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Abstract—This paper presents a method for robustly sta-
bilising omnidirectional video given the presence of significant
rotations and translations by creating a virtual camera and using
a combination of sensor fusion and scene tracking. Real time
rotational movements of the camera are measured by an Inertial
Measurement Unit (IMU), which provides an initial estimate of
the ego-motion of the camera platform. Image registration is then
used to refine these estimates. The calculated ego-motion is then
used to adjust an extract of the omnidirectional video, forming
a virtual camera that is focused on the scene. Experiments
show the technique is effective under challenging ego-motions
and overcomes deficiencies that are associated with unimodal
approaches making it robust and suitable to be used in many
surveillance applications.

Index Terms—Omnivision, Camera Stabilisation, Virtual Cam-
era, Sensor Fusion, Active Vision

I. INTRODUCTION

Video-based surveillance systems have become prevalent in
modern day society as a result of the increased security threat.
Traditionally, surveillance systems use multiple fixed or pan-
tilt-zoom (PTZ) cameras to enable observation of areas and/or
personnel. Fixed and PTZ cameras have only limited fields of
view at any one time and thus require several cameras to cover
larger urban areas. To address this, mobile platforms using
omnidirectional cameras have been introduced. Mobile omni-
directional camera platforms minimise the need for significant
surveillance infrastructure as a single camera system can cover
a vast area. They also increases the operational versality with
the overall improvement to situational awareness.

One of the major issues with mobile platforms is video
stabilisation. In surveillance, the stabilisation is typically in
relation to the target, which means that a target, once acquired,
should always stay in the same position within the view,
regardless of the platform’s ego-motion. Ego-motion of a
platform is a combined motion of rotation and translation. To
compensate for ego-rotation, a traditional approach is the use
of hydraulic or electro-mechanic tilt platforms on which the
camera system is mounted. The platform is tilted based on
the measurement of an accelerometer or gyroscope, contained
within an Inertial Measurement Unit (IMU). If ego-translation
is present, the target’s bearing changes. To compensate for this,
the translational component needs to be estimated. However,
affordable IMUs, implemented as microelectromechanical sys-
tems (MEMS) cannot measure translational motion due to
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Fig. 1.

Virtual Camera extracted from omnidirectional video.

errors introduced by double integration of the accelerometer
readings. Digital image stabilisation resolves this by registering
features [1] across frames over time, finding the optimum
affine transformation that minimises the error between the
features, and applying it to the subsequent frames. This can
be computationally expensive as the search window has to
be potentionally very large, especially if camera ego-rotation
is occurring since this can easily cause the field-of-view to
move drastically. When using omnidirectional cameras, the
correspondence between the cameras needs to be fused into
a single image domain. This can be done using projections
like the common cylindrical panorama, fisheye, or cubical
panorama that are used to map full 3D world scenes onto
2D images [2]. The most intuitive representation of 3D world
data is the spherical projection with the omnidirectional camera
situated in the centre of the sphere, because it represents the
scene as it is captured; it has recently been made popular
by Google’s Streetview Services. Mapping all images onto a
unit sphere yields a representation in a continuous 3D domain.
However, well-established imaging algorithms work with 2D
datasets and cannot be easily adapted to function with 3D
datasets. In many situations, it is not necessary to process
the entire spherical view as the region of interest, at any one
time, typically only occupies a small fraction of the overall
view. These regions of interest can be very efficiently extracted
using appropriate inverse projection techniques [3]. Processing
in this fashion attracted much interest in the late 1980s and
early 1990s and went by the general term Active Vision [4].
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Being able to selectively choose where to look and what to
look at was recognised as a way to speed up computerised
scene and image interpretation. Many systems were built
using motor-powered and servo-controlled cameras and some
impressive results were achieved, but it was recognised that
high performance was needed for such systems to function
e.g. a rotational speed of 500°s~! and an acceleration of
5000°s~2 [5], which was expensive to obtain. However, using
an omnidirectional camera overcomes these constraints as the
camera system does not have any moving parts that restrict the
angular velocity.

We propose a novel technique of sensor fusion for scene
stabilised viewing of a target, where stabilisation is robust
to both rotation and translation of the capturing platform,
by extracting a region with a limited field-of-view from the
omnidirectional video, effectively a ‘virtual camera’ (Figure
1). The use of a virtual camera further reduces the search
window size of the feature tracker. Using sensor fusion of an
IMU and a particle filtered feature tracker, the orientation of
the virtual camera is subsequently adjusted to keep the target
centred in the view. We show that the fusion of omnidirectional
video and IMU data increases tracking accuracy and eliminates
unrecoverable tracking failures even during fast ego -motion.
Our technique is also able to use hardware devices that are not
closely synchronised in terms of their frame capture.

