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Abstract—In this paper, a new collaborative localization
method is proposed. On the assumption that the distance between
two communicative vehicles can be calculated with a good preci-
sion, cooperative vehicle are considered as additional satellites
into the user position calculation by using iterative methods.
In order to limit divergence, some filtering process is proposed:
Interacting Multiple Model (IMM) is used to guarantee a greater
robustness in the user position estimation.

I. INTRODUCTION

Today, vehicles become more and more autonomous. Many

Advanced Driver Assistance Systems (ADAS) are embedded in

order to help the driver in the driving process. This is possible

since vehicle are equipped with many sensors. Propriocep-

tive sensors (acceloremeter, gyrometer,. . . ) provide information

about the vehicle by itself such as its velocity or lateral

acceleration. On the other hand, exteroceptive sensors, such as

video camera, laser or GPS devices, provide information about

the environment surrounding the vehicle or its localization.

As data are noisy, inaccurate and can also be unreliable or

unsynchronized, the use of data fusion techniques is required

in order to provide the most accurate situation assessment as

possible [1] as illustrated in Fig. 1. In other words, situation

assessment consists in providing a local map, modeling the

vehicle state by itself (position, velocity, acceleration, braking

ability,. . . ), but also potential obstacle states (position, velocity,

type,. . . ) like other vehicles, bicycles or pedestrians, and finally

the environment state including weather conditions or road

state.

Figure 1. Perception task

Many ADAS are now commercialized such as Adaptive

Cruise Control (ACC), Lane change assistance systems or

Collision avoidance systems. As a direct consequence of the

electronics broadly used for vehicular applications, communi-

cation technologies are now being adopted as well. In order

to limit injuries and to share safety information, research

in driving assistance system is now orientating toward the

cooperative domain. Vehicular Ad hoc Networks (VANETs)

is thus considered as an essential development for future

road safety and telematics applications. A dedicated bandwidth

(Dedicated short-range communications: DSRC) for Intelligent

Transportation Systems has been approved in US, Japan and

Europe. It is exclusively used for Vehicle to Vehicle (V2V)

and Vehicle to Road (V2R) communications.

Collaborative vehicular architectures is thus the main topic

of several research projects around the world. The general idea

is to combine the local perception of a set of individual vehicles

into an extended map of their surrounding as illustrated in

Fig. 2.

Figure 2. Extended Perception

Many applications of V2V or V2R are now in progress

such as Vehicle Collision Avoidance (VCA) or cooperative

localization. If self-localization problem can be seen as al-

ready resolved since highly precise GPS (Global Positioning

System) devices, like Differential GPS or RTK (Real Time

Kinematic) exist, automotive constraints impose the use of

very low cost sensors, whose reliability must be confirmed

with complementary information coming from heterogeneous

sensors. Moreover, ego-localization cannot be based only on



one GPS sensor, whose signal can be temporary lost. That is

why, the use of data fusion techniques is always required [2],

[3].

In this paper, we focus on this last problem. On the assump-

tion that the distance between two communicative vehicles can

be calculated with a good precision, cooperative vehicle are

considered as additional satellites into the user position calcu-

lation by using iterative methods. That was proposed in [4].

However, in order to limit divergence, some filtering process is

proposed: Interacting Multiple Model (IMM) approach, widely

presented and compared in the literature [5], guarantees a

greater robustness to model unmatching, in order to provide the

most accurate localization as possible. This highly improves

localization precision. Moreover, more specifically in a urban

context, it could guarantee the same level of precision even if

satellites are occluded by urban objects.

The paper is organized as follows: in section II, GPS device

positioning method is first presented. Then IMM approach,

which is largely used in this paper is described in Sec. III.

Finally, Sec. IV presents the collaborative method for GPS

positioning method, while some simulation result demonstrates

performance improvement of our method in Sec. V .

II. GPS DEVICE POSITIONING

A. Positioning problem

As shown in Fig. 3, user localization problem cannot be

reduced to a trilateration problem. In fact, satellite-to-user

distance is uncertain and if the number of satellites is higher

than the number of unknown parameters, we want to provide

the most accurate position estimation as possible, in other

words, find the best compromise from the observations, as well

as an estimation of the associated uncertainty.

Figure 3. Trilateration with uncertainty. The red triangle represents the
uncertainty area where the GPS device is positioned. Blue continue circles
represents the pseudo-range of each satellite and the dashed circles their
associated uncertainty

The pseudo-range ρ
i,j
k between vehicle i and satellite j

are computed by measuring the propagation time between the

satellite and user receiver antenna. These pseudo-ranges are

subject to errors due to several factors, such as the delay caused

by the crossing of the atmosphere, the receiver noise and

resolution offset, the multipath and shadowing effects, errors

for the satellite clock or the ephemeris prediction.

