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Abstract—This paper considers path planning for underwater 

robot in navigation tasks. The main challenge is how to deal with 

uncertainties in the underwater environment such as motion model 

error and sensing error. To overcome this challenge, two high level 

control methods have been presented and compared, which are based 

on the Model Predictive Control (MPC) strategy and the Partially 

Observable Markov Decision Process (POMDP) model, respectively. 

Navigation time, collision frequency, energy consumption and 

accuracy in localization are used as the assessment criteria for the two 

methods. It is shown that the MPC-based method is more efficient for 

our application scenarios while the POMDP-based method can 

provide more robust solutions. 

Keywords—path planning, navigation, uncertainty, MPC, 

POMDP. 

I.  INTRODUCTION 

Underwater robot is a great application for robotics because 
working underwater is both dangerous and difficult for humans. 
Bridge piles cleaning is an important task for bridge inspection, 
maintenance, and rehabilitation. Fig. 1 shows the image of a bridge 
with piles covered by some marine growth. Carrying out high 
pressure underwater cleaning of piles can be a dangerous and 
exhaustive task for human and hence making use of underwater 
robot equipped with a water blasting gun can be beneficial and has 
large application potential. A basic requirement for such an 
underwater robot is that it must be able to move from its initial 
position to the destination (the pile that needs cleaning) without 
collision. Since there are a lot of uncertainties involved, such as 
motion error due to water current, the sensing errors, etc., the 
problem requires solving is path planning of underwater robot 
under uncertainties. 

Approaches of path planning under deterministic action or full 
knowledge of the robot’s state are quite mature and broadly 
classified into three categories: roadmap-based methods, cell 
decomposition-based methods and potential field-based methods 
[1]. In the past decades, the three kinds of methods have been 
successfully applied to the ground robot like home cleaning robots, 
automated wheelchair, museum-guide robot, and so on [2]. Path 
planning for underwater robot navigation is a more challenging task 
owing to the positioning uncertainty. Underwater robot suffers 
large motion error due to roughly known hydrodynamic 
coefficients. Localization using GPS is impractical and localization 
by other onboard sensors is not very accurate as well. It means the 
robot pose is only partially known. So the above three kinds of 
methods need to be modified to adapted to the path planning for 
underwater robot navigation under uncertainties.  

 

Figure 1.  A bridge with piles requiring cleaning 

In order to alleviate the difficulties in the navigation under 
uncertainties, many approaches have been proposed and some of 
them have been proved to be successful and effective in simulation 
and practice such as  [2], [3], [4].  

Burns and Brock [5] propose a sampling-based planner that 
incorporates sensor uncertainty into the planning process, 
determines an optimal path and then give a control policy. Van Den 
Berg and Overmars [6] present similar approaches for path 
planning by using different evaluation function for paths, which 
also considers motion uncertainty. Roijers et al. [7] propose a 
motion planner based on multi-objective Markov Decision Process, 
which considers the motion uncertainty but ignores the observation 
uncertainty. Recently, Vadim et al. [8] propose a planning 
approach including the estimation of the position of landmark. 
These approaches are based on the Discrete Stochastic Process, 
which regards robot’s motion as sequential actions that are not 
deterministic. Furthermore, the three kinds of basic methods for 
path planning without uncertainty are also subtly exploited as well.  

In fact these planners mentioned above try to trade off between 
the size of the model (state space, action space, observation space) 
and the number of the steps that the robot looks ahead because the 
large-size model and the large number of steps usually require 
tremendous computing time. Discretization and the finite steps 
look-ahead policy are the popular techniques for making the 
problem tractable. MPC, as a representation of finite steps look-
ahead policies, associated with extended Kalman Filter can handle 



 

the problem of planning with the continuous working space over 
finite steps [9].  

In theory, POMDP is a general framework for planning under 
uncertainty over infinite steps and it may be useful for many 
application areas such as industry applications and business 
applications [10]. POMDP was regarded as impractical a decade 
ago due to its high computational complexity. However, the point-
based POMDP algorithms have made dramatic progress in recent 
decade [2], [11], [12]. POMDP provides the optimal solution over 
the infinite steps but it is usually used for the discrete model. MPC 
and POMDP simplify path planning under uncertainty from 
different perspectives. In this paper, we make some comparison 
between the two strategies in our application scenarios and try to 
identify which is more suitable for our problem. 

