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Abstract—Among today’s robotics applications, exploration
missions in dynamic, high clutter and uncertain environmental
conditions is quite common. Autonomous multi-vehicle systems
come in handy for such exploration missions since a team of
autonomous vehicels can explore an environment more efficiently
and reliably than a single autonomous vehicle (AV). In order
to improve the navigation accuracy, especially in the absence
of a priori feature maps, various simultaneous localization and
mapping (SLAM) algorithms are widely used in such applica-
tions. As for multi-vehicle scenarios, collaborative multi-vehicle
simultaneous localization and mapping algorithm (CSLAM) is an
effective strategy. However use of multiple AVs poses additional
scaling problems such as inter-vehicle map fusion, and data
association which needs to be addressed. Although existing
CSLAM algorithms are shown to perform quite adequately in
simulations, their performance is much less to be desired in high
clutter scenarios that is inevitable in actual environments. In this
paper, we present an approach to improve the performance of a
CSLAM algorithm in the presence of high clutter, by combining
an effective clutter filter framework based on Random Finite Sets
(RFS). The performance of the improved CSLAM algorithm is
evaluated using simulations under varying clutter conditions.

Index Terms—SLAM, Multi-vehicle, Localization, PHD Filter,
Random Finite Sets, RFS, FIIST

I. INTRODUCTION

Autonomous vehicles (AV) are making a significant im-
pact in a diverse set of applications, including exploration
of unstructured environments, various surveillance missions,
search and rescue opertions to name a few. Multiple AV
deployments have become common in such missions, due to
the sheer complexity of assignment, extent of the environment
and performance gains that can be achieved in termns of speed
and accuracy.

In order to effectively utilize AVs in such missions, it’s
essential to localize themselves in possibly unknown and
unstructured environment, in which they are deployed. For
example if it’s a hydrographic survey in shallow waters,
multiple autonomous surface crafts (ASC) might be deployed
to collaboratively scan a marine environment using multi-
beam sonar scanners for extracting features and objects on the
sea bed. The features that are extracted should be combined
with accurate positional information in order to build accu-

rate maps to be used for further examination. Even though
GPS data (in surface and ground vehicles) can be used for
localization, there is still a possibility that due to changing
atmospheric and field conditions, GPS measurements might
be unavailable or inaccurate. To overcome the limitations,
uncertainties and inaccuracies caused by sensors, Simultaneous
Localization and Mapping (SLAM) algorithm was introduced
[1]. SLAM [2] [3] [4] algorithm exploits artificial and/or
naturally occuring features in the operating environment for
mapping and localization of the vehicles. Using the well known
SLAM framework as a basis, few collaborative localization
and mapping algorithms (CSLAM) were proposed for multi-
vehicle autonomous vehicles.

Although such algorithms perform adequately well in sim-
ulated environments, in field conditions they tend to perform
poorly, because of high clutter returns from the environment
and also inaccurate sensor models used and sensor noises. Out
of these, clutter produced by sensors can significantly degrade
navigation performance, because such data, if not processed
correctly cause SLAM algorithms to produce inaccurate and
inconsistent results. As an example multi-beam sonar sensor
used in shallow sea-bed mapping applications produces mea-
surement data with high clutter near the overlapping areas
of beam scans. This requires that the sensor data be filtered
from clutter before being used for feature extraction. In this
paper, we present an approach to improve the performance of
a CSLAM algorithm in the presence of high clutter, by com-
bining an effective clutter filter framework based on Random
Finite Sets (RFS).

This paper is organized as follows. In Section II we describe
the related work that lead to multi-vehicle SLAM and clutter
filtering approach using an RFS framework. In Section III
we briefly describe the probabilistic building blocks of the
CSLAM algorithm and how to extend those building blocks to
solve multi-vehicle SLAM problem. In Section IV we briefly
introduce the concepts in Random Finite Sets (RFS) based
filtering, clutter reduction and the improvements that are made
to the CSLAM algorithm. In Section V simulation results are
presented and discussed and Section VI concludes the paper.
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Fig. 1. Two robots start mapping independently, with respect to their local
frames of reference. 𝐹𝐺 refers to the global reference frame while 𝐹𝐿1

and
𝐹𝐿2

refers to the local reference frame of the two robots. Black stars in the
local frames of reference correspond to the features mapped by each vehicle
and the red ones correspond to the overlapping features.

