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Abstract—Many collision detection methods exist, each 
specialized for certain data types under certain constraints. In 
order to enable rapid development of efficient collision detection 
procedures, we propose an extensible software architecture that 
allows for cross-queries between data types, while permitting the 
time and memory optimizations needed for high-performance. By 
decomposing collision detection into well-defined algorithmic and 
data components, we can use the same tree-descent algorithm to 
execute proximity queries, regardless the data type. We validate 
our implementation on a path planning problem in which a vision 
guided humanoid represented by an OBB tree explores a 
dynamic environment composed of voxel maps. 

Keywords— collision detection, software design, robot 
navigation 

I.  INTRODUCTION 
This paper deals with the integration of multiple kinds of  

geometric objects into a collision detector in the context of 
robot motion planning. We do not contribute new collision 
detection algorithms, but rather a generic framework for 
evaluating proximity queries between heterogeneous data 
structures. 

A. Motivation 
Collision detection plays a critical role in many domains 

such as robotics, Product Lifecycle Management (PLM), 
computer graphics, and virtual environment. Applications 
including mobile robotics, robotic surgery, and humanoid 
robots are active areas of research that rely heavily on 
collision detection.  

A robot can use path planning along with vision sensors to 
navigate in unknown environments. A single path planning 
computation invokes collision and distance tests so frequently 
that such tests often represent a performance bottleneck. In 
order to insure its reactivity, a well-optimized collision 
detector must therefore be integrated into such a robot 
solution.  

Such optimization may be achieved through specialization 
of collision detection code to handle a single geometric data 

representation (or perhaps a small number of them). Through 
intimate knowledge of the limitations, assumptions, and 
implications of both a given geometry type and its 
implementation, the collision detection code can avoid 
extraneous tests and optimize the remaining ones. If necessary, 
extra data structures may be built upon the geometry data to 
accelerate the process even more. 

This process tightly binds the collision detection algorithm 
to the data representation, and becomes a problem once a new 
geometry type is added to the mix. To consider not only the 
tests between two objects of the new type, but also between 
the new and old types, a user of a dedicated collision detector 
is faced with two imperfect choices: create a second collision 
detection algorithm specialized for the new collision tests 
(which must be independently tested and maintained), or 
convert the new data type to the old one before running the 
tests. 

This second approach may seem appealing, but would in 
fact sacrifice many of the advantages of the “natural” model 
representations. In our case, for example, we could convert a 
voxel map into a triangle soup and then let the existing OBB 
tree collision routine handle it. But since a bounding volume 
hierarchy must be rebuilt each time the model changes, 
frequent updates to the voxel map would impose a significant 
performance penalty.  

We decided upon a third approach, to create a software 
architecture that supports any number of geometry types as 
well as all the optimizations necessary to achieve high 
performance. Applications for this architecture include PLM 
which deals with polyhedrons and polygon soups, 
bioinformatics in which atoms can be modeled as spheres, as 
well as robotics. The last domain is the one that we will 
develop in this article by applying our framework to detection 
between voxels and  polygon soups.  

B. Related Work 
The collision detection problem has been extensively 
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studied in many different contexts. The tight performance 
constraints placed on a collision checker (both in terms of time 
and space complexity) have lead to specialized collision 
detection structures and algorithms for many different 
geometry representations. For a presentation on the state of the 
art, we refer the reader to [1]. 

To handle the kind of Product Lifecycle Management 
(PLM) path planning problems discussed in [2], high 
performance Oriented Bounding Box (OBB) trees that deal 
with unstructured polygon soup models are ideal [3-5]. Other 
bounding volumes that would work well include AABB trees 
[6, 7] and k-DOPs [8]. Since high-fidelity polygon soup 
models are available for the mobile robot and certain obstacles 
in the robot’s environment, it is also a natural choice for the 
“static” portion of the robot’s collision detection solution.  