The remainder of this paper is organized as follows. The details 
of the navigation problem considered in this paper are presented in 
Section II. The MPC-based method is presented in Section III. The 
POMDP-based method is described in Section IV. Results and 
comparison based on simulation are shown in Section V. Section 
VI addresses conclusion and future work.  

II. THE DETAILS OF NAVIGATION PROBLEM 

We consider the scenario in 2D, ignoring the vertical direction. 
This simplification is acceptable for three reasons. The first reason 
is that the shape of obstacles in our scenario is almost the same at 
different height (cuboid). The second reason is that the underwater 
robot can adjust itself to different height. The third reason is that it 
is relatively easy to obtain the vertical position of an underwater 
robot. In this paper, kinematic and dynamic constraints has not 
been considered in this paper.  

The 2D environment is illustrated in Fig. 2, where the squares 
and strips are bridge piles. The red square is the pile requires 
cleaning which is the destination of the robot. The blue point is the 
actual position of the robot. The exact initial pose of the underwater 
robot is unknown but its probability distribution is given. We 
consider configuration space which regards the robot as a dot and 
enlarges the size of obstacles.  

A. Objectives and evaluation function  

The main objective is to drive the underwater robot quickly 
arriving at the neighborhood of the specific pile without collision. 
The second objective is to minimize the uncertainty of the 
underwater robot’s pose in the navigation. The third objective is to 
minimize energy consumption which is assumed to be proportional 
to the total degree of the underwater robot’s steering angle. The 
task can be summarized as four objectives: (1) arriving at the 
neighborhood of the specific pile in short time, (2) avoiding 
obstacles, (3) localizing itself precisely, and (4) reducing the energy 
consumption. 

For these purposes, an evaluation function for different 
methods is proposed as following: 

  𝐸𝑣𝑎(𝑀) = (𝐸(𝑡), 𝐸(𝑒), 𝐸(𝑞), 𝐸(𝑐))𝑇.                (1) 

In this function, 𝑀  represents method, 𝑡  represents the total 
time in navigation, 𝑒 is an index that quantifies the uncertainty of 
the robot’s pose, 𝑐 = 1 indicates the collision happens while 𝑐 = 0 
indicates the robot avoids obstacles in the navigation and 𝑞 
symbolizes the total degree of steering angle. Furthermore, 𝐸 is the 

expectation operator. A method has better performance if its value 
in the evaluation function is smaller.  

B. Assumptions 

The map as shown in Fig. 2 is assumed to be given in advance. 
The squares and strips are obstacles. The squares are regarded as 
landmarks as well. The red one is the destination which is given. 
The probability distribution of the underwater robot’s pose is given. 
The underwater robot can obtain an observation that indicates the 
approximate distances between its current position and the square 
piles within the sensor range. 

The motion model of the robot is given which contains 
uncertainty. For simplification, we only consider the case that the 
velocity of the underwater robot is fixed. Like other methods 
mentioned above, navigation is regarded as a stochastic process and 
we assume the robot would perform one action and then get one 
observation in each step. Performing an action means the robot 
changes the heading direction in the interval [−𝑎, 𝑎] (𝑎 > 0).  

C. Strategies for comparison 

A strategy can be defined as a mapping from information 
history to action. Information history indicates the pose probability 
distribution history, observation history and action history. Section 
III and Section IV introduce two strategies based on their specific 
model, respectively. 

 

Figure 2.  A map of our application scenario 

III. THE MPC-BASED METHOD 

The method based on MPC is inspired by the previous work [9]. 
The key of MPC is that “using available model to predict a few 
steps, find the optimal actions and execute only one step and then 
update the model”. Under the assumption that the initial robot pose, 
motion error and sensing error follow Gaussian distribution, the 
localization and prediction can be performed efficiently.  

A. Transition model and observation model 

Suppose the robot’s pose at the time step 𝑖 is 

𝑋𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖)
𝑇,                                     (2)  

where (𝑥𝑖 , 𝑦𝑖) represents the position of the robot, 𝜃𝑖 is the heading 
direction. The transition model is given by 

𝑋𝑖+1 = 𝑓(𝑋𝑖 , 𝑢𝑖+1) + 𝑒𝑖,                               (3) 

where 𝑓 is a function depending on the kinematic model, 𝑢𝑖+1 as 
input action is the steering angle between the time step 𝑖 and the 
time step 𝑖 + 1 , and 𝑒𝑖  as motion error follows the Gaussian 



 

distribution 𝒩(0, 𝑅𝑖). 𝑅𝑖 depends on the water current at the time 
step i. If the navigation time is short, this matrix is fixed.  

