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Abstract—Navigation in the Intelligent Transportation Systems
(ITS) domain is still divided between reliable solutions that
require heavy and costly set-ups and affordable solutions that
still lack performances. By proposing a new method for Simulta-
neous Localisation and Mapping (SLAM) based on Transferable
Belief Model (TBM), the authors aimed at finding a reasonable
compromise for urban environment [1]. This article supports this
choice and proposes a comparison between different laser set-ups
to expose advantages and drawbacks of this solution.

I. INTRODUCTION

Aiming at proposing a safer and more efficient mobility,

Intelligent Transportation Systems (ITS) remain nowadays an

important field of research for computer science communities.

If major steps forward have been achieved over the last

few years with demonstrations such as the DARPA Urban

Challenge in 2007 [2], [3] or the VisLab PROUD car test in

2013 [4], locating a vehicle and mapping its environment in

a urban context and with a reasonable set of sensors is still

challenging.

From the mid eighties [5], [6], Simultaneous Localisation

and Mapping (SLAM) solutions have benefited of the prob-

abilistic framework and this problem is now considered to

be theoretically solved [7]–[9]. By exploiting data from a

LIDAR, a Radar or a Vision set-up, SLAM algorithms use the

correlation between the vehicle pose and some static landmarks

to estimate both the surrounding map of the mobile robot and

its own position in this map.

Historical methods track landmarks from one data scan to

another with Bayesian filtering systems to deduce the vehicle

displacement [7]–[9]. However, these methods mostly use

landmark representations of the environment which requires

a dedicated extraction algorithm. Other approaches based on

Maximisation Likelihood (ML-SLAM) are mainly based on

a grid map representation named occupancy grid [10], [11].

These methods build a grid map of the immediate environment

of the vehicle and search for the best match between each data

scan and the so built occupancy grid.

The main controversial hypothesis of SLAM algorithms lies

in considering these input landmarks as static objects of the

environment and then relying on an advantageous proportion

between the truly static ones and the others, which are actually

mobile. If lots of situations could fall under this assumption

without important consequences, urban contexts are different

as there can be far too many mobile obstacles to assume a

static world.

Solutions to this problem consist in using pre-recorded map

to provide a neutral and trustful support [12] or adding Mobile

Object Tracking algorithms to the SLAM process (SLAM-

MOT) [11]. Other localization sensors could also support the

SLAM algorithm in order to provide a hybrid navigation

system that uses data fusion techniques [13], [14].

The proposition made by the authors in [1] was to use

both the properties of Transferable Belief Models (TBM) [15]

and the ML-SLAM architecture [10] in order to quantify the

belief in a landmark to be static or not. This quantification

thus avoids the above hypothesis and so leads to more robust

SLAM algorithms in crowded environment.

The TBM framework, designed to deal with the data fusion

problematic, indeed enables to explicitly describe conflicts

between two sources of information, meaning between a built

occupancy grid and a new data scan in the current reference.

The conflict situations are generated from incoherences in

position of landmarks through the time and so the TBM

framework describes potential mobile objects, false alarms

or ground impacts. Taking these situations into account then

enables to weight the impact of a landmark in the SLAM

process.

This article aims at validating this Credibilist SLAM and

proposing a comparison of its performances between four

classical LIDAR set-ups. A first part introduces the TBM

framework and its application to occupancy grid, a second

part overviews the Credibilist SLAM process and a last part

compares the above mentioned set-ups.

II. CREDIBILITY FRAMEWORK TO REPRESENT LASER DATA

A. Credibilist Occupancy Grid

Introduced by Smeth in 1994 [15], the Transferable Belief

Model (TBM) leads to a richer representation of knowledge

than the probabilistic framework, mainly used in nowadays

algorithms, by explicitly characterising the ”not known”

information. Its adaptation to the grid map framework has

been proposed by Moras in [16] to compute a credibilist

occupancy grid of the surrounding environment of a vehicle.

For each cell of this grid, a Basic Belief Assignment (BBA)

is computed according to a given set of exclusive hypotheses



Ω and its corresponding power set 2Ω.

Ω = {Free,Occupied}
2Ω = P(Ω) = {A|A ⊆ Ω}

(1)

As defined in Eq. (1), the BBA of a cell is thus a set of

four masses mΩ(A) where A represents each singleton such

as A ∈ 2Ω = {Free,Occupied,Ω, ∅}.
In the TBM framework, the union Free ∪ Occupied de-

scribes the lack of knowledge between those two hypotheses

(then noted Ω) and the element ∅, called Conflict, represents
the part of contradictory information between sources. This

contradictory information mainly occurs in case of moving

obstacles (detected in a cell and in another one just after),

false alarms or ground impacts.