This paper is organised as follows: section II discusses
related work, whilst in section III virtual cameras and the
approach is described. The experimental methodology and the
results are discussed in section IV with a conclusion given in
section V.

II. RELATED WORK

Video stabilisation has been extensively studied, e.g. Yang
and Schonfeld [6] described video stabilisation using a particle
filter based on SIFT [7] features, Battiato et al. [8] reported
a video stabilisation systems based on tracking SIFT features
through consecutive frames. cameras. However, both systems
stabilise the image using features of the entire image, and do
not stabilise on a single object. A tracking approach, where
the stabilisation is emphasised on a target is presented by
Kumar et al. [9], who used a PTZ camera and a CAMSHIFT
[10] filter to track an object within a frame. Their system
mechanically adjusts the orientation of the camera platform
according to the position of the target object. Sun et al. [12]
used a virtual camera to detect and track a person in a wide
angle panoramic video; designed for indoor lecture halls, the
camera was kept static at all times. Quaritsch et al. [13] re-
ported a multicamera tracking system where targets are handed
over between cameras. A system for omnidirectional image
stabilisation by computing the 3D camera trajectory using a
structure from motion approach was described by Torii et al.
[11]; based on just image features, the system needs to process
the whole image as the view point can change drastically
between consecutive frames. A sensor fused approach using
gravity as a vertical reference for 3D-mapping of planar image
points for robot guidance is described by Lobo and Dias [14];

Fig. 2.

System Platform. Augmented with the coordinate systems of the
virtual camera (V), the omnidirectional camera (C), the sensor (S), and the
global coordinate system (G). Note that Tg is fixed as camera and sensor are
rigidly connected. The size of the virtual camera is defined by its field-of-view,
ay, and vertical resolution, wy at time step t.

the approach relies on the estimation of vanishing lines that
are difficult to obtain in outdoor scenes. Armesto et al. [15]
used a Kalman filter to fuse vision and inertial measurements
for tracking ego-motion of only a monocular-camera.

ITII. SYSTEM DESCRIPTION

We utilise the Ladybug 2, an omnidirectional camera
manufactured by Point Grey Research and an IMU, MTi,
manufactured by Xsens. The Ladybug 2 camera consists of six
individual cameras each capturing 1024 x 768 pixels at 30fps.
Five cameras are horizontally aligned in a ring, with the sixth
pointing upwards. In this setup the system can capture about
80% of the whole sphere. It is pre calibrated, and the geometry
between the cameras is provided by the manufacturer. This
allows for fast and precise spherical mapping, negating the
need to register all images. The MTi IMU has acceleration, gy-
roscopic, and magnetic sensors that are fused using a hardware-
based Kalman filter. It outputs calibrated measurements of
acceleration and angular velocity, as well as a drift-free 3D
orientation with a static accuracy of < 1.0°, at a maximum
sample rate of 100Hz.

A. Notation

In this paper, the following notation is used: a point in a
coordinate system (A) is denoted as p*, features and objects
as f* and o respectively. The orientation of A with respect
to another coordinate system (B) is denoted as the 3 x 3
rotation matrix Rj. The translational offset between A and
B is denoted as the 3 x 1 vector t5 of A in respect to B. Both
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are combined using homogeneous coordinates resulting in the
4 x 4 transformation matrix T4

Ry tf
T = < o f) (1

The inverse transformation (T3)~! is subsequently defined as
TS,

B. Coordinate Systems

Four coordinate systems are used (Figure 2):

1) the global coordinate system (G),

2) the sensor coordinate system (S), which is defined for
the IMU,

3) the camera coordinate system (C) is defined with respect
to S as the camera and IMU are rigidly attached, its
origin lies in the centre of the camera, and

4) the virtual camera coordinate system (V), which is
defined at the centre of a virtual camera and defined
with respect to C (sec. III-C).