In our proposed scenario, we assume 

𝑓(𝑋, 𝑢) = (
𝑥 + 𝑣0𝑐𝑜𝑠⁡(𝜃 + 𝑢)
𝑦 + 𝑣0𝑠𝑖𝑛⁡(𝜃 + 𝑢)

𝜃 + 𝑢

),                     (4) 

where 𝑣0 as constant is the displacement in the unit time. 

The underwater robot is assumed to be equipped with a sensor 
that can obtain each distance between the robot and the piles within 
the sensor range. If the robot senses the j th pile, the measurement 
is 

𝑧𝑗 = ℎ𝑗(𝑋) + 𝑑𝑗 = ||𝑥 − 𝐿𝑗
𝑥 , 𝑦 − 𝐿𝑗

𝑦
|| + 𝑑𝑗,                   (5)   

where 𝑧𝑗  is the measurement, (𝑥, 𝑦)  is the robot’s position, 

(𝐿𝑗
𝑥, 𝐿𝑗

𝑦
)  is the position of the j th pile, and 𝑑𝑗  as sensing error 

follows the Gaussian distribution 𝒩(0, 𝑄𝑗) in which 𝑄𝑗  depends 

on the level of the sensor noises.  

Furthermore, 𝑍𝑖 = (𝑧𝑖
𝑖1 , 𝑧𝑖

𝑖2 , … , 𝑧𝑖
𝑖𝑙)𝑇is called the observation at 

the time step 𝑖, where zi
j
 indicates the measurement of the 𝑗 th pile 

at the time step 𝑖.   

B. Extended Kalman Filter (EKF) 

EKF makes the MPC-based method easy to compute. If the 
robot’s pose at the time 𝑖 − 1 follows the Gaussian distribution 
𝒩(𝑋𝑖−1, 𝐶𝑖−1), it performs the action 𝑢𝑖 between the time step 𝑖 −
1  and the time step 𝑖  and then obtains the observation 𝑍𝑖 =

(𝑧𝑖
𝑖1 , 𝑧𝑖

𝑖2 , … , 𝑧𝑖
𝑖𝑙)𝑇  at the time step 𝑖  where 𝑧𝑖

𝑘  indicates the 

measured distance between the robot and the 𝑘 th pile at the time 
step 𝑖, the robot’s pose at the time step ⁡𝑖 will follows the Gaussian 
distribution 𝒩(𝑋𝑖 , 𝐶𝑖).  

The (𝑋𝑖 , 𝐶𝑖) can be computed as following: 

Prediction step: 

𝑋̅ = 𝑓(𝑋𝑖−1, 𝑢𝑖) 

𝐶̅ = (∇𝑋𝑓(𝑋𝑖−1, 𝑢𝑖))𝐶𝑖−1(∇𝑋𝑓(𝑋𝑖−1, 𝑢𝑖))
𝑇
+ 𝑅𝑖. 

Update step: 

𝐾 = 𝐶̅(∇𝑋ℎ(𝑋̅))
𝑇
((∇𝑋ℎ(𝑋̅))𝐶̅(∇𝑋ℎ(𝑋̅))

𝑇 + 𝑄̃)−1 

𝑋𝑖 = 𝑋̅ + 𝐾(𝑍𝑖 − ℎ(𝑋̅)) 

𝐶𝑖 = (𝐼 − 𝐾(𝛻𝑋ℎ(𝑋̅)))𝐶̅, 

where  

ℎ(𝑋̅) = (ℎ𝑖1(𝑋̅), ℎ𝑖2(𝑋̅), … , ℎ𝑖𝑙(𝑋̅))
𝑇

 

𝑄̃ = diag(𝑄𝑖1 , 𝑄𝑖2 , … , 𝑄𝑖𝑙
).  