Moreover, whereas satellites are equipped with very accu-

rate atomic clock, this is not the case for GPS receivers for

obvious cost reasons. Therefore, in addition to estimate the

position (xk,i, yk,i, zk,i) of the GPS receiver at time k, the

clock offset ∆ti must be estimated.

This can be made by using the iterative method.

B. Calculation of user position with iterative method

In order to provide an estimation of the three dimension

user position (xk,i, yk,i, zk,i) and the offset ∆ti, any satellite

j which has a line-of-sight with the GPS antenna i, sends the

coordinate of their own position (x
(j)
k , y

(j)
k , z

(j)
k ). From this

position, the distance between GPS antenna i and satellite j

are linked by the following non-linear equation:

ρ
i,j
k =

√

(xk,i − x
(j)
k )2+ (yk,i − y

(j)
k )2+ (zk,i − z

(j)
k )2+ c·∆ti

= g(xk,i, yk,i, zk,i, ti)
(1)

The pseudo-range ρ
i,j
k is calculated as the difference of

Time of Arrival multiplied by the constant speed of light.

According to eq. 1, at least four satellites are required to

solve the four-equation set. An algebraic solution of the GPS

equations is proposed in [6]. However, this solution is not

adapted to calculate the associated uncertainty and to take

into account more than four satellites. In order to address this

problem, an iterative method is used which is based on the

linearization of eq. 1.

Starting with an approximate position (x̂, ŷ, ẑ) and the time

bias ∆t̂i, an approximate pseudo-range ρ̂i,j can be calculated:

ρ̂i,j =

√

(x̂− x
(j)
k )2 + (ŷ − y

(j)
k )2 + (ẑ − z

(j)
k )2+c·∆t̂i (2)

Using this new calculated pseudo-range and the Jacobian

matrix G of function g described in eq. 1, the following

equation can be written:

∆ρ = G ·∆x (3)

with ∆ρ the vector containing the set of pseudo-range differ-

ences, ∆x the vector of position difference as:

∆ρ =







ρ̂i,1 − ρ
1,j
k

...

ρ̂i,ns − ρ
1,ns

k






,∆x =





x̂− x̂k,i

ŷ − ŷk,i
ẑ − ẑk,i



 (4)

with ns the number of visible satellites.

And a new position can be incrementally calculated mul-

tiplying both sides of eq. 3 by GT if the matrix G is not

squared:

∆x = (GT ·G)−1
G

T ·∆ρ (5)

More information on the way to calculate G can be found in

[7]. This process is made until ∆x becomes negligible. The

final GPS measurement is denoted zk,i.



C. Calculation of the user position error

The user position error depends on two factors. First, the

relative geometry of visible satellites influences the error. The

concept of dilution of precision (DOP) roughly interprets the

geometric precision as ratio of position error to the range error.

The smaller the ambiguity area, the better the precision (see

Fig. 3). Second, the error for computing the pseudo-range dis-

tance between the GPS receiver and satellite position models

the different error sources such as tropospheric/ionospheric

delay, receiver noise and resolution offset, multipath and shad-

owing effects, errors for the satellite clock or the ephemeris

prediction and is compiled into a User-Equivalent Range Error

(UERE). The user position error is thus estimated as:

(GPSerror) = DOP × (UERE) (6)

Finally, associated measurement error matrix Rk,i is written

as:

Rk,i = (GTG)−1 × σ2
UERE (7)

where σUERE is the pseudo range error factor.

III. INTERACTING MULTIPLE MODEL APPROACH

DESCRIPTION

A. Estimation problem formulation

Vehicle localization is done in a local three-dimensional

frame. The state vector describing the vehicle state xk,i is

given by:

xk,i = [ ẋk,i ẍk,i yk,i ẏk,i ÿk,i zk,i żk,i z̈k,i ωk,i]
T (8)

where ωk,i is the orientation of the vehicle and (xk,i, yk,i, zk,i)
corresponds to the position, (ẋk,i, ẏk,i, żk,i) to the velocity

and (ẍk,i, ÿk,i, z̈k,i) to the acceleration at time k for the

vehicle i in the Cartesian model.

Assuming that the target motion is following the rth model

(∀r ∈ [1, . . . ,m]) represented by the f (r) function and the

process noise w
(r)
k , the vehicle state equation can be written

as:

xk,i = f (r)
(

xk−1,i,w
(r)
k

)

(9)

Measurement zk,i describing the position of vehicle i fol-

lows the measurement equation as following:

zk,i = H · xk,i + vk,i (10)

where vk,i represents the measurement noise process at time

k defined as Rk,i = E

[

vk,i · v
T
k,i

]

with the notation E [.]

dedicated to the mathematical expectation..