The autonomous humanoid robot uses stereo vision and 
occupancy grids to construct a unified 3D environment [16, 
17]. For dynamic environments, voxel maps provide very fast 
collision detection [9]. By organizing them hierarchically, 
such a map can be dynamically updated in a memory and time 
efficient manner while the robot explores its environment [10]. 

C. 8BContributions 
Our central contributions are the following:  
• Defining an algorithm that descends a pair of trees in 

tandem in order to perform generic collision detection, 
while dispatching all concrete proximity tests to 
specialized handlers. 

• Creating an extensible hierarchical structure suitable 
for space-partitioning and bounding-volume methods 
that allows for custom optimized data structures.  

D. 9BOutline 
We begin in Section XIIX by introducing a general collision 

detection procedure and describe how our framework 
implements that procedure. To discuss the framework itself in 
more detail, we describe the tree descent algorithm in 
Section XIIIX, and the geometrical tree structure in Section XIVX.   

In Section XVX, we validate our work on a vision-guided 
humanoid robot that explores dynamic environments using a 
combination of voxel and polyhedral models. Finally, we 
conclude with opportunities for future work in Section XVIX. 

II. 1BCOLLISION DETECTION ALGORITHM ANALYSIS 
By analyzing a typical example of collision detection in 

practice, we can identify the essential procedures and data 
structures needed by a generic framework.  

A. 10BCollision Detection Example 
In order to illustrate how collision detection typically 

functions, we begin with the simple example of testing two 
polyhedrons against each other. Consider two polygon soup 
models A and B, composed of unordered sets of triangles. We 
would like to know if they collide or not.  

As described in [5, 11, 12], to avoid testing each triangle 
from A against each from B, bounding volumes can be placed 

around each set of triangles. In this example, OBBs are used. 
Only if the OBBs of A and B overlap do we need to test their 
triangles against each other. XAlgorithm 1 X describes such a 
function, and XFigure 1X lays out the tests needed if A has 3 
triangles and B only 2. 

A B

A.3 B.1A.1 B.2A.2

A - B

A – B.1 A – B.2

A.1 – B.1 A.2 – B.1 A.3 – B.1 A.1 – B.2 A.2 – B.2 A.3 – B.2
 

Figure 1  Testing polyhedrons. Take two polyhedrons, A and B, the first 
composed of 3 triangles and the second only 2. Given a bounding volume 
around each polyhedron, it is possible to reduce the number of tests that must 
be executed in order to test for collision. First, the bounding volumes are 
tested against each other. If they overlap, then one of them (e.g. A) is tested 
against each triangle of the other. Only if an overlap is detected again, are the 
triangles from A tested against the triangle of B. The execution can be 
represented by the bottom flow diagram. 

An example execution is the following: A’s OBB is tested 
against B’s, and they are found to overlap.  A’s OBB is then 
checked against B’s first triangle. No overlap is detected, so 
the second triangle is tried. This time, they are found to 
overlap, so A’s triangles are checked one-by-one against B’s 
second triangle. At the third an overlap is detected, and the 
algorithm terminates. 

It is easy to see that in this reduced example we need three 
kinds of tests: OBB-OBB, OBB-triangle, and triangle-triangle. 
The overlaps() function referenced in XAlgorithm 1X would 
need to distinguish between them in order to carry out the 
correct calculation.  
function test(a, b) : Boolean 
 Boolean collides = false 
 if overlaps(a, b) 
  if isOBB(b) 
   foreach c in children(b) 

    collides = collides or test(a, c) 
  end foreach  

  else if isOBB(a) 
   foreach c in children(a)  
   collides = collides or test(c, b) 
  end foreach 
 else 
  // both a and b are triangles 
  collides = true 
 end if 

 end if   
 
return collides  

end function 
Algorithm 1  Simple polyhedron-polyhedron collision procedure. The types of 
a and b could de OBBs or triangles.   