II. MULTI-VEHICLE SLAM

Decorrelated nature of local sub-maps and delayed data
association made CLSF [5] an ideal methodology for Multi-
Vehicle SLAM [6]. The collaborating vehicles perform SLAM
independent of each other and produce local sub-maps by
using the features available in their vicinity. These sub-maps
are fused into the existing global map and a consistent single
global map is recovered at a later stage. Fig. 1 is a pictorial
representation of this scenario.

In order to demonstrate this approach, let’s consider the
case of two robots collaboratively performing SLAM in an
unknown environment (Fig. 1). Both of the robots, start from
two arbitrary locations and continue to map with respect to
their frame of reference. The origins of both robots with
respect to the global reference frame are stored for later use.
Once the decision is made to fuse the local maps into the
global map, the local sub-maps are first transformed into the
global frame of reference. Data association is then performed
between features in the global map and local sub-maps to
identify common (over lapping) features (red colored in Fig.
1). These common or duplicate features are used as constraints
to obtain improved map and vehicle position estimates. After
removing the duplicate features from these updated local sub-
maps, they are fused into the global map, after which the robots
can continue mapping again. The formulation of CLSF based
Multi-Vehicle SLAM [6] approach is briefly discussed below.

Suppose the robots are at locatioin estimates, 𝐺�̂�+𝑣1(𝑘 − 1)
and 𝐺�̂�+𝑣2(𝑘−1) and the map of the feature estimates is denoted
by 𝐺�̂�+𝑚(𝑘−1) with respect to the global coordinate frame 𝐹𝐺.
The superscript 𝐺 indicates that the estimates are with respect
to the global reference frame. The composite state vector is
given by,

�̂�+ =

⎡
⎣ 𝐺�̂�+𝑣1(𝑘 − 1)

𝐺�̂�+𝑣2(𝑘 − 1)
𝐺�̂�+𝑚(𝑘 − 1)

⎤
⎦ (1)

The covariance matrix of the state with respect to the frame
𝐹𝐺 is given by,

𝑃+ =

⎡
⎣ 𝐺𝑃+

𝑣1𝑣1(𝑘 − 1) 𝐺𝑃+
𝑣1𝑣2(𝑘 − 1) 𝐺𝑃+

𝑣1𝑚(𝑘 − 1)
𝐺𝑃+𝑇

𝑣1𝑣2(𝑘 − 1) 𝐺𝑃+
𝑣2𝑣2(𝑘 − 1) 𝐺𝑃+

𝑣2𝑚(𝑘 − 1)
𝐺𝑃+𝑇

𝑣1𝑚(𝑘 − 1) 𝐺𝑃+𝑇
𝑣2𝑚(𝑘 − 1) 𝐺𝑃+

𝑚𝑚(𝑘 − 1)

⎤
⎦

(2)

At this point, the decision is made by both robots to
build independent sub-maps and perform SLAM within their
sensors’ field of view. First, two new coordinates frames, 𝐹𝐿1

and 𝐹𝐿2
, are defined centered at the current vehicle estimates

and then, each vehicle initializes a sub-map at the new origin,
with no position uncertainity, and continue to perform SLAM.
At some later time, both vehicles decide to combine the local
sub-maps into the global map. Now the combined state vector
is given by,

�̂�+𝑖𝑠𝑚(𝑘) =

⎡
⎣ 𝐺�̂�+(𝑘)

𝐿1 �̂�+(𝑘)
𝐿2 �̂�+(𝑘)

⎤
⎦ (3)

with,

𝐺�̂�+(𝑘) =

⎡
⎣ 𝐺�̂�+𝐿1

(𝑘)
𝐺�̂�+𝐿2

(𝑘)
𝐺�̂�+𝑚(𝑘)

⎤
⎦ (4)

𝐿1 �̂�+(𝑘) =

[
𝐿1 �̂�+𝑣1

(𝑘)
𝐿1 �̂�+𝑚(𝑘)

]
(5)

𝐿2 �̂�+(𝑘) =

[
𝐿2 �̂�+𝑣2

(𝑘)
𝐿2 �̂�+𝑚(𝑘)