By considering only, one motion model Mr, the state x̂
(r)
k|k,i

and covariance P
(r)
k|k estimates are calculated according to the

Kalman filter as:

x̂
(r)
k|k,i = E

[

xk,i|Z
k,Mr

]

(11)

P
(r)
k|k,i = E

[

(

xk,i − x̂
(r)
k|k,i

)(

xk,i − x̂
(r)
k|k,i

)T

|Zk,Mr

]

(12)

where Z
k refers to the cumulated measurements until time k.

In a multi-model context, the global estimation of the state

x̂k|k,i and the covariance Pk|k,i of vehicle i are calculated as

a combination of the different estimates strongly of weakly

weighted, according to the model occurrence probability µ
(r)
k|k

at time k. Finally, the global state and covariance estimation

are written as:

x̂k|k,i =

m
∑

r=1

x̂
(r)
k|k,i · µ

(r)
k|k (13)

Pk|k,i=

m
∑

r=1

[

P
(r)
k|k,i +

(

x̂k|k,i − x̂
(r)
k|k,i

)(

x̂k|k − x̂
(r)
k|k,i

)T
]

µ
(r)
k|k

(14)

The main issue is now to calculate these model occurrence

probabilities µ
(r)
k|k.

B. Model occurrence probability calculation

The main assumption for using IMM is that jumps between

the various system models are following a Markov chain

process represented by the pre-defined transition matrix π.

Then, model occurence probabilities can be calculated in four

main steps:

• Mixing probabilities µ
r|r′

k are first estimated at iteration

k, ∀(r, r′) ∈ [1, . . . ,m]2 by using the transition matrix π.

• Each model estimate x̂
(r)
k|k,i is mixed with the others model

estimates and by using the mixing probabilities µ
r|r′

k

(interaction).

• By using the mixed model estimates, each model filter

estimates the specific model state x̂
(r)
k|k,i and covariance

P
(r)
k|k,i in two steps: prediction and correction. This second

step includes the computation of the measurement resid-

ual z̃
(r)
k+1,i and its covariance S

(r)
k+1,i, called the model

innovation.

• Assuming a Gaussian model, the model likelihood Λ
(r)
k+1

and probabilities µ
(r)
k|k can be computed as:

Λ
(r)
k+1=

1
√

|2πS
(r)
k+1,i|

exp

(

−(z̃
(r)
k+1,i)

T(S
(r)
k+1,i)

−1(z̃
(r)
k+1,i)

2

)

(15)

µ
(r)
k+1|k+1 =

µ
(r)
k+1|kΛ

(r)
k+1

∑

j

µ
(j)
k+1|kΛ

(j)
k+1

(16)

C. IMM for ground maneuvering vehicles

Various vehicle models are used to perform ego-localization

with IMM. In order to derive these vehicle models, it is

assumed that during a time period, the evolution sequence

is shared into constant dynamic behaviors. The free motion

evolution (no acceleration and no rotation) is represented by

the Constant Velocity (CV) model. The longitudianl dynamics

can be described as the Constant Acceleration (CA) model.

For the lateral dynamics, a constant yaw rate model combined

with a CV model is used, known as the Constant Turn model

[8], [9].



The motion model jumps, as modeled as a Markovian

transition process, is described by the transition matrix π. The

estimation quality partially depends on the accuracy of this

matrix. Values are obtained by using statistics on the vehicle

motion, knowing that the frame of discernment for models is

written Ωm = {CV,CA,CT}:

π =





0.9 0.08 0.02
0.15 0.7 0.15
0.04 0.16 0.8



 (17)

The initial model probabilities µ0 following the same state

vector as in eq. (17) is established as µ0 = [ 0.7 0.2 0.1 ].

IV. COOPERATIVE GPS DEVICE POSITIONING

The main proposed idea is really simple. If GPS positioning

is made by trilateration considering satellite position and

pseudo-range between satellites and ground vehicles, these

same georeferenced vehicles can act as virtual satellites to

improve the localization. As illustrated in Fig. 4, by using a

communication system, the distance dii′ between two vehicles

i and i′ can be seen as a pseudo-range used in the equation

set for user localization, as well as the communicative vehicle

position.

Figure 4. Two cooperative vehicles with two satellites

However, the crux of the issue is the way to calculate

the distance between communicative vehicles. In [10], dif-

ferent methods to solve this problem of radio ranging in

the DSRC context are presented such as Received Signal

Strength (RSS), Time of Arrival (TOA), and Time Difference

of Arrival (TDOA) for distance estimation between commu-

nicative vehicles. For example, Parker et al. [11] use RSS

based intervehicle-distance measurements, vehicle kinematics,

and road maps to estimate the relative positions of vehicles

in a cluster. In [12], RSS and TOA are conjointly for indoor

localization. However all these methods suffer of multipath and

non line-of-sight (NLOS) problems. In [13], Le et al. suggests

to conjointly use TDOA approach with Kalman filtering in

order to robustify it. In [14], localization error is analyzed

to correct multipath effects in a collaborative vehicular net-

work. Hardware solutions are also an option. McCrady et al.