 

         

B. 11BTree Structure 
Although the example just given applies only to polygon 

soups, many different geometry types employ hierarchical 
structures to carry out collision detection. In general, all 
bounding-volume and spatial partitioning techniques use a 
divide and conquer strategy [1]. Both bottom-up and top-down 
approaches result in the same type of hierarchical structure. 

In our framework, this hierarchical structure is termed a test 
tree whose elements can be leaves (triangles, in the previous 
example) or branches (OBBs). In order to support a wide 
range of geometries, a branch can have any number of 
children. Test trees are discussed further in Section XIVX. 

C. 12BComparison and Descent 
Given the generic tree structure, it is possible to generalize 

the procedure presented in XAlgorithm 1 X. First, two elements 
are tested against each other. If no overlap is detected, then the 
function returns false. If  the elements do overlap and they 
are both leaves (e.g. collision between two triangles), then the 
procedure simply returns true. Otherwise, it is necessary to 
explore further in the tree to determine if a collision exists. 
One of the two elements is chosen for expansion, and the 
procedure is called recursively for each of its children, or until 
a collision is found.  

We call this algorithm test tree descent and it forms the core 
of our framework. Section XIIIX describes it in greater detail. 

D. 13BProximity Queries 
In the previous example, we have only checked if A and B 

collide. Other common tasks include listing all of the 
collisions between A and B (i.e. a list of pairs of overlapping 
triangles), and finding the distance between A and B if they do 
not collide.  

Each of these tasks is an example of a proximity query, and 
modifies not only the test tree descent but also the kind of 
information returned by proximity tests between the elements. 
In the previous example, only a simple overlap test was 
required between elements, which might be faster than 
calculating the distance between them.  

E. 14BFramework Architecture 
As a whole, the architecture of the framework can be 

decomposed into three parts (XFigure 2X). The core is the test 
tree descent algorithm, which is immutable and applies equally 
to test trees of any geometry. It uses the test tree element 
interface to traverse the test trees. 

For all tests between test tree elements, the tree descent 
algorithm refers to a bank of proximity tests.  A proximity test 
generally takes two elements as input and outputs the distance 
between them. The result of the test depends on the proximity 
query posed. The proximity tests are organized by the type of 
geometrical elements that they take as input (e.g. OBB-
triangle, or triangle-triangle). 

Tree Descent

Test Tree A Test Tree B

Proximity Tests

 
Figure 2  Framework architecture. The tree descent algorithm always 
references two elements at a time, one from each test tree. To test for collision 
and distances between elements, it calls on one of a number of proximity tests, 
organized into a bank. Each proximity test is specialized to analyze the 
interaction between two types of geometric objects. In the diagram, the dashed 
borders around the test trees and the proximity tests are used to indicate that 
the user can extend those portions of the architecture. 

III. 2BTEST TREE DESCENT  
Through a defined test tree element interface and a bank of 

user-defined proximity tests, the test tree descent algorithm 
can be cleanly separated from the data upon which it 
functions. It consists only of generic logic, and requires no 
direct modification from the user.  

A. 15BDispatch and detection 
Given two test tree elements, we must be able to analyze 

their interaction for collision and distance results. Since the 
test tree elements do not necessarily have knowledge of each 
other, this is an example of a multiple dispatch problem. 
Approaches to resolve this problem vary by programming 
language. For C++, [13] discusses it and proposes several new 
solutions.  

In addition to the classic definition, however, we have the 
requirement that the proximity tests (program logic) should be 
separated from test tree elements (data structures) in order to 
define multiple tests between elements. If multiple proximity 
tests exist for the same pair of elements, then the user should 
be able to decide, at runtime, which ones are used. Such 
dynamism facilitates the implementation of custom collision 
detection logic, but prevents us from implementing the 
multiple dispatch using methods based on C++ templates, 
which would hardcode the dispatch logic during compilation. 