]
(6)

where the subscript ’ism’ stands for independent sub-maps,
which is an aggregated state vector that combines both com-
posite state vector (which contains global vehicle position esti-
mates and global feature estimates) and decorrelated local state
vectors (vehicle position estimation and feature estimations)
produced by individual vehicles performing SLAM. Vehicle
state estimation and feature estimations are given by 𝐿𝑖 �̂�+𝑣𝑖

(𝑘)
and 𝐿𝑖 �̂�+𝑚(𝑘) with respect to the frame of reference 𝐹𝐿𝑖

. The
covariance matrix of the combined state vector is given by,

𝑃+
𝑖𝑠𝑚(𝑘) =

⎡
⎣ 𝐺𝑃+(𝑘) 0 0

0 𝐿1𝑃+(𝑘) 0
0 0 𝐿2𝑃+(𝑘)

⎤
⎦ (7)

with,

𝐺𝑃+(𝑘) =

⎡
⎣ 𝐺𝑃+

𝐿1𝐿1
(𝑘) 𝐺𝑃+

𝐿1𝐿2
(𝑘) 𝐺𝑃+

𝐿1𝑚
(𝑘)

𝐺𝑃+𝑇
𝐿1𝐿2

(𝑘) 𝐺𝑃+
𝐿2𝐿2

(𝑘) 𝐺𝑃+
𝐿2𝑚

(𝑘)
𝐺𝑃+𝑇

𝐿1𝑚
(𝑘) 𝐺𝑃+𝑇

𝐿2𝑚
(𝑘) 𝐺𝑃+

𝑚𝑚(𝑘)

⎤
⎦ (8)

𝐿1𝑃+(𝑘) =

[
𝐿1𝑃+

𝑣1𝑣1
(𝑘) 𝐿1𝑃+

𝑣1𝑚(𝑘)
𝐿1𝑃+𝑇

𝑣1𝑚(𝑘) 𝐿1𝑃+𝑇
𝑚𝑚(𝑘)

]
(9)

𝐿2𝑃+(𝑘) =

[
𝐿2𝑃+

𝑣2𝑣2
(𝑘) 𝐿2𝑃+

𝑣2𝑚(𝑘)
𝐿2𝑃+𝑇

𝑣2𝑚(𝑘) 𝐿2𝑃+𝑇
𝑚𝑚(𝑘)

]
(10)

As can be observed, the covariance matrix of the com-
bined state vector is block diagonal, due to the decorrelated
sub-mapping approach. Now the combined state vector is
transformed into the global reference frame, by a suitable
transformation matrix.

𝐺�̂�+𝑖𝑠𝑚(𝑘) = 𝑇𝐺(𝑘).�̂�
+
𝑖𝑠𝑚(𝑘) (11)
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The corresponding transformed covariance matrix is given by,

𝐺𝑃+
𝑖𝑠𝑚(𝑘) = ∇𝑇𝐺(𝑘).𝑃

+
𝑖𝑠𝑚(𝑘).∇𝑇𝑇

𝐺 (𝑘) (12)

Now data association is performed in order to identify
duplicate (overlapping) features present in local sub-maps and
global map. These duplicate features are treated as constraints
and a constraints minimization approach is used to recover a
more robust estimates for combined state vector and covariance
matrix. The constraints can be written in the form,

𝐶.𝐺�̂�+𝑖𝑠𝑚(𝑘) = 𝑏. (13)

This is solved using linear constraint minimization ap-
proach [7] to obtain a better estimation of the combined state
vector and covariance matrix. Now a suitable transformation
is applied to remove duplicate features. Standard composite
state vector and covariance matrix for Multi-Vehicle SLAM is
recovered by applying another suitable transformation.

III. CSLAM IN HIGH CLUTTER ENVIRONMENTS

A clutter filter, developed by employing the concepts in
multi-target filtering using random finite sets (RFS) introduced
by Mahler [8], was combined with conventional extended
kalman filter based SLAM (EKF-SLAM) algorithm as shown
in Fig. 5. The developed filer is capable of removing clutter
from the measurements prior to the update of EKF-SLAM
filter. The modified SLAM algorithm, is used in each vehicle
performing sub-mapping in high clutter. Subsection A presents
an overview of multi-target filtering approach. Subsection B
presents a viable approximation to the full multi-target filtering
process, and Subsection C presents an implemtation of this
approximation that we adopted in our simulations.

