.

With this setup, the OBB and triangle elements can simply
store the indices relative to their respective arrays. When a
traversal method is called, the element can look up the data at
that index, unpacking it if necessary, and then answer the
request.

In order to save memory, the test tree used in our example
constructs only one OBB element and one triangle element.
Instead of always returning a reference to another element
object in response to a traversal method call, these “singleton”
elements only return references to themselves or to each other.

Consider what happens when firstChild() is called on
an OBB element. If the child is also an OBB, then the element
only needs to update its own internal reference and simply
return a reference to itself. If the child is a triangle, then it
retrieves the triangle element of the test tree and updates the
triangle’s internal data before returning a reference to it. The
other two tree traversal methods, nextSibling() and
parent(), are implemented in a similar fashion.

In this way, only two element objects (one for OBBs and
one for triangles) are needed to act as the entire test tree, and
they can be allocated before the tree descent begins, saving
both time and memory.

V. 4BDYNAMIC VOXEL MAP FOR ROBOTIC VISION SYSTEM
A critical issue in autonomous robotics is to provide

perception-based geometric models for automated motion
planning and control. In such a context the system may
consider various types of geometric models (occupancy grids,
closed polyedra, polygons soups, voxels, etc.) according to the
choice of sensors. Nevertheless, an accurate CAD model of the
robot itself is often available to the system designers. In such a
case, an astute collision detector could address heterogeneous
data structures in order to minimize sensing error while
optimizing performance.
 We conducted an experiment involving HPR-2
(XFigure 5X), a humanoid robot [14, 15]. The goal is to allow the
robot to autonomously explore unknown environments using
stereo vision and probabilistic path planning techniques. By
testing a hybrid collision detection scheme against a
homogenous polyhedral one, we can demonstrate the
effectiveness of our approach.

Figure 5 The HPR-2 humanoid robot.

A. 19B3D Reconstruction
To represent the environment, we use a 3D-occupancy grid

which is frequently refreshed with information from HPR-2’s
cameras [16, 17]. Each grid cell is assigned a triplet
representing the probabilities that it contains an obstacle, free
space, or is indeterminate. Originally, all cells are considered
indeterminate. Based on these values, the grid cells are
classified into one of three discrete categories: OBSTACLE,

UNKNOWN or FREE (XFigure 6X). The UNKNOWN category
may refer to a cell that the robot has not yet observed (e.g. it is
behind an obstacle) or is unsure about (e.g. not enough 3D
points have been gathered in that volume).

As the robot moves, it gradually discovers more of the
environment around it. Additionally, the environment itself
may change. In both cases, the robot takes the new
information into account in the 3D model.

Apart from its own position and that of its goal, all
information about the environment is derived from its stereo
vision. To carry out the task, it proceeds as follows:

First, it examines the environment through taking hundreds
of images. Next, it uses the vision data to classify the 3D grid
cells, creating two occupancy grids: one for OBSTACLE cells,
and the other for UNKNOWN (free space is defined as the
absence of grid cells). The robot then searches for a path
delivering it to the goal, without considering the UNKNOWN
grid. Assuming that a path is found, it is examined to
determine if it enters into the UNKNOWN area. If the path
does not touch UNKNOWN, the problem is solved and the
robot can reach the goal. Otherwise, it walks up to the border
of the UNKNOWN area and stops to take more photos. This
information is used to update the occupancy grids, and the
process continues iteratively.

Figure 6 Occupancy grid. Data from several stereo images are combined to
calculate the probabilities that a grid cell contains an obstacle. Here, the
calculated grid cells are superimposed upon an acquired image. The red cells
represent obstacles, and the green cells are unknown. The absence of cells
indicates that the space is considered free.

B. 20BDynamic Voxel Map
A natural representation of the 3D occupancy grid is a voxel

map. Such a space-partitioning method can benefit from a
hierarchical organization, with larger voxels bounding a
predetermined set of smaller ones [10].

One advantage of voxel maps is the efficient manner in
which they can be updated. Removing or adding a voxel at the
lowest level sends a message to the parent voxel informing of
a change. In this way, bounding voxels can be created and
removed on the fly in order to assure consistency (XFigure 7X).

Just as polyhedron objects in the scene tree may be
transformed into an OBB tree for collision detection, so can
voxel map objects be transformed into a voxel map test tree.
However, unlike the OBB tree construction process, the voxel

map test tree requires no pre-computation. Since it merely
references the included voxel maps, it does not need to be
rebuilt each time a change occurs.

a b

c

d

a b

c

d

e

f

Figure 7 Voxel hierarchy. On the left, two primitive voxels (a and b) were
detected by the vision system. Each level of the hierarchy (here there are
three) contains a larger voxel bounding those below it- c contains both
primitives on the second level and d contains c on the third. On the right, a
third primitive voxel e is detected. Automatically, the bounding voxel f is
created around it on the second level. No modification on the third level of the
hierarchy is needed in this case.

Indeed, removing or adding a voxel in the map immediately
affects the structure of the corresponding test tree as it is
gradually exposed during tree descent. Such ability exploits
the flexibility of this architecture in supporting both static and
dynamic structures.