Our solution is based on a simple function table, indexed by 
element type (Figure 3), that dispatches proximity tests at 
runtime. The user can register and unregister proximity test 
objects with the dispatcher at runtime. For any pair of test tree 
elements, a single lookup retrieves the address of the object 
whose virtual function handles the given pair. Since C++ 
provides only weak support for reflection, a virtual method 
was added to the test tree element interface that receives a 
unique identifier, assigned by the dispatcher upon registration. 

B. 16BTree descent 
Tree descent follows a simple recursive pattern, addressing 



 

         

two elements at a time, one from each test tree. First, the 
proper detector executes a proximity test on a pair of elements. 
Based on the result of the test, and the proximity query chosen, 
the tree descent algorithm may choose to stop, back up, or 
proceed further down the test trees.   

The generality of our framework derives the fact that the 
tree descent algorithm is wholly ignorant of the type of data it 
is dealing with. All special knowledge of the geometry 
concerned is handled by the proximity tests, which can 
themselves be dynamically substituted for each other at run 
time.  

For a more complete description, XAlgorithm 2 X lists pseudo-
code for the procedure. 

OBB Triangle B Voxel Voxel
OBB

Triangle
B Voxel
Voxel

class OBBTriangleDetector

function handle(left : OBB, right : Triangle)

end class

class BVoxelOBBDetector

function handle(left : BVoxel, right : OBB)

end class

 
Figure 3  Proximity test dispatch mechanism. The dispatcher (center) has a 
table of proximity tests, organized by the type of test tree elements that a test 
can handle. To compare two elements, the dispatcher looks up the two types in 
the table and calls the corresponding virtual function on the selected proximity 
test. In this example, the OBBTriangleDetector (top) handles an OBB as 
the left element and a polyhedron triangle as the right. The 
BVoxelOBBDetector (bottom) does the same for bounding voxels and 
OBBs. 

IV. 3BTEST TREE STRUCTURE 
Test tree elements must implement a common interface to 

allow the descent algorithm to traverse the tree. They also 
must provide specialized information to the proximity tests 
that handle them.  

A. 17BGeneric traversal 
Examination of the pseudo-code in XAlgorithm 2 X reveals that 

only one element from each test tree is being compared at 
once. Additionally, the test trees are not traversed in a random 
fashion. Instead, the algorithm starts at the root nodes and then 
either references a element’s first child or a element’s next 
sibling. We can exploit this restricted access pattern to allow 
for time and memory optimizations.  

We define a simple element interface that only allows three 
methods for tree traversal to access other elements: 
firstChild(), nextSibling(), and parent(). Their 
meanings are illustrated in XFigure 4X. Each method returns a 
reference to another element, which is used from then on. The 

methods hasChildren() and hasNextSibling() simply 
provide information about the existence of an element’s 
relations. 

 
Figure 4  Element relations and traversal methods. In the restricted tree 
traversal pattern used, the highlighted element, A.1, is linked to other elements 
in the tree only through three relations: parent(), firstChild(), and 
nextSibling().   

To illustrate these methods, let us take the example of an 
OBB tree.  In order to open the custom data structure up to the 
tree descent procedure, we define a test tree that contains two 
types of elements: OBBs and triangles. An OBB element 
always responds true to hasChildren(), and may return 
references to triangles or to other OBBs when firstChild() 
is called. A triangle element, on the other hand, always replies 
false to hasChildren(). Both elements may or may not have 
siblings, and respond accordingly. 

B. 18BMemory Optimization 
Since only one element from a test tree is used at any one 

time, the entire tree of element objects need never be 
constructed in its entirety. Therefore, it is possible to design 
tree structures that are constructed on the fly, or that change 
dynamically. 

Another advantage of the thin tree element interface is its 
proxy support. With this approach, a test tree’s data is not 
stored as individual element objects. Instead, the geometry 
data is stored separately, often in some optimized fashion. The 
element objects themselves simply point to sections of this 
data store. Not only does this allow the designer to optimize 
the data storage as needed, but the element objects themselves 
can be reused.  