An example of credibilist occupancy grid can be seen in

Fig. 1 where the four singletons are color coded and the mass

of a singleton A and of a cell (i, j) at time t is notedmΩ
i,j,t(A).

m̂Ω

i,j,t(Ω) = 1m̂Ω

i,j,t(F ) = 1

m̂Ω

i,j,t(O) = 1 m̂Ω

i,j,t(∅) = 1

ego-position and heading

Incoming vehicle

Pedestrians behind the vehicle

Fig. 1: Example of credibilist occupancy grid and conflict

situations

For the rest of the article, the singletons Free andOccupied
are respectively denoted by F and O.

B. Representation of laser data

Using the fact that a laser beam provides both the informa-

tion of an impacted cell and of all the free ones it crossed, a

representation has been proposed by Moras in [16]. The same

formalism as the one introduced above (cf. Sec. II-A) is used

to fill a polar grid map by increasing the Occupied belief of an
impacted cell and the Free belief of the crossed ones (Fig. 2).

∼

m
Ω

r,θ,t (Ω) = 1

Filling the
polar grid map Impacted

cells
Laser beam

∼

m
Ω

r,θ,t (F ) = 1
∼

m
Ω

r,θ,t (O) = 1

Fig. 2: Filling the polar grid map with a new laser scan

For each cell of the polar grid map, defined by its angle θ

and radius r, the measured BBA, denoted
∼
m

Ω

r,θ,t, is then filled

as follows:

{
∼
m

Ω

r,θ,t (A) = λ
∼
m

Ω

r,θ,t (Ω) = 1− λ
with A =

{
O if impacted
F if crossed

(2)

with λ the confidence accorded to the LIDAR sensor.

C. Normalization with the conflict

In addition, the proposition has been made in [16] to

normalize the occupancy grid with the conflict mass m̂Ω
i,j,t(∅).

This operation has the effect of distributing the belief from the

conflict to the other focal elements of the BBA, according to

their respective masses. Consequently, the focal element which

gathers the highest belief has its mass increased.

m̂Ω

i,j,t(A) =

⎧
⎨
⎩

m̂Ω
i,j,t(A)

1− m̂Ω
i,j,t(∅)

, if A �= ∅

0, else

(3)

In other words, if a conflict occurs by updating the map,

the hypothesis with the highest belief will be ”chosen” as the

preference state of the cell.

Merged occupancy grid Normalized occupancy grid

m̂Ω

i,j,t(Ω) = 1m̂Ω

i,j,t(F ) = 1

m̂Ω

i,j,t(O) = 1 m̂Ω

i,j,t(∅) = 1

ego-position and heading

Fig. 3: Effect of normalization by conflict on occupancy grid

Knowing that the conflict is related to mobile objects in the

environment or false alarms, the proposition enables to erase

such cases and so provides an obstacle free representation

of the surrounding area of the vehicle (Fig. 3).

This property of credibilistic occupancy grid is a real

advantage when considering Simultaneous Localisation and

Mapping (SLAM) algorithms. Where most of probabilistic

SLAM techniques indeed assume static their input landmarks

without any explicit belief on this hypothesis, the SLAM

solution based on the TBM framework uses this belief to

weight laser impacts in the SLAM process, and here lays its

originality.

III. CREDIBILIST SLAM

The Credibilist SLAM (C-SLAM) concept have been in-

troduced in [1]. It is inspired by a ML-SLAM solution used

by Q. Baig et al. [17] and J. Xie et al. [10] and adapted to

credibilistic occupancy grid. The main idea is to build at each



iteration a grid with the on-coming scan and to find the best

match between it and the previously recorded grid map (Fig. 4)

by using the benefits of the above mentioned property (cf.

Sec. II-C) to consider only cells that represent static impacts.

Conversion to
Cartesian

coordinates

Polar grid
map

Matching Merging

m̂Ω

i,j,t−1

Relative position
and heading

Occupancy
grid

∼

m
Ω

i,j,t

Normalization

Xt

Fig. 4: Overview of the C-SLAM algorithm

The obtained best match corresponds to the vehicle dis-

placement so that both its trajectory and the surrounding map

are estimated in the same process. Since the displacement alone

leads to a relative localization only, the considered reference

in this article is the vehicle reference R0 at the beginning of

the experiment. It means that at any time t, the position of
the vehicle (x, y) and its heading θ are given relatively to the
position and the heading at time t = 0.

A. Matching

Once the polar grid map has been built and a Cartesian

conversion performed, Some candidate states C are computed

around an a priori state X̂t|−1 based on the previous measure-

ments and according to a basic Constant Speed model.