A. Random Finite Set (RFS) multi-target Filtering

In RFS multi-target filtering, multi-target state and multi-
target measurement at time 𝑘 are represented as random sets
𝑋𝐾 and 𝑍𝑘. Assume that at time 𝑘 we have 𝑇𝑘 targets and
𝑁𝑘 measurements. Then, state and measurement sets can be
written as,

𝑋𝑘 = (𝑥𝑘,1, 𝑥𝑘,2, ....., 𝑥𝑘,𝑇𝑘
) ⊆ 𝐸𝑠 (14)

𝑍𝑘 = (𝑧𝑘,1, 𝑧𝑘,2, ....., 𝑧𝑘,𝑇𝑘
) ⊆ 𝐸𝑜 (15)

Analogous to single-target tracking, where uncertainity is
characterized by modeling state and observations as random
vectors, uncertainity in multi-target tracking systems is char-
acterized by modeling the multi-target state and multi-target
measurement as random finite sets (RFS) Ξ𝑘 and Σ𝑘 of
respective state and observation spaces 𝐸𝑠 and 𝐸𝑜.

Assuming a realization 𝑋𝑘−1 of Ξ𝑘−1 at time 𝑘 − 1, the
multi-target state at time 𝑘 can be modeled by the RFS,

Ξ𝑘 = 𝑆𝑘(𝑋𝑘−1) ∪ Γ𝑘 (16)

where 𝑆𝑘(𝑋𝑘−1) denotes the RFS of targets that have
survived from time 𝑘 − 1 and Γ𝑘 denotes the spontaneous

targets appeared at time 𝑘. Similarly measurements at time 𝑘
can be modelled by the RFS

Σ𝑘 = Θ𝑘(𝑋𝑘) ∪ 𝐶𝑘(𝑋𝑘) (17)

where Θ𝑘(𝑋𝑘) denotes the RFS of measurements generated
by the targets having the state 𝑋𝑘, and 𝐶𝑘(𝑋𝑘) denotes the
RFS of clutter.

Using these RFS models, recursion of the optimal multi-
target Bayes filter is given by,

𝑝𝑘∣𝑘−1(𝑋𝑘∣𝑍1:𝑘−1)

=

∫
𝑓𝑘∣𝑘−1(𝑋𝑘∣𝑋𝑘−1)𝑝𝑘−1(𝑋𝑘−1∣𝑍1:𝑘−1)𝑑𝑋𝑘−1

(18)

𝑝𝑘(𝑋𝑘∣𝑍1:𝑘) =
𝑔𝑘(𝑍𝑘∣𝑋𝑘)𝑝𝑘∣𝑘−1(𝑋𝑘∣𝑍1:𝑘−1)∫

𝑔𝑘(𝑍𝑘∣𝑋𝑘)𝑃𝑘𝑘∣𝑘−1(𝑋𝑘∣𝑍1:𝑘−1)𝑑𝑋𝑘
(19)

where analogous to the Markov transition density in sin-
gle target tracking, the statistical behaviour of the RFS
Ξ𝑘 is characterised by the conditional probability density
𝑓𝑘∣𝑘−1(𝑋𝑘∣𝑋𝑘−1), and similar to the likelihood function in
single target tracking, statistical behaviour of the RFS Σ𝑘 is
described by the conditional probability density 𝑔𝑘(𝑍𝑘∣𝑋𝑘).