C. 21BExperimental Design
Since an accurate and precise polygon soup model of HPR-

2 is available we would like to use it for collision detection.
The occupancy grid, however, could have multiple
representations. By tessellating the boxes formed by the grid
cells, the grid can be converted into a polygon soup model for
use by a dedicated polygon soup collision detector. Using a
dynamic voxel map, however, requires a hybrid voxel-polygon
collision detector. In our experiment, we tested the
performance of the two collision detectors.

Figure 8 Environment discovery in three steps. When HPR-2 is placed at its
initial position, it has no prior information of the environment. It builds a
tentative representation of the environment from the acquired image data (a),
and moves towards the boundary of the UNKNOWN area (green), while
avoiding obstacles (red). Once there, it refines its estimation of the
environment (b), and proceeds with the second iteration of its exploration
algorithm. After this movement, it can perceive a clear path reaching the goal
(c). By moving there (d), it completes the task.

The robot was placed in a typical exploration scenario, in

which it maneuvers around an obstacle in order to reach its
goal position (the environment measures 6x6x1m). Since the
obstacle partially blocks the robot’s view of the scene, it takes
three iterations of the exploration process in order for the robot
to complete its task.

In order to get consistent results for the collision detection
performance, we pre-converted the image data into occupancy
grid cells (20cm3) for each of the three iterations. We
measured the time and memory taken for each collision
detector to process and initialize the occupancy grid data.
Finally, we measured the time taken per collision test during
the path planning process.

D. 22BResults
As explained in the last section, the experiment is divided

into three iterations, each having a different number of grid
cells for seach category. Table I presents the time needed to
create the collision detection structures as well as the mean
time per proximity test during the path planning process, while
Table II compares memory consumption.

Although our results show modest differences in memory
consumption and collision test time, they might not
convincingly argue for the use of a hybrid collision detector.
The setup time, however, tells a more dramatic story. The
voxel map is able to incorporate the changes in the occupancy
grid hundreds, if not thousands, of times faster than the OBB
tree. Simply put, an OBB tree derives its speed from pre-
calculation step, while voxel maps are almost purely dynamic
in nature.

TABLE I. TIME PERFORMANCE

Iteration
Grid Cells

Type
Setup
Time
(ms)

Time per
Collision
Test (ms) Obstacle Unknown

1 147 2332
Voxel 20 0.924

Poly 65,761 1.083

2 202 1012
Voxel 10 0.779

Poly 17,626 1.292

3 284 306
Voxel 7 0.547

Poly 5,304 1.712

TABLE II. MEMORY CONSUMPTION

Iteration
Grid Cells

Type Memory
(kB) Obstacle Unknown

1 147 2332
Voxel 74

Polygon 111

2 202 1012
Voxel 73

Polygon 92

3 284 306
Voxel 73

Polygon 83

The setup time gap only widens as the number of voxels
grows. Cutting the occupancy grid size in half (from 20cm to
10cm), for example, took the polyhedral collision detector 9.7
minutes to process, against 38.1 ms for the voxel map. Since
this level of performance is unacceptable for our application,
we didn’t conduct further tests at this resolution.

VI. 5BCONCLUSION AND FUTURE WORK
Our framework allows for high-performance collision

detection between heterogeneous geometry types. By
generalizing the collision detection problem and identifying its
components, we have extracted a generic algorithm that
descends a pair of hierarchical structures, using the results of
dynamically-dispatched proximity tests to guide the search.

To satisfy the performance constraints placed on collision
detection, elements in the hierarchical structures are only
required to implement a thin interface that allows the
implementation of a number of time and memory optimization
schemes.

Finally, we validate our work on an autonomous humanoid
robot exploring an unknown environment using stereo vision
and an occupancy grid. Using our framework, we created a
hybrid collision detector that tests voxels and polygons in
order to dramatically decrease refresh times.

In the future, it would be interesting to explore the
compatibility of this approach with geometric data structures
that do not use bounding-volume or space-partitioning
methods. Another question raised by this research is the
feasibility of generalizing the proximity queries and the results
that they return.

REFERENCES
[1] M. C. Lin and D. Manocha, "Collision And Proximity Queries," in

Handbook of Discrete and Computational Geometry, J. E. Goodman and
J. O'Rourke, Eds. Boca Raton, FL, USA: CRC Press, 2004, pp. 787-808.

[2] J.-P. Laumond, "Motion planning for PLM: state of the art and
perspectives," International Journal of Product Lifecycle Management,
vol. 1, pp. 129-142, 2006.

[3] S. Gottschalk, M. C. Lin, and D. Manocha, "OBBTree: a hierarchical
structure for rapid interference detection," in Proceedings of Computer
Graphics and Interactive Techniques, 1996, pp. 171-180.

[4] S. Gottschalk, "Collision Queries using Oriented Bounding Boxes," in
Department of Computer Science: University of North Carolina, 1998.