The above EKF equations can be summarized as a brief 
expression as 

[𝑋𝑖 , 𝐶𝑖] = 𝑔(𝑋𝑖−1, 𝐶𝑖−1, 𝑢𝑖, 𝑍𝑖).                         (6) 

For more details of the EKF formula, please refer to [9] and 
[13]. 

C. Nonlinear MPC control 

In order to predict the performance in the next step without 
actually performing the control action and obtaining the 
observation, some assumptions are necessary. Similar to [10], for 
prediction, we assume that no new piles will be detected in the next 
step and the robot will acquire the observation that is most likely 
given the Gaussian distribution.  

That is, if the robot can sense the 𝑖1, 𝑖2, … , 𝑖𝑙 th piles at the time 
step 𝑖 , it will sense the same piles in the next step. And if the 
observation is 𝑍𝑖 at the time step 𝑖, the robot performs the action 𝑢 
between the time step 𝑖  and the time step 𝑖 + 1  and the pose 
follows Gaussian distribution 𝒩(𝑋𝑖 , 𝐶𝑖)  at the time step 𝑖 , the 
observation at the time step 𝑖 + 1 will be 

𝑍̅𝑖+1 = (ℎ𝑖1(𝑓(𝑋𝑖 , 𝑢)), ℎ𝑖2(𝑓(𝑋𝑖 , 𝑢)), … , ℎ𝑖𝑙(𝑓(𝑋𝑖 , 𝑢)))
𝑇
. (7) 

Combining (6) and (5), the Gaussian distribution of the robot’s pose 
at the time i+1 will be easy to predict as: 

[𝑋̅𝑖+1, 𝐶𝑖̅+1] = 𝑔(𝑋𝑖 , 𝐶𝑖 , 𝑢, 𝑍̅𝑖+1).                          (8)  

In order to minimize the multiple objective functions in (1), we 
design a weighted sum of them, which is 

𝐽(𝑢):= 𝑤1𝐽𝑑(𝑋̅𝑖+1, 𝐶𝑖̅+1) + 𝑤2𝐽𝑒(𝐶𝑖̅+1) + 𝑤3||𝑢||    (9) 

Subject to: ⁡𝐽𝑐(𝑋̅𝑖+1, 𝐶𝑖̅+1) = 0, 𝑢 ∈ [−𝑎, 𝑎]                     

Let us explain all the terms of (8). The term 𝐽𝑑(𝑋, 𝐶) is the 
average length of the shortest path from the point in the ellipsoid 

(𝑥, 𝑦) (
𝐶11 𝐶12
𝐶21 𝐶22

) (𝑥, 𝑦)𝑇 = 4                    (10) 

to the destination,  where C𝑖𝑗 indicates the entry in the 𝑖 th row and 

𝑗 th column of 𝐶. This ellipsoid covers 95% confidence region area 
of the actual position of the underwater robot. Furthermore, 
𝐽𝑑(𝑋, 𝐶) can be easily computed by using sample-based method. 
The principle is that sample many points in the ellipsoid (9) 

according to the Gaussian distribution 𝒩(𝑋̅𝑖+1, 𝐶𝑖̅+1) , and then 
compute the average length of shortest paths from the sampled 
points to destination. The length of shortest path can be considered 
as a function 𝐿𝑒(𝑥, 𝑦), which can be computed offline by using 
Dijkstra’s algorithm. In this part, computational complexity is 
polynomial time, which is practical and acceptable. Using 𝐽𝑑(𝑋, 𝐶) 
is helpful for the robot arriving to destination without falling in to 
the local stable point unlike some cases in the force field method.  

The term 𝐽𝑒(𝐶) is used to quantify the uncertainty of the robot 
pose because 

𝐽𝑒(𝐶): = det (
𝐶11 𝐶12
𝐶21 𝐶22

)                       (11)  

is proportional to the area of the ellipsoid (9). 

The term ||𝑢|| has two effects. One is that we want to minimize 
the energy consumption which is assumed to be positively 
correlated with the steering angle u. Another is that the transition 
model (3) is an approximate when the steering angle u is small. 

The constraint 𝐽𝑐(𝑋̅𝑖+1, 𝐶𝑖̅+1) = 0  is to guarantee collision-
avoidance as far as possible. 𝐽𝑐(𝑋, 𝐶)⁡is the common area of the 
ellipsoid (9) and the obstacles. In the proposed 2D scenario, 



 

checking if the common area of the ellipsoid (8) and the obstacles 
(squares and strips) is zero or not is very quick. 