 To illustrate, consider once again the OBB tree example. 
Upon construction, the triangles are sorted by a space-
partitioning algorithm to build a binary tree of OBBs. To 
optimize memory, the OBBs are stored in a large array, with 
compressed descriptions of their positions and indexes of their 
children. Triangles are stored in a similar fashion.  

With this setup, the OBB and triangle elements can simply 
store the indices relative to their respective arrays. When a 
traversal method is called, the element can look up the data at 
that index, unpacking it if necessary, and then answer the 
request.  



 

         

In order to save memory, the test tree used in our example 
constructs only one OBB element and one triangle element. 
Instead of always returning a reference to another element 
object in response to a traversal method call, these “singleton” 
elements only return references to themselves or to each other.  

Consider what happens when firstChild() is called on 
an OBB element. If the child is also an OBB, then the element 
only needs to update its own internal reference and simply 
return a reference to itself. If the child is a triangle, then it 
retrieves the triangle element of the test tree and updates the 
triangle’s internal data before returning a reference to it. The 
other two tree traversal methods, nextSibling() and 
parent(), are implemented in a similar fashion. 

In this way, only two element objects (one for OBBs and 
one for triangles) are needed to act as the entire test tree, and 
they can be allocated before the tree descent begins, saving 
both time and memory.  

V. 4BDYNAMIC VOXEL MAP FOR ROBOTIC VISION SYSTEM 
A critical issue in autonomous robotics is to provide 

perception-based geometric models for automated motion 
planning and control. In such a context the system may 
consider various types of geometric models (occupancy grids, 
closed polyedra, polygons soups, voxels, etc.) according to the 
choice of sensors. Nevertheless, an accurate CAD model of the 
robot itself is often available to the system designers. In such a 
case, an astute collision detector could address heterogeneous 
data structures in order to minimize sensing error while 
optimizing performance. 
 We conducted an experiment involving HPR-2 
(XFigure 5X), a humanoid robot [14, 15]. The goal is to allow the 
robot to autonomously explore unknown environments using 
stereo vision and probabilistic path planning techniques. By 
testing a hybrid collision detection scheme against a 
homogenous polyhedral one, we can demonstrate the 
effectiveness of our approach. 

 
Figure 5  The HPR-2 humanoid robot. 

A. 19B3D Reconstruction 
To represent the environment, we use a 3D-occupancy grid 

which is frequently refreshed with information from HPR-2’s 
cameras [16, 17]. Each grid cell is assigned a triplet 
representing the probabilities that it contains an obstacle, free 
space, or is indeterminate. Originally, all cells are considered 
indeterminate. Based on these values, the grid cells are 
classified into one of three discrete categories:  OBSTACLE, 

UNKNOWN or FREE (XFigure 6X). The UNKNOWN category 
may refer to a cell that the robot has not yet observed (e.g. it is 
behind an obstacle) or is unsure about (e.g. not enough 3D 
points have been gathered in that volume). 

As the robot moves, it gradually discovers more of the 
environment around it. Additionally, the environment itself 
may change. In both cases, the robot takes the new 
information into account in the 3D model. 

Apart from its own position and that of its goal, all 
information about the environment is derived from its stereo 
vision. To carry out the task, it proceeds as follows: 

First, it examines the environment through taking hundreds 
of images. Next, it uses the vision data to classify the 3D grid 
cells, creating two occupancy grids: one for OBSTACLE cells, 
and the other for UNKNOWN (free space is defined as the 
absence of grid cells). The robot then searches for a path 
delivering it to the goal, without considering the UNKNOWN 
grid. Assuming that a path is found, it is examined to 
determine if it enters into the UNKNOWN area. If the path 
does not touch UNKNOWN, the problem is solved and the 
robot can reach the goal. Otherwise, it walks up to the border 
of the UNKNOWN area and stops to take more photos. This 
information is used to update the occupancy grids, and the 
process continues iteratively.   

