

Comparison of Two Strategies of Path Planning for

Underwater Robot Navigation Under Uncertainty

Teng Zhang, Shoudong Huang, Dikai Liu

Faculty of Engineering and Information Technology

University of Technology, Sydney

Sydney, Australia

{Teng.Zhang, Shoudong.Huang, Dikai.Liu}@uts.edu.au

Abstract—This paper considers path planning for underwater

robot in navigation tasks. The main challenge is how to deal with

uncertainties in the underwater environment such as motion model

error and sensing error. To overcome this challenge, two high level

control methods have been presented and compared, which are based

on the Model Predictive Control (MPC) strategy and the Partially

Observable Markov Decision Process (POMDP) model, respectively.

Navigation time, collision frequency, energy consumption and

accuracy in localization are used as the assessment criteria for the two

methods. It is shown that the MPC-based method is more efficient for

our application scenarios while the POMDP-based method can

provide more robust solutions.

Keywords—path planning, navigation, uncertainty, MPC,

POMDP.

I. INTRODUCTION

Underwater robot is a great application for robotics because
working underwater is both dangerous and difficult for humans.
Bridge piles cleaning is an important task for bridge inspection,
maintenance, and rehabilitation. Fig. 1 shows the image of a bridge
with piles covered by some marine growth. Carrying out high
pressure underwater cleaning of piles can be a dangerous and
exhaustive task for human and hence making use of underwater
robot equipped with a water blasting gun can be beneficial and has
large application potential. A basic requirement for such an
underwater robot is that it must be able to move from its initial
position to the destination (the pile that needs cleaning) without
collision. Since there are a lot of uncertainties involved, such as
motion error due to water current, the sensing errors, etc., the
problem requires solving is path planning of underwater robot
under uncertainties.

Approaches of path planning under deterministic action or full
knowledge of the robot’s state are quite mature and broadly
classified into three categories: roadmap-based methods, cell
decomposition-based methods and potential field-based methods
[1]. In the past decades, the three kinds of methods have been
successfully applied to the ground robot like home cleaning robots,
automated wheelchair, museum-guide robot, and so on [2]. Path
planning for underwater robot navigation is a more challenging task
owing to the positioning uncertainty. Underwater robot suffers
large motion error due to roughly known hydrodynamic
coefficients. Localization using GPS is impractical and localization
by other onboard sensors is not very accurate as well. It means the
robot pose is only partially known. So the above three kinds of
methods need to be modified to adapted to the path planning for
underwater robot navigation under uncertainties.

Figure 1. A bridge with piles requiring cleaning

In order to alleviate the difficulties in the navigation under
uncertainties, many approaches have been proposed and some of
them have been proved to be successful and effective in simulation
and practice such as [2], [3], [4].

Burns and Brock [5] propose a sampling-based planner that
incorporates sensor uncertainty into the planning process,
determines an optimal path and then give a control policy. Van Den
Berg and Overmars [6] present similar approaches for path
planning by using different evaluation function for paths, which
also considers motion uncertainty. Roijers et al. [7] propose a
motion planner based on multi-objective Markov Decision Process,
which considers the motion uncertainty but ignores the observation
uncertainty. Recently, Vadim et al. [8] propose a planning
approach including the estimation of the position of landmark.
These approaches are based on the Discrete Stochastic Process,
which regards robot’s motion as sequential actions that are not
deterministic. Furthermore, the three kinds of basic methods for
path planning without uncertainty are also subtly exploited as well.

In fact these planners mentioned above try to trade off between
the size of the model (state space, action space, observation space)
and the number of the steps that the robot looks ahead because the
large-size model and the large number of steps usually require
tremendous computing time. Discretization and the finite steps
look-ahead policy are the popular techniques for making the
problem tractable. MPC, as a representation of finite steps look-
ahead policies, associated with extended Kalman Filter can handle

the problem of planning with the continuous working space over
finite steps [9].

In theory, POMDP is a general framework for planning under
uncertainty over infinite steps and it may be useful for many
application areas such as industry applications and business
applications [10]. POMDP was regarded as impractical a decade
ago due to its high computational complexity. However, the point-
based POMDP algorithms have made dramatic progress in recent
decade [2], [11], [12]. POMDP provides the optimal solution over
the infinite steps but it is usually used for the discrete model. MPC
and POMDP simplify path planning under uncertainty from
different perspectives. In this paper, we make some comparison
between the two strategies in our application scenarios and try to
identify which is more suitable for our problem.

The remainder of this paper is organized as follows. The details
of the navigation problem considered in this paper are presented in
Section II. The MPC-based method is presented in Section III. The
POMDP-based method is described in Section IV. Results and
comparison based on simulation are shown in Section V. Section
VI addresses conclusion and future work.

II. THE DETAILS OF NAVIGATION PROBLEM

We consider the scenario in 2D, ignoring the vertical direction.
This simplification is acceptable for three reasons. The first reason
is that the shape of obstacles in our scenario is almost the same at
different height (cuboid). The second reason is that the underwater
robot can adjust itself to different height. The third reason is that it
is relatively easy to obtain the vertical position of an underwater
robot. In this paper, kinematic and dynamic constraints has not
been considered in this paper.

The 2D environment is illustrated in Fig. 2, where the squares
and strips are bridge piles. The red square is the pile requires
cleaning which is the destination of the robot. The blue point is the
actual position of the robot. The exact initial pose of the underwater
robot is unknown but its probability distribution is given. We
consider configuration space which regards the robot as a dot and
enlarges the size of obstacles.