The second constraint 𝑢 ∈ [−𝑎, 𝑎]corresponds to the limitation 
of the steering angle. A practical way for the optimization problem 
(8) is to discretize the set [−𝑎, 𝑎]. This simplification is reasonable 
and also reduces much computing time. 

𝑤𝑖 ⁡(𝑖 = 1,2,3) in (8) is the weight coefficient. However, it is 
very difficult to quantify the weight coefficient without prior 
knowledge. If the weight coefficients are fixed, the robot may stay 
at some region that locally minimize (8). Considering the main 
objective is that the underwater robot arrives at the destination as 
soon as possible, we devise a self-adaptive strategy to address this 
problem. The principle is simple and natural:  

If 𝐽𝑑(𝑋𝑖 , 𝐶𝑖) > 𝐽𝑑(𝑋𝑖−𝑘0 , 𝐶𝑖−𝑘0) , 𝑤1 will be enlarged 

temporarily until 𝐽𝑑(𝑋𝑖 , 𝐶𝑖) < 𝐽𝑑(𝑋̅𝑖−𝑀, 𝐶𝑖̅−𝑀), where 𝑖 means the 
current time and 𝑖 − 𝑘0 means the last 𝑘0 step. In our simulation in 
Section V, 𝑘0 is set as 5. 

The solution 𝑢∗ of the optimization problem (8) is the optimal 
action between the time step 𝑖 and the time step 𝑖 + 1.  

The MPC-based method described above only considers one 
step look ahead. The multi-step look ahead MPC strategy is similar, 
but requires more computational cost [9]. 

IV.  THE POMDP-BASED METHOD 

The POMDP-based method is a strategy for planning under 
uncertainty with infinite time horizon. Different from the MPC-
based method using EKF, POMDP has no Gaussian distribution 
assumption on the initial pose, the noise on transition model and 
the observation model. Strictly, a POMDP model is a tuple 
(𝑆, 𝐴, 𝑂, 𝑇, 𝑍, 𝑅, 𝑟). The details are given below. 

A. Transition model and observation model 

𝑆 includes all possible robot’s poses and an absorbed state end. 
The state end is used to end the navigation.  𝐴 is the action set. T is 
the transition model according to (2).  

𝑇(𝑠, 𝑢, 𝑠′) ≔ Pr⁡(𝑠′|𝑠, 𝑢) is the probability that the robot’s pose 
would be 𝑠′  under the action 𝑢  if the current pose is 𝑠 . The 
absorbed state 𝑒𝑛𝑑  is to stop the whole process. Generally 
speaking,  

𝑇(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑢, 𝑒𝑛𝑑) = 1, ∀⁡𝑢 ∈ 𝐴         (12)   
𝑇(𝑒𝑛𝑑, 𝑢, 𝑒𝑛𝑑) = 1, ∀⁡𝑢 ∈ 𝐴.        (13) 

𝑂⁡includes all the possible observations. 𝑍 is the observation 
model, 𝑍(𝑜|𝑠) is the probability that the robot is at the pose 𝑠 and 
acquires the observation o. In the proposed problem, we formulate 
𝑜 as the distance between the robot and the nearest pile. 

For the proposed scenario, 𝑆 , ⁡𝐴  and 𝑂 are discrete sets. 
Naturally, the transition model is given according to the 
discretization of (2): 

𝑇((𝑥′, 𝑦′, 𝜃 + 𝑢)|(𝑥, 𝑦, 𝜃), 𝑢) ∝ exp⁡[−(𝑑𝑥
2+𝑑𝑦

2)],     (14) 

 where 

𝑑𝑥 = 𝑥′ − 𝑥 − 𝑣0 cos(𝑢 + 𝜃),                     (15) 

            𝑑𝑦 = 𝑦′ − 𝑦 − 𝑣0 sin(𝑢 + 𝜃).                     (16) 

 The observation model is given according to the discretization 
of  (4): 

𝑍((𝑜1 , 𝑜2, … 𝑜𝐿)|(𝑥, 𝑦, 𝜃)) ∝ ∏ exp [
−1

2
(√𝑞𝑖,𝑥

2 +𝑞𝑖,𝑦
2 − 𝑜𝑖)

2
𝐿
𝑖=1 ],   

           (17) 

where 𝐿 is the number of piles, 𝑜𝑖  is the measurement that indicates 

the distance between the robot and the i th pile, and 𝑞𝑖,𝑥 = 𝑥 −

𝐿𝑥
𝑖 ,⁡𝑞𝑖,𝑦 = 𝑦 − 𝐿𝑦

𝑖 , where (𝐿𝑥
𝑖 , 𝐿𝑦

𝑖 ) is the position of the the i th pile.   