 
Figure 6  Occupancy grid. Data from several stereo images are combined to 
calculate the probabilities that a grid cell contains an obstacle. Here, the 
calculated grid cells are superimposed upon an acquired image. The red cells 
represent obstacles, and the green cells are unknown. The absence of cells 
indicates that the space is considered free. 

B. 20BDynamic Voxel Map 
A natural representation of the 3D occupancy grid is a voxel 

map. Such a space-partitioning method can benefit from a 
hierarchical organization, with larger voxels bounding a 
predetermined set of smaller ones [10].  

One advantage of voxel maps is the efficient manner in 
which they can be updated. Removing or adding a voxel at the 
lowest level sends a message to the parent voxel informing of 
a change. In this way, bounding voxels can be created and 
removed on the fly in order to assure consistency (XFigure 7X). 

Just as polyhedron objects in the scene tree may be 
transformed into an OBB tree for collision detection, so can 
voxel map objects be transformed into a voxel map test tree. 
However, unlike the OBB tree construction process, the voxel 



 

         

map test tree requires no pre-computation. Since it merely 
references the included voxel maps, it does not need to be 
rebuilt each time a change occurs.  

a b

c

d

a b

c

d

e

f

 
Figure 7  Voxel hierarchy. On the left, two primitive voxels (a and b) were 
detected by the vision system. Each level of the hierarchy (here there are 
three) contains a larger voxel bounding those below it- c contains both 
primitives on the second level and d contains c on the third. On the right, a 
third primitive voxel e is detected. Automatically, the bounding voxel f is 
created around it on the second level. No modification on the third level of the 
hierarchy is needed in this case. 

Indeed, removing or adding a voxel in the map immediately 
affects the structure of the corresponding test tree as it is 
gradually exposed during tree descent. Such ability exploits 
the flexibility of this architecture in supporting both static and 
dynamic structures. 

C. 21BExperimental Design 
Since an accurate and precise polygon soup model of HPR-

2 is available we would like to use it for collision detection. 
The occupancy grid, however, could have multiple 
representations. By tessellating the boxes formed by the grid 
cells, the grid can be converted into a polygon soup model for 
use by a dedicated polygon soup collision detector. Using a 
dynamic voxel map, however, requires a hybrid voxel-polygon 
collision detector. In our experiment, we tested the 
performance of the two collision detectors. 

 
Figure 8  Environment discovery in three steps. When HPR-2 is placed at its 
initial position, it has no prior information of the environment. It builds a 
tentative representation of the environment from the acquired image data (a), 
and moves towards the boundary of the UNKNOWN area (green), while 
avoiding obstacles (red). Once there, it refines its estimation of the 
environment (b), and proceeds with the second iteration of its exploration 
algorithm. After this movement, it can perceive a clear path reaching the goal 
(c). By moving there (d), it completes the task.  

The robot was placed in a typical exploration scenario, in 

which it maneuvers around an obstacle in order to reach its 
goal position (the environment measures 6x6x1m). Since the 
obstacle partially blocks the robot’s view of the scene, it takes 
three iterations of the exploration process in order for the robot 
to complete its task.  

In order to get consistent results for the collision detection 
performance, we pre-converted the image data into occupancy 
grid cells (20cm3) for each of the three iterations. We 
measured the time and memory taken for each collision 
detector to process and initialize the occupancy grid data. 
Finally, we measured the time taken per collision test during 
the path planning process.  

D. 22BResults 
As explained in the last section, the experiment is divided 

into three iterations, each having a different number of grid 
cells for seach category. Table I presents the time needed to 
create the collision detection structures as well as the mean 
time per proximity test during the path planning process, while 
Table II compares memory consumption. 

Although our results show modest differences in memory 
consumption and collision test time, they might not 
convincingly argue for the use of a hybrid collision detector. 
The setup time, however, tells a more dramatic story. The 
voxel map is able to incorporate the changes in the occupancy 
grid hundreds, if not thousands, of times faster than the OBB 
tree. Simply put, an OBB tree derives its speed from pre-
calculation step, while voxel maps are almost purely dynamic 
in nature.  