An operatorOp is then applied on each candidate C in order
to score the possible corresponding matches between the polar

grid map and the stored occupancy grid.

Op(m̂Ω
i,j,t−1

,
∼
m

Ω,C

i,j,t) =
∑

∀cells

f(m̂Ω
i,j,t−1

,
∼
m

Ω,C

i,j,t) (4)

where m̂Ω
i,j,t−1

is the BBA of a cell (i, j) in the occupancy grid

reference and
∼
m

Ω,C

i,j,t is the corresponding BBA in the measured

grid map in the candidate C reference. The function f is then
defined:

f(m̂Ω
i,j,t−1

,
∼
m

Ω,C

i,j,t) =
(m̂Ω

i,j,t−1
∪©

∼
m

Ω,C

i,j,t)(O)

1− (m̂Ω
i,j,t−1

∩©
∼
m

Ω,C

i,j,t)(∅)
(5)

This operator is a sum along all the cells of the polar

grid map of a proposed credibilist rule between a cell and

its corresponding one in the occupancy grid. It has the effect

of favouring the matches between two cells with a heigh

Occupied mass and weighting the ones containing a Conflict

mass to limit their influence.

The candidate with the highest score is finally chosen as

the estimated displacement.

B. Merging

Considering both the measured grid map and the occupancy

grid as reliable sources, Moras et al. [16] propose to use

a conjunctive rule to perform the fusion between a new

laser scan and the saved map as illustrated in Fig. 5. The

candidate selected in the precedent step (cf Sec. III-A) serves

as reference to merge these two sources.

m̂Ω

i,j,t = m̂Ω

i,j,t−1
∩© ∼

m
Ω

i,j,t (6)

where m̂Ω
i,j,t−1

is still the BBA of a cell (i, j) in the occupancy

grid reference and
∼
m

Ω

i,j,t is the corresponding BBA in the

measured grid map and in the selected candidate reference.

Applied to the SLAM context, this combination leads to

estimate the BBA of each cell of the occupancy grid, knowing

the previous occupancy grid and the new measured grid map.

m̂Ω

i,j,t1

∼

m
Ω

i,j,t

=

m̂Ω

i,j,t

∩©

Fig. 5: Merging step of the Credibilist SALM algorithm

based on [16]

C. Results

Qualitative results are proposed in Fig. 6. They are obtained

with a 360◦ single layer laser simulated from the KITTI

database (cf. Sec. IV-B).

The reader might then find a detailed description of the

complete process in the precedent author’s work [1].

IV. IMPACT OF LASER SET-UP

If the matching operator has a major role regarding the

performances of the C-SLAM algorithm [1], an important

parameter remains the set-up of the lasers on the vehicle. The

point cloud generated at each iteration is highly affected by the

choice made on the number, the position or the field of view

of each embedded LIDAR. The following part of this article

aims at quantifying this impact over four classic set-ups:

• Dense 3D laser cloud: Typically the one extracted from

a Velodyne sensor. Only ground impacts are ignored with

a simple threshold in altitude.

• 360 degrees simple layer: This category could represent

a set-up with two LIDARs with a 180◦ field of view. One
pointing forward; the other one backward.

• 90 degrees back and front: Maybe the better compro-

mise between price and point cloud density, this solution

is based on two LIDAR with a field of view of 90◦. One

is pointing forward, the other one backward.

• 180 degrees front: The most affordable solution. This

kind of set-up can be achieved with a simple layer

LIDAR, facing forward the vehicle.
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Fig. 6: Example of a results obtained with Credibilist SLAM

on sequences from the KITTI database

In order to have qualitative results, all these set-ups are

tested with the same grid parameters (resolution of 0.2 m for

the occupancy grid) and evolution model (Constant speed). All

the following plotted results follows those parameters too and

comparisons are achieved with the same dataset and under the

same time references.

A. Operator robustness

A first interesting result is to compare the scores given in

the matching step to candidates around the a priori state (cf.

Sec. III-A). These scores indeed allow to chose the displace-

ment by selecting the maximum and it is worth validating this

model with poor pieces of information.

Fig. 7 exposes two plots for three of the proposed laser

set-ups. The first plot is a 3D representation of the score

computed for each candidate in position for the selected angle

(the one that leads to the maximum score) and at a random

step of one KITTI sequence. The second plot represents the

maximum score in position for each computed angle. These

plots are representative of the obtained outputs all along the

tested sequences.
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Fig. 7: Examples of output scores at the same step with

different Laser layouts
From top to bottom: With a 3D scan, a 360◦ simple layer scan and

a 180◦ front and simple layer scan

This representation first enables to see that, for the set-up

with the maximum of data (the 3D laser cloud), the maximum

score search is a convex problem. Hence, the proposed match-

ing operator well serves the purpose because a unique solution

can be encountered, at least when a sufficient amount of data

is available.