The MTi sensor outputs its orientation as the rotation between
G, S, and time t, denoted as the homogeneous transformation
T%’t. With the fixed relative transformation between S and C,
TE, the transformation of a point p© into p© is

p® =TS, TE p©. )

C. Virtual Camera

A virtual camera (Figure 1) is a sub-window extracted from
a full spherical view. The virtual camera is defined by its
orientation Rg’t with respect to C, the vertical resolution wy,
and the field-of-view « at time step ¢. Applying the perspective
projection with z; and 2z as the projection’s far and near
clipping respectively yields the transformation from C to the
virtual camera coordinates V as T, ,

cot G 0 0 0
v 0 cot G 0 0 RS, O
TC,t = 0 0 zitza 22120 07 1)
Zo—Z21 Zo—2z1
0 0 -1

(3)
A point pV can thus be transformed into global coordinates as
P =TS, TS TV, p". @)

D. PFarticle Filter Framework

We use a particle filter framework [16] to track the target object
in global coordinates and use the current predicted position p$*
to adjust the orientation of the virtual camera. The state -space
model of the particle filter can be described with a state vector
x = (z,y,2,4,7,%)T containing the global 3D-projection
onto the unit sphere and velocity of the target.

E. Synchronisation and Calibration

To utilise data captured by a sensor in another sensor’s domain,
the spatial transformation and temporal offset between both
sensors needs to be known. This means that IMU and camera
need to be calibrated, i.e. Tg needs to be estimated. We
use a method proposed by [18] to estimate the relative pose
and orientation. However, as the Ladybug 2 camera does
not possess a hardware trigger interface, the synchronisation
between the camera and the IMU is not accurate, resulting in
a deviation between video frames and inertial measurements.
To cope with this offset, we increase the uncertainty of the
position estimation, so that our approach can also deal with an
inaccurate calibration between camera and IMU.

E. Stabilisation

After selecting an object, we initialise the stabilisation process
by registering features within the object’s region. In subsequent
time steps, stabilisation is achieved by iteratively adjusting the
orientation of the virtual camera to stabilise the object at the
centre of the image using sensor fusion of the IMU and the
feature tracker.

1) Initialisation: At the first time step, we select an object
to track by selecting a region and use the methods proposed
by [19] to register good features f N.¢» Where ¢ = 0 and N
is the number of features registered. The position of the object
o at time step ¢ is then estimated using eq. (4) as the centroid
formed by the features as

N
1
G_mG %

Oy = Tv,t N Z fn,t~ 5)

n=1
To centre the virtual camera onto o? , the orientation of the
virtual camera, Rgt can then be computed as the rotation of
the unit vector u§ = (1,0,0)7 towards of using Rodrigues’

rotation formula
Rﬁ(ﬂ):Ig+sin6-(~2+(1—c056)~f22, 6)

where the skew symmetric matrix € is defined as

3 0 —O3 @
Q= o 0 —& |, withd=u§ xof, (7
—Dy @& 0

and (3 is the angle between both position vectors that can be
computed as the [2-norm of the cross product for small, or the
arccos of the dot-product for large angles. The transformation,
T}J/,t’ to adjust the virtual camera can then be recomputed
using eq. (3).

2) Sensor Fusion: Sensor fusion is performed in three
steps: first, the IMU is used to roll forward the position
estimation of each feature into the next time frame. Second, the
features are refined to compensate for translational movement.
Third, the orientation of the virtual camera is adjusted to keep
the object centred.

At time step ¢ + 1 the new measurement of the IMU, T(S}yt 1
is evaluated. The transformation Tg’t 41 1s then computed as

Tg,tJrl = Tg,t+1 Tg T(S},t+1' (3)
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The feature positions in the virtual camera at time step ¢ + 1
as predicted by the IMU are then

v \% G ,V
fl..N,t+1 = TG,t+1 TV,t f1.4N,t- )

We then utilise pyramidal Lucas-Kanade tracking [20] and
updating the positions of the features in V and dropping non-
matched features. If the number of features drop below a
certain threshold (e.g. <10), new features are estimated within
the predicted region of the target object using the methods
described by [19]. Using the matched feature pairs, f, Mt+15
where M is the number of matches, the position of the target
object og_1 is then again computed using eq. (5) and used to
update the particle filter tracking. We use the distance ! along
the unit sphere [17] as the error function of the measurement
update of the particle filter

i 2 N2
| = arccos 02’3 xg;( ) + \/1 — (0%) \/1 _ ((Xg)(z))
08 Gy (4)
x cos | arctan —=2 — arctan % (10)
01 (x77) ¢

Finally, the updated position prediction of the target object
otGJrl, as estimated by the particle filter, is used to stabilise
the virtual camera by using eqs. (6) and (7) to compute the
transformation, Tg,t 115 for the next time step.