B. The Probability Hypothesis Density (PHD) Filter

The full multi-target posterior recursion equations contains
multiple integrals making it computationally intractable. As a
remedy, Mahler proposed propagating the first moment instead
of the full posterior. Analogous to the expectation of a random
vector, the first order moment of the RFS Ξ𝑘 is called the
Probability Hypothesis Density (PHD), which is denoted by
𝐷Ξ. The PHD is a function, whose integral over some region
𝑆 yeilds the expected number of targets (elements of Ξ) present
in 𝑆, which is given by �̂� ,

�̂� =

∫
𝑆

𝐷Ξ(𝑥)𝑑𝑥 (20)

Assume, 𝐷𝑘∣𝑘 and 𝐷𝑘∣𝑘−1 denote the densities correspond
to full multi-target posterior 𝑝𝑘 and multi-target predicted prior
𝑝𝑘∣𝑘−1 respectively. Then under the assumption of Poison
distribued clutter, PHD prediction and update equations are
given by,

𝐷𝑘∣𝐾−1(𝑥) = 𝛾𝑘(𝑥)

+

∫
𝑃𝑆,𝑘(𝑥𝑘−1)𝑓𝑘∣𝑘−1(𝑥𝑘∣𝑥𝑘−1)𝐷𝑘−1(𝑥𝑘−1)𝑑𝑥𝑘−1

(21)

𝐷𝑘(𝑥) = [1− 𝑃𝐷,𝑘(𝑘)]𝐷𝑘∣𝑘−1(𝑥)

+
∑
𝑧∈𝑍𝑘

𝑃𝐷,𝑘(𝑥)𝑓𝑘(𝑧∣𝑥)𝐷𝑘∣𝑘−1(𝑥)

𝜅𝑘(𝑧) +
∫
𝑃𝐷,𝑘(𝜁)𝑓𝑘(𝑧∣𝜁)𝐷𝑘∣𝑘−1(𝜁)

(22)

where, PHD of RFS Γ𝑘, which corresponds to spontaneous
targets appeared at time 𝑘, is given by 𝛾𝑘. 𝑃𝑆,𝑘 denotes the
probability of survival of a target, while 𝑃𝐷,𝑘 is the probability
of detection. 𝜅𝑘 is given by, 𝜅𝑘 = 𝜆𝑘𝑐𝑘 where 𝑐𝑘 denotes the
clutter probability density and 𝜆𝑘 denotes the average number
of Poison clutter points per time step.
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Although PHD filter is computationally cheaper than full
multi-target posterior (18,19), due to multiple integrals, it can’t
be readily used in implementations. Vo et. al [9] presented
an eligent approximation of the PHD filter using Sequential
Monte Carlo (SMC) methods, which can easily be imple-
mented in various tracking applications.

C. Sequential Monte Carlo implementation of PHD Clutter
Filter

The PHD clutter filter was implemented using Sequencial
Monte Carlo (SMC) approach proposed by Vo et al [9]. The
algorithm works as follows,
Step 1: Initialization
For time 𝑘 ≥ 0 the initial set of particles is given by,
𝛼𝑘 = {𝑤𝑖

𝑘, 𝑥
𝑖
𝑘}𝐿𝑘

𝑖=1, which represents the PHD 𝐷𝑘∣𝑘
representing the estimates of targets, while 𝑤𝑘 representing
the associated weights of the particles. PHD is recursively
propogated for 𝑘 ≥ 1.
Step 2: Prediction
Sample �̃�𝑖𝑘 and predict the weight of each particle according to
the motion model. In here we have adoptod the typical target
tracking problem to suit SLAM community by assuming
targets are moving according the vehicle’s motion model,
while vehicle (sensor) is stationary. Where 𝑖 = 1, ..., 𝐿𝑘−1,
and additionally 𝐽𝑘 amount of particles are added to represent
the PHD 𝛾𝑘 of spontaneously appeared targets.
Step 3: Correction
For each observation 𝑧 ∈ 𝑍𝑘, likelihoods 𝑔𝑘(𝑧∣�̃�(𝑖)𝑘 ) are
computed for each particle and weights are updated according
to,

�̃�
(𝑖)
𝑘 =

[
(1− 𝑃𝐷,𝑘(�̃�

(𝑖)
𝑘 )) +

∑
𝑧∈𝑍𝑘

𝑃𝐷,𝑘(�̃�
(𝑖)
𝑘 )𝑔𝑘(𝑧∣�̃�(𝑖)𝑘 )

𝜅𝑘(𝑧) + 𝐶𝑘(𝑧)

]
�̃�

(𝑖)
𝑘∣𝑘−1

(23)
where,

𝐶𝑘(𝑧) =

𝐿𝑘−1+𝐽𝑘∑
𝑗=1

𝑃𝐷,𝑘(�̃�
(𝑗)
𝑘 )𝑓𝑘(𝑧∣�̃�(𝑗)𝑘 ) (24)