The next results enable to show that, even if the convex

hypothesis is not respected for lighter laser set-ups, the scores

still seem to present a global maximum which is distinguish-

able from the local ones around. It is however worth noticing

that the difference between higher and lower scores decreases

for the two last set-ups. As a consequence, they will be more



inclined to suffer from urban canyon situations (indecision

between several positions in the canyon direction).

B. Set-ups simulation

Since the simultaneous acquisition of all the solutions on

the same path is really hard to achieve, the proposition here is

to simulate each of them, based on raw data from the KITTI

database [18]. Raw data are taken from a Velodyne HDL-64E

placed on the roof of the vehicle, meaning that it covers a

360◦ horizontal field of view and a 26.8◦ vertical one with a

resolution of 0.09◦.
The above cited set-ups are then obtained by deteriorating

the Velodyne data in terms of field of view and number of

layers. Moreover, a lower angular resolution of 0.25 ◦ is used

to reach the data quality of affordable LIDAR.

If this method still lacks realism in terms of point of view

(the original data are acquired from the roof whereas a basic

LIDAR would be placed near bumpers), it enables to have a

proper comparison, based on real data, of the performances of

the proposed SLAM.

The following results have been obtained on 10 sequences
of the odometry dataset proposed by KITTI. They cover a large

amount of urban situations and the performances are computed

according to the method proposed by the KITTI team in [18].

C. Position and point density

In this section a performance comparison is proposed be-

tween the four laser set-ups. The results are obtained according

to the method introduced in Sec. IV-B and plotted in Fig. 8.

It is first important to see that the 3D cloud set-up performs

much better than any other solutions. The credibilist SLAM

indeed works in a 2D context so using projected 3D data as

input could have led to instability or errors. Ground impacts

and dense point clouds projected on a 2D plane (e.g. from

trees...) indeed leads to a large amount of false alarms for the

system. However, it appears that it reacts well to this situation

and provides benchmark results of 2.04% in translation errors

and 0.0021◦/m in rotation error. As a comparison, the best

score in the KITTI odometry benchmark is obtained with a

3D SLAM using full Velodyne data [19] and reaches 0.76%
in translation error and 0.0020◦/m in rotation error. Consid-

ering the proposed system, reaching such results with such a

bad ratio of false alarms confirms the assumption that TBM

framework could be worth being used in crowded situations

and contexts with lots of moving obstacles.

In addition, all the tests performed with the different set-ups

led to robust results (without falls). This adds credits to assume

a robust and reliable system in complicated urban environment.

Another interesting result lays in the confrontation between

a 180◦ front laser and 90◦ front and back lasers. Talking about
the amount of data, those two set-ups are identical but their

performances are actually well distinguishable. The 180◦ front

laser leads to an average translation error of 19.37% versus

7.69% for the 90◦ front and back lasers and the average
translation errors are respectively equal to 0.0133◦/m and

0.006◦/m which differ by more than a factor 2. This difference
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Fig. 8: Translation and rotation errors for 10 sequences of

KITTI database

shows the importance, for localization, to have pieces of

information from both the front and back of the vehicle. It

indeed participates in improving the quality of the orientation

estimation and so the whole pose.

It is worth to finally highlight that the 360◦ laser set-up

lead to average errors of 4.57% in translation and 0.0041◦/m
in rotation. This configuration could thus afford an interesting

compromise in terms of price and performances.

V. CONCLUSION

Using the TBM framework along with a ML-SLAM ar-

chitecture enables to compute and consider the belief in a

landmark to be static or not. This belief can then be used

in the SLAM process to provide a robust matching even in

crowded circumstances.

The proposed matching operator leads to a convex opti-

misation problem when a sufficient amount of information

is available. The method still retains a clear solution when

the amount of data is decreasing. This encourages to trust the

proposed operator and validate the coherence of the method.

The Credibilist SLAM has demonstrated good performances

whatever the laser set-up used. Those set-ups have been bench-

marked using the KITTI odometry database. The proposed

solution is capable of exploiting the most of a point cloud

without being disturbed by false alarms or ground impacts (e.g.

the 3D scan set-up).

However, the proposed set-ups only considered laser sensors

and it would be interesting to persue the study by integrating



GPS and odometry sensors in addition.

Another perspective is to extend the proposed solution to

landmark representation context in order to exploit the current

existing solutions in this domain.
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