TABLE I.  TIME PERFORMANCE 

Iteration 
Grid Cells 

Type 
Setup 
Time 
(ms) 

Time per 
Collision 
Test (ms) Obstacle Unknown 

1 147 2332 
Voxel 20 0.924 

Poly 65,761 1.083 

2 202 1012 
Voxel 10 0.779 

Poly 17,626 1.292 

3 284 306 
Voxel 7 0.547 

Poly 5,304 1.712 

TABLE II.  MEMORY CONSUMPTION 

Iteration 
Grid Cells 

Type Memory 
(kB) Obstacle Unknown 

1 147 2332 
Voxel 74 

Polygon 111 

2 202 1012 
Voxel 73 

Polygon 92 

3 284 306 
Voxel 73 

Polygon 83 

 



 

         

The setup time gap only widens as the number of voxels 
grows. Cutting the occupancy grid size in half (from 20cm to 
10cm), for example, took the polyhedral collision detector 9.7 
minutes to process, against 38.1 ms for the voxel map. Since 
this level of performance is unacceptable for our application, 
we didn’t conduct further tests at this resolution. 

VI. 5BCONCLUSION AND FUTURE WORK 
Our framework allows for high-performance collision 

detection between heterogeneous geometry types. By 
generalizing the collision detection problem and identifying its 
components, we have extracted a generic algorithm that 
descends a pair of hierarchical structures, using the results of 
dynamically-dispatched proximity tests to guide the search. 

To satisfy the performance constraints placed on collision 
detection, elements in the hierarchical structures are only 
required to implement a thin interface that allows the 
implementation of a number of time and memory optimization 
schemes.  

Finally, we validate our work on an autonomous humanoid 
robot exploring an unknown environment using stereo vision 
and an occupancy grid. Using our framework, we created a 
hybrid collision detector that tests voxels and polygons in 
order to dramatically decrease refresh times. 

In the future, it would be interesting to explore the 
compatibility of this approach with geometric data structures 
that do not use bounding-volume or space-partitioning 
methods. Another question raised by this research is the 
feasibility of generalizing the proximity queries and the results 
that they return.  
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APPENDIX 
function startTest(treeA : TestTree, treeB : TestTree) : void 
  test(root(treeA), root(treeB)) 
end function 
 
function test(a : ElementRef, b : ElementRef) : void 
  detect(element(a), element(b)) 
 
  Boolean childrenExist = hasChildren(element(a)) or hasChildren(element(b)) 
  if childrenExist and shouldContinue() and shouldDescend() 
    ElementRef c  
    if shouldDescendLeft(element(a), element(b)) 
      c = a 
    else 
      c = b 
    end  
 
    element(c) = firstChild(element(c)) 
 
    test(a, b) 
 
    while shouldContinue() and hasNextSibling(element(c)) 
     element(c) = nextSibling(element(c)) 
      test(a, b) 
    end while 
 
    element(c) = parent(element(c)) 
  end if 
end function 
 
function shouldContinue() : Boolean 
  return result() is not COLLISION or query() is not EXHAUSTIVE_COLLISION 
end function 
 
function shouldDescend() : Boolean 
  return result() is OVERLAP or (query() is EXACT_DISTANCE and  
    result() is WITHIN_MIN_DISTANCE) 
end function 
 
function shouldDescendLeft(a : Element, b : Element) : Boolean 
  if not hasChildren(a)  
    return false 
  else if not hasChildren(b)  
    return true 
  else  
    return heuristic(a) > heuristic(b)  
  end if 
end function  

Algorithm 2  Generic tree descent algorithm. The function test() is recursive, and is originally called the root elements of the two test trees. The 
detect() function dispatches the proximity test to the proper handler. ElementRef is a mutable reference to the element, so that multiple copies of the 
reference all point to the same element, retrieved with the element() function. Finally, query() returns the current proximity query and result() 
the last proximity test result. 
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