[15] presented a two-way reciprocal ToA ranging technique

that removes the need for any clock synchronization among

receiver-transmitter pairs and provides high ranging accuracy

(≤ 1 m) even in multipath scenarios.

In this paper, we supposed that the estimated distance d̂ii′

between two vehicles is simply modeled as:

d̂ii′ = dii′ + ν (18)

where ν is a Gaussian noise process modeling uncertainty on

the distance calculation.

In order to provide the most accurate estimation of the

communicating vehicles and to limit divergence of the iterative

method, their GPS measurement are filtered using a priori

information on the target dynamics as shown in Fig. 5 in order

to provide state estimated x̃k,i. As ground vehicles are highly

maneuverable, Kalman filtering is not adapted and an IMM is

preferred as described in Sec. III.

Then, using the inter-distance module calculation, user

position estimation can be improved by incorporating location

of the surrounding communicative vehicles, in order to provide

the final estimate x̂k,i of the vehicle i at time k.

V. SIMULATION RESULT

In the following, we present some simulation results that

evaluate the performances of the proposed cooperative iterative

method for GPS positioning. Performances are calculated

with classical GPS positioning with iterative method, with

cooperative GPS positioning with iterative method and also

after filtering by using Kalman filter and IMM. Kalman a

priori model is a CV model with model noise qKF = 1
m/s. IMM models are CV, CA, CT models with model noises

qCV = 0.01, qCA = 2 and qCT = 0.2.

Satellite position are computed with the satellites in Earth

Centered, Earth Fixed (ECEF) coordinates position based on

almanac data. GPS are first computed in ECEF coordinates

and then converted into the local coordinates following chap.

2 of [7]. The pseudo range error factor σUERE is set up at

6.5 m as suggested in [7]. GPS scanning time is 1 s. Limit

elevation angle for satellites is 5Â◦. Starting time is randomly

generated and starting position is (37.98, 122.33, 5) in ECEF

coordinates. Noise on the distance calculation is ν = 1 m.

Scenario time is limited to 50 iterations. Target trajectories

are illustrated in Fig. 6. Three targets, following each other

with a distance of 60 m, are moving on the same road, with

the same trajectory with an initial velocity of 30 m/s. They

are descelerating before the curve (of -1.41 m.s−2 between

iterations k = 26 to k = 30), turning (with 0.31Â◦ between

iterations k = 31 to k = 35) and accelerating (of 1,41 m.s−2

between iterations k = 36 to k = 40).

The performances of positioning and tracking algorithms

have been compared for the target in the middle, in Fig. 7,

based on the Root Mean Square Error (RMSE) in horizontal

position (top), x-y position (middle) and 3D position (bottom)

for 100 independent Monte Carlo runs. Average mean error are

shown in Tab. I. From results presented in Fig. 6, it appears that

cooperative approach highly improves GPS positioning (35%

in 3D and 50% in 2D). This improvement is constant over time.



Figure 6. Target trajectory (in black), GPS measurement with uncertainty
ellipses, (in red), cooperative GPS measurement with uncertainty ellipses (in
green), Kalman estimates (in magenta) and IMM estimates (in blue).

IM IM w. com KF IMM

2D RMSE 7.77 3.93 3.19 2.96

3D RMSE 10.46 6.85 5.94 5.21

Table I
AVERAGE ERROR IN 3D POSITIONING

Concerning filtering processes to take into account a priori

model on the vehicle trajectory, Kalman filter and IMM yield

to similar results when the target is moving according to the

Kalman motion model (CV model). However, when the vehicle

is maneuvering, Kalman filter yields to the filter divergence,

while IMM positioning error stays stable. Numerical results

shows an interesting improvement of performances (average

error is less than 3 m) proving that adapted filtering can highly

help positioning task.

VI. CONCLUSION

In this paper, we presented a new cooperative Iterative

Method (IM) for GPS positioning. Based on the idea, than

communicative vehicle can calculate their separating distance,

communicative vehicle can act as virtual satellites and broad-

cast their own positioning. We proposed to improve the

positioning of each vehicle before to introduce it into the

cooperative iterative method. Simulation results prove that this

approach can really improve self-positioning. This is a first

work on the subject and now many perspectives can be consid-

ered. A first perspective would to integrate Inertial navigation

system (INS) into the tracking process. Another perspective

would to generalize the proposed method by using the GPS-

free Positioning based on TOA distances proposed in [16] and

to match relative positioning with dynamic positioning.
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Figure 5. General scheme, with ni the number of visible satellites for vehicle i and N the number of vehicles

Figure 7. Positionning error