The observation model in POMDP is a little different from that 
in MPC. In POMDP, the event that the robot cannot sense any pile 
is also regarded as an observation while the method based on MPC 
ignores this. 

B. Reward function and discount coefficient 

Reward function 𝑅(𝑋, 𝑢) means the robot will obtain a value as 
reward under the action u when it is in the state x. Discount 
coefficient r is a constant in (0,1). The POMDP solution is to 
maximize the total rewards. 

In order to minimize the multiple objective functions in (1), 
reward function 𝑅(𝑠, 𝑢) can be devised as: 

𝑅(𝑒𝑛𝑑, 𝑢) = 0,                                      (18) 

𝑅((𝑥, 𝑦, 𝜃), 𝑢): = −𝑅𝑑(𝑥, 𝑦) − ||𝑢|| − 𝑅𝑜((𝑥, 𝑦, 𝜃), 𝑢),  (19)  

where 𝑅𝑑(𝑥, 𝑦)  is the length of shortest path from (𝑥, 𝑦)  to the 
destination. R𝑜  is the penalty function for obstacles: if the 
underwater robot at the position (𝑥, 𝑦) moves to obstacles under 
action  𝑢 with high probability, the value of 𝑅𝑜(𝑋, 𝑢) will be very 
large. Furthermore, 𝑅(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑢)  is set as a large value, 
which encourages that the underwater robot arrives at the 
destination as soon as possible. 

C. POMDP solution 

POMDP solution is a mapping from the space of the probability 
distribution of the robot to the action set 𝐴. The solution 𝜋 can 
maximize the function value 

𝑉𝜋(𝑏⁡) = 𝐸[∑ 𝑟𝑖𝑅(𝑋𝑖 , 𝑢𝑖|𝑏, 𝜋)
∞
𝑖=0 ]                     (20) 

for arbitrary probabilistic distribution 𝑏. Computing the solution is 
done offline and it usually takes much time. This solution provides 
an action 𝑢 = 𝜋(𝑏′)  at each step where 𝑏′ is the probability 
distribution of the robot pose in the current step. See more details 
in [12] and [13]. 

V. RESULTS AND COMPARISON 

We apply the MPC-based method and the POMDP-based 
method in two simulation examples. In the simulation examples, 
the terminal conditions are that the underwater robot arrives at the 
destination. The boundaries are also considered as obstacles. 
Furthermore, the sensor of the robot is assumed to have the 
omnidirectional field and the robot velocity is set as 1m/s.  The 
length function 𝐿𝑒(𝑥, 𝑦)  of the shortest path in the MPC-based 
method is computed by using Dijkstra’s algorithm. The sensor 
range in the first example (Fig.3 and Fig. 4) is assumed to be 10m 
while it is set as 5m in the second example (Fig. 5 and Fig. 6).  

The parameters of the MPC-based method are set as the 
following:  



 

𝑎 = 𝜋/4, ⁡⁡𝑤1 = 2,𝑤2 = 1,𝑤3 = 1. 

𝐶0 = 𝑅i = 𝑑𝑖𝑎𝑔(0.001, 0.001, 0.1) (⁡𝑖 = 1,2,3… ) 

In the first example,  

𝑋0 = (2, 20, 0)𝑇 , ⁡⁡𝑄𝑗 = 0.5 (𝑗 = 1,2, … ,8),  

In the second example,  

𝑋0 = (−3,−3,−𝜋/4)𝑇 , 𝑄𝑗 = 0.5 (𝑗 = 1,2, … ,6).⁡ 

 

Figure 3.  A simulation run by MPC 

 

Figure 4.  A simulation run by POMDP 

The details of the POMDP transition model and observation 
model are trivial and thus omitted. In both of the first example and 
the second example, the underwater robot would get +10000 
reward value when it arrives at the destination. Furthermore, the 
discount coefficient 𝑟 is set as 0.98. 