The estimated number of targets are given by the sum of
the weights;

�̃�𝑘∣𝑘 =

𝐿𝑘−1+𝐽𝑘∑
𝑗=1

�̃�
(𝑗)
𝑘 (25)

Step 4: Resampling
Particles are resmapled to obtain {𝑤(𝑖)

𝑘 /�̃�𝑘∣𝑘, 𝑥
(𝑖)
𝑘 }𝐿𝑘

𝑖=1. Then

the weights are rescaled by �̃�𝑘∣𝑘 to get {𝑤(𝑖)
𝑘 , 𝑥

(𝑖)
𝑘 }

Step 5: Estimation of target locations
Maximum weighted particles are chosen and using k-means
clustering algorithm, exact feature locations are estimated.

IV. RESULTS

Simulations were conducted to verify the utility, feasibil-
ity and performance gains of the new multi-vehicle SLAM
algorithm with the PHD filter, in high clutter environments.
Two identical vehicles (ASCs) were deployed in the in-house

build simulator environment with artificially placed landmarks
(Fig. 2). Both vehicles were equipped with 2D Laser rangers
with identical noise parameters, providing range and bearing
measurements. The vehicles were driven on two overlapping
trajectories in a rectangular area with randomly placed land-
marks (Fig. 3), while performing online multi-vehicle SLAM.
Clutter was assumed to be Poison distribued and generated
uniformly over the field of view (FOV) of ranging sensor, with
an average rate of 𝜆𝑐.

Experiments were conducted for low, medium, high and
extremly high clutter scenarios, and the resulting estimated
vehicle trajectories are shown in Fig. 4. The errors (in X
direction of a vehicle) and runtimes against each clutter density
is shown in Fig. 6 and Fig. 7 respectively. It’s clear from the
results that, except for the high and extremely-high clutter
cases, the proposed algorithm can eliminate the effects of
clutter, and perform adequately well. In high and extremely
high clutter conditions, an increase of miss-detections can be
observed in addition to the errors in trajectory estimations and
false detections. Moreover, as the clutter density is increased,
total running time of same simulation increases as shown in
Fig. 7. This is due to the fact that, each clutter point is initially
considered as a valid measurement, and being tracked until
discarded as a false alarm.

Fig. 2. Two ASCs performing CSLAM in a simulator developed in-house
for testing and validation of algorithms before actual field trials.

V. CONCLUSION

In this paper, we have presented a multi-robot SLAM
[6] algorithm applicable in high clutter environments and
evaluated it’s performance. First we presented the formulation
of CLSF based multi-robot SLAM algorithm, using the fact
that, CSLAM problem can be solved as several mono-SLAM
problems. The ability of delayed fusion of local sub-maps into
the global map made CLSF an ideal and natural tool for solving
the CSLAM problem. Then we discussed the improvements
that can be obtained by combining Random Finite Set (RFS)
filtering approaches with observation and feature extraction
processes.

The performance of the proposed algorithm was evaluated
using various clutter conditions. It is evident from the results
that, multi-robot SLAM algorithms can greatly benefit from
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(b) 𝜆𝑐 = 10 (medium)
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(c) 𝜆𝑐 = 20 (high)
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(d) 𝜆𝑐 = 30 (extremely high)

Fig. 4. Estimated vehicle trajectories (in red and green), superimposed on ground truth (in black) with estimated features (black circles) and actual features
(blue stars), under various clutter conditions.

−50 −40 −30 −20 −10 0 10 20 30 40 50 60
−60

−40

−20

0

20

40

60

X(m)

Y
(m

)

First
vehicle’s
actual path

Second
vehicle’s
actual path

Actual
features

Fig. 3. The ground truth of vehicle paths (in black) and features present in
the simulation environment (blue stars).

RFS based clutter reduction approach for improved mapping
and localization. The current drawback of the algorithm is the
heavy computational requirement, which can be overcome by
employing high end processors with good software engineering
approaches. The proposed method is believed to be beneficial
for practical implementations of autonomous multi-vehicle
exploration, serveillance or search and rescue missions under
various feild conditions.
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