IV. EXPERIMENTS

The goal of the experiments was to test the robustness and
to quantitatively evaluate the performance of stabilisation a
virtual camera using sensor fusion of a feature tracker and
IMU. We captured 9 hand-held sequences during which the
recording platform was subject to three different types of ego-
motion: 1. rotational, 2. translational, and 3. combined motion.
Each sequence consists of 24 seconds with full resolution
omnidirectional video data at 25fps and inertial data sampled
at 50Hz. As a target object we chose a checkerboard because it
allows precise error measurement. We compared our approach
to unimodal stabilisation using IMU-only and feature-tracker-
only. Furthermore, we applied our approach to a monocular
camera to compare the performance of a virtual camera of
an omnidirectional video to a monocular video. For that, we
simulated a monocular camera by disabling all but the front
camera of the Ladybug 2. To evaluate the performance of the
proposed technique, we compute the error of the stabilisation
as the Euclidean distance from the centre of the virtual camera
as ¥ and convert it into a resolution independent error in G
as

€5 = Vo w;t. (11)

The results listed in Table I indicate that the IMU is a
reliable source for stabilising ego-rotation (Fig. 6(a)). However,
the performance still does not match our fused approach be-
cause small translations have been present in the data due to the
hand-held spinning and the fact that both sensors were not per-
fectly aligned and the lack of hardware synchronisation in the
Ladybug 2 camera. However, when translational movement is
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Fig. 3. Ground Truth. The graphs depict the ground truth for three example
test runs: (a) mainly rotation, (b) mainly translation, and (c) both rotations and
translations. The position is given as the distance from the centre in meters
and displayed on the right axis of the graphs. Yaw, pitch, and roll show the
orientation of the platform in Euler angles on the left axis. Note, that the
singularities in graph (c) are caused by the singularities that are present in the
Euler notation.

dominant, the image drifts off as the IMU does not compensate
for translation (Fig. 6(b)). Note the form of the curve which
corresponds to the left-right movement of the platform (see the
ground truth in Fig.3(b)). Figure 4(a) depicts the corresponding
frames in the stabilised video. The small rectangle shows the
centre of the virtual camera. The feature tracker coped very
well with movement where translation was dominant (Fig.
6(b)) since the apparent motion of the scene is not large.
Rotations, however, caused large shifts in th e field-of-view,
exceeding the search window and causing an unrecoverable
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Fig. 6. Experimental Evaluation. Graphs (a)-(c) show the error as an offset
from the centre in radians measured in the global frame for the compared
stabilisation techniques.
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performed using sensor fusion of the IMU and a feature tracker on a virtual
camera. The relative position and orientation of the platform is show above

each frame. Fig. 7. Experimental Evaluation. The graph depicts the error for a

monocular camera compared to our approach.
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[ [[ 1.Rotation | 2. Translation | 3. Combined |

MU 0.116 0.128 0.152
+0.060 +0.081 +0.103

Feature-Tracker 0.088T 0.023 0.045T
+0.066 +0.012 +0.042

Fused Monocular - - 0.035T
+0.053"

Our Approach 0.023 0.021 0.023
+0.014 +0.011 +0.013

TABLE I

Results. The table shows the shift of the image as a relative mean error in
radians. { Feature tracker unrecoverably lost the target, mean error is
computed up until the lost of target.

failure at around frame 250. Figure 4(b) shows the drifting and
rolling of the virtual camera in the corresponding frames. A
similar problem occurred in the combined motion at frame 350
(Fig. 6(c)). Finally, when using our approach on a monocular
camera (Fig. 7), the stabilisation works well until the target
approaches the bounds of the field-of-view of the camera
around frame 200. The corresponding frames are depict in
Figure 4(c). As the field-of-view is a hardware restriction,
only an omnidirectional camera can overcome the limited
field-of -view. However, the computational cost of processing
a whole spherical data set would be much higher than the
computational cost for processing the search window of the
virtual camera, which is of the same size as the monocular
camera.

During the experiments the calibration and synchronisation
offsets between both sensors seemed not to be an issue.
Even though they presumably caused in increase in tracking
inaccuracy, the particle filter assured that the tracking does not
fail during fast rotations.

V. CONCLUSION
In this paper, we presented a method of stabilising the view
of an omnidirectional camera with respect to a target object
by using a virtual camera and sensor fusion. The experiments
showed that the presented approach is robust and outperforms
unimodal and monocular approaches. It demonstrated the ben-
efit of sensor fusion to overcome limitations of single sensors.

SUPPLEMENTARY MATERIAL
Videos demonstrating the stabilisation are available online at
http://www.computing.edu.au/~14133369/stabilisation.
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