In the first map, the size of POMDP is: 

|𝑆| = 14001,⁡ 

|𝐴| = 7, |𝑂| = 25. 

The size of the POMDP model in the second map is much 
smaller: 

⁡⁡⁡⁡|𝑆| = 5001,⁡ 

|𝐴| = 7, |𝑂| = 36. 

For each example, to estimate the function value of (1), we 
perform 100 simulation runs under the MPC-based method and the 
POMDP-based method, respectively and compute the expectations.  

Fig. 3 and Fig. 4 show that the trajectories by the two methods 
are very similar. TABLE I also illustrates this point. In the first 

example, 𝐸(𝑡) and 𝐸(𝑐) values from TABLE I show that the paths 
have small difference in length and the collision probability is also 
at the same level. The smaller 𝐸(𝑒)  in the MPC-method means 
more accurate localization. The smaller 𝐸(𝑞)  in the MPC-method 
means the smoother trajectory and the smaller power consumption.  

 

Figure 5.  A simulation run by MPC in the second map 

 

Figure 6.  A simulation by POMDP in the second map 

The range of view field in the second map is only 5m. The 
results are given in Fig. 5 and Fig. 6. The comparison of the two 
methods is given in TABLE II. It can be seen that the result in 
TABLE II, 𝐸(𝑒)  and 𝐸(𝑞)  by the POMDP-based method are 
smaller. This is interesting. One reason is that POMDP can utilize 
more “information” to update the robot’s knowledge while the 
MPC-method usually ignores the event that some piles cannot be 
sensed.  

Furthermore, the POMDP-based method needs much more 
offline time to get a relative accurate solution while the MPC-based 
method requires less offline time. However, the POMDP-based 
method takes less time on the online part. Three reasons may 
explain the big difference on computation time between the MPC-
based method and the POMDP-based method. The first reason is 
that the online part of the POMDP-based method is usually very 



 

simple (strictly, the complexity of the online computation depends 
on the number of 𝛼 -vectors). The second reason is that the 
POMDP-based method considers the infinite steps while the MPC-
based method only considers finite steps. The last reason is that the 
MPC-based method simplifies the process of updating the 
probability distribution of the robot’s pose by utilizing EKF that 
calculates an approximation to the true probability distribution [14].   

TABLE I.   COMPARISON IN THE FIRST MAP 

Results 
Methods 

MPC method POMDP 

E(t) 98 95 

E(e) 2 2.7 

E(q) 3.9 5.2 

E(c) 0.02 0.02 

Compu

ting 
time 

0.1s (online) 

+10m (offline) 

0.01s (online) 

+2h (off line) 

 

TABLE II.  COMPARISON IN THE SECOND MAP 

Results 
Methods 

MPC method POMDP 

E(t) 33 32 

E(e) 3.1 2.7 

E(q) 2.74 2.4 

E(c) 0 0 

Compu

ting 

time 

0.1s (online) 
+5m (offline) 

0.001s (online) 
+2h (off line) 

 

The MPC-based method is implemented in Matlab 2009b, and 
the code used to solve the POMDP problem in this paper is Sarsop, 
specified details of which are given in [12]. The two planners are 
run in a PC with 4.0GHz Intel processor and 16GB RAM.  

VI. CONCLUSION AND FUTURE WORK 

Two path planners for the underwater robot navigation under 
uncertainty have been presented and compared. The particular 
objectives include quick arrival, accurate localization, collision-
avoidance and reducing the power consumption. 

We can make a preliminary conclusion from the simulation 
results that the MPC-based method is very efficient and effective 
but its performance heavily depends on the range of view filed. The 
POMDP-based method can exploit more information in theory. 
Especially, it is more suitable for the case that the number of 
possible observations is few. For real application, whether to use 
the MPC-based method or the POMDP-based method depends on 
the balance between performance and computing time.  

Significant effort is still required before implementing the 
method into the real world. Gaussian distribution in the MPC-based 
method may be extended to the general probability distribution. On 
the other hand, POMDP and MPC are high level control method, 
so developing a smart algorithm combing them and low level 
control is also necessary.  Future work also includes trying to 
combine the local update policy from the recent POMDP algorithm 
[14] with the MPC-based method.  
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