[5] M. Lin, D. Manocha, J. Cohen, and S. Gottschalk, "Collision detection:
Algorithms and applications," in Algorithms for Robotics Motion and
Manipulation: 1996 Workshop on the Algorithmic Foundations of
Robotics, J.-P. Laumond and M. Overmars, Eds.: A K Peters, Ltd., 1996,
pp. 129-142.

[6] G. v. d. Bergen, "Efficient Collision Detection of Complex Deformable
Models using AABB Trees," Journal of Graphics Tools, vol. 2, pp. 1-13,
1997.

[7] T. Larsson and T. Akenine-Möller, "A Dynamic Bounding Volume
Hierarchy for Generalized Collision Detection," in Proceedings of
Workshop On Virtual Reality Interaction and Physical Simulation, 2005.

[8] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan,
"Efficient Collision Detection Using Bounding Volume Hierarchies of k-
DOPs," in Proceedings of Visualization and Computer Graphics, 1998,
pp. 21-36.

[9] S. F. Gibson, "Beyond Volume Rendering: Visualization, Haptic
Exploration, and Physical Modeling of Voxel-based Objects," in
Visualization in Scientific Computing '95, R. Scanteni, J. v. Wijk, and P.
Zanarini, Eds.: Springer-Verlag Wien, 1995, pp. 9-24.

[10] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, "Six degree-of-
freedom haptic rendering using voxel sampling," in Proceedings of
Computer Graphics and Interactive Techniques, 1999 pp. 401-408.

[11] S. M. LaValle, Planning Algorithms: Cambridge University Press, 2006.
[12] S. Quinlan, "Efficient Distance Computation between Non-Convex

Objects," in Proceedings of International Conference on Robotics and
Automation, 1994.

[13] C. Pescio, "Multiple Dispatch: A new approach using templates and
RTTI," C++ Report, 1998.

[14] T. Inamura, K. Okada, M. Inaba, and H. Inoue, "HRP-2W: A Humanoid
Platform for Research on Support Behavior in Daily life Environments,"
in Proceedings of International Conference on Intelligent Autonomous
Systems, 2006, pp. 732-739.

[15] K. Yokoi, N. E. Sian, T. Sakaguchi, O. Stasse, Y. Kawai, and K.-i.
Maruyama, "Humanoid Robot HRP-2 with Human Supervision," in
Experimental Robotics, vol. 39, Springer Tracts in Advanced Robotics.
Berlin: Springer, 2008, pp. 513-522.

[16] C. Braillon, C. Pradalier, K. Usher, J. Crowley, and C. Laugier,
"Occupancy grids from stereo and optical flow data," in Experimental
Robotics, vol. 39, Springer Tracts in Advanced Robotics. Berlin:
Springer, 2008, pp. 367-376.

[17] A. Elfes, "Using occupancy grids for mobile robot perception and
navigation," in Computer, vol. 22, 1989 pp. 46-57.

APPENDIX
function startTest(treeA : TestTree, treeB : TestTree) : void
 test(root(treeA), root(treeB))
end function

function test(a : ElementRef, b : ElementRef) : void
 detect(element(a), element(b))

 Boolean childrenExist = hasChildren(element(a)) or hasChildren(element(b))
 if childrenExist and shouldContinue() and shouldDescend()
 ElementRef c
 if shouldDescendLeft(element(a), element(b))
 c = a
 else
 c = b
 end

 element(c) = firstChild(element(c))

 test(a, b)

 while shouldContinue() and hasNextSibling(element(c))
 element(c) = nextSibling(element(c))
 test(a, b)
 end while

 element(c) = parent(element(c))
 end if
end function

function shouldContinue() : Boolean
 return result() is not COLLISION or query() is not EXHAUSTIVE_COLLISION
end function

function shouldDescend() : Boolean
 return result() is OVERLAP or (query() is EXACT_DISTANCE and
 result() is WITHIN_MIN_DISTANCE)
end function

function shouldDescendLeft(a : Element, b : Element) : Boolean
 if not hasChildren(a)
 return false
 else if not hasChildren(b)
 return true
 else
 return heuristic(a) > heuristic(b)
 end if
end function

Algorithm 2 Generic tree descent algorithm. The function test() is recursive, and is originally called the root elements of the two test trees. The
detect() function dispatches the proximity test to the proper handler. ElementRef is a mutable reference to the element, so that multiple copies of the
reference all point to the same element, retrieved with the element() function. Finally, query() returns the current proximity query and result()
the last proximity test result.

	I. Introduction
	A. Motivation
	B. Related Work
	C. Contributions
	D. Outline

	II. Collision Detection Algorithm Analysis
	A. Collision Detection Example
	B. Tree Structure
	C. Comparison and Descent
	D. Proximity Queries
	E. Framework Architecture

	III. Test Tree Descent
	A. Dispatch and detection
	B. Tree descent

	IV. Test Tree Structure
	A. Generic traversal
	B. Memory Optimization

	V. Dynamic Voxel Map for Robotic Vision System
	A. 3D Reconstruction
	B. Dynamic Voxel Map
	C. Experimental Design
	D. Results

	VI. Conclusion and Future Work