A. Objectives and evaluation function

The main objective is to drive the underwater robot quickly
arriving at the neighborhood of the specific pile without collision.
The second objective is to minimize the uncertainty of the
underwater robot’s pose in the navigation. The third objective is to
minimize energy consumption which is assumed to be proportional
to the total degree of the underwater robot’s steering angle. The
task can be summarized as four objectives: (1) arriving at the
neighborhood of the specific pile in short time, (2) avoiding
obstacles, (3) localizing itself precisely, and (4) reducing the energy
consumption.

For these purposes, an evaluation function for different
methods is proposed as following:

 𝐸𝑣𝑎(𝑀) = (𝐸(𝑡), 𝐸(𝑒), 𝐸(𝑞), 𝐸(𝑐))𝑇. (1)

In this function, 𝑀 represents method, 𝑡 represents the total
time in navigation, 𝑒 is an index that quantifies the uncertainty of
the robot’s pose, 𝑐 = 1 indicates the collision happens while 𝑐 = 0
indicates the robot avoids obstacles in the navigation and 𝑞
symbolizes the total degree of steering angle. Furthermore, 𝐸 is the

expectation operator. A method has better performance if its value
in the evaluation function is smaller.

B. Assumptions

The map as shown in Fig. 2 is assumed to be given in advance.
The squares and strips are obstacles. The squares are regarded as
landmarks as well. The red one is the destination which is given.
The probability distribution of the underwater robot’s pose is given.
The underwater robot can obtain an observation that indicates the
approximate distances between its current position and the square
piles within the sensor range.

The motion model of the robot is given which contains
uncertainty. For simplification, we only consider the case that the
velocity of the underwater robot is fixed. Like other methods
mentioned above, navigation is regarded as a stochastic process and
we assume the robot would perform one action and then get one
observation in each step. Performing an action means the robot
changes the heading direction in the interval [−𝑎, 𝑎] (𝑎 > 0).

C. Strategies for comparison

A strategy can be defined as a mapping from information
history to action. Information history indicates the pose probability
distribution history, observation history and action history. Section
III and Section IV introduce two strategies based on their specific
model, respectively.

Figure 2. A map of our application scenario

III. THE MPC-BASED METHOD

The method based on MPC is inspired by the previous work [9].
The key of MPC is that “using available model to predict a few
steps, find the optimal actions and execute only one step and then
update the model”. Under the assumption that the initial robot pose,
motion error and sensing error follow Gaussian distribution, the
localization and prediction can be performed efficiently.

A. Transition model and observation model

Suppose the robot’s pose at the time step 𝑖 is

𝑋𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖)
𝑇, (2)

where (𝑥𝑖 , 𝑦𝑖) represents the position of the robot, 𝜃𝑖 is the heading
direction. The transition model is given by

𝑋𝑖+1 = 𝑓(𝑋𝑖 , 𝑢𝑖+1) + 𝑒𝑖, (3)

where 𝑓 is a function depending on the kinematic model, 𝑢𝑖+1 as
input action is the steering angle between the time step 𝑖 and the
time step 𝑖 + 1 , and 𝑒𝑖 as motion error follows the Gaussian

distribution 𝒩(0, 𝑅𝑖). 𝑅𝑖 depends on the water current at the time
step i. If the navigation time is short, this matrix is fixed.

In our proposed scenario, we assume

𝑓(𝑋, 𝑢) = (
𝑥 + 𝑣0𝑐𝑜𝑠(𝜃 + 𝑢)
𝑦 + 𝑣0𝑠𝑖𝑛(𝜃 + 𝑢)

𝜃 + 𝑢

), (4)

where 𝑣0 as constant is the displacement in the unit time.

The underwater robot is assumed to be equipped with a sensor
that can obtain each distance between the robot and the piles within
the sensor range. If the robot senses the j th pile, the measurement
is

𝑧𝑗 = ℎ𝑗(𝑋) + 𝑑𝑗 = ||𝑥 − 𝐿𝑗
𝑥 , 𝑦 − 𝐿𝑗

𝑦
|| + 𝑑𝑗, (5)

where 𝑧𝑗 is the measurement, (𝑥, 𝑦) is the robot’s position,

(𝐿𝑗
𝑥, 𝐿𝑗

𝑦
) is the position of the j th pile, and 𝑑𝑗 as sensing error

follows the Gaussian distribution 𝒩(0, 𝑄𝑗) in which 𝑄𝑗 depends

on the level of the sensor noises.

Furthermore, 𝑍𝑖 = (𝑧𝑖
𝑖1 , 𝑧𝑖

𝑖2 , … , 𝑧𝑖
𝑖𝑙)𝑇is called the observation at

the time step 𝑖, where zi
j
 indicates the measurement of the 𝑗 th pile

at the time step 𝑖.

B. Extended Kalman Filter (EKF)

EKF makes the MPC-based method easy to compute. If the
robot’s pose at the time 𝑖 − 1 follows the Gaussian distribution
𝒩(𝑋𝑖−1, 𝐶𝑖−1), it performs the action 𝑢𝑖 between the time step 𝑖 −
1 and the time step 𝑖 and then obtains the observation 𝑍𝑖 =

(𝑧𝑖
𝑖1 , 𝑧𝑖

𝑖2 , … , 𝑧𝑖
𝑖𝑙)𝑇 at the time step 𝑖 where 𝑧𝑖

𝑘 indicates the

measured distance between the robot and the 𝑘 th pile at the time
step 𝑖, the robot’s pose at the time step 𝑖 will follows the Gaussian
distribution 𝒩(𝑋𝑖 , 𝐶𝑖).

The (𝑋𝑖 , 𝐶𝑖) can be computed as following:

Prediction step:

�̅� = 𝑓(𝑋𝑖−1, 𝑢𝑖)

𝐶̅ = (∇𝑋𝑓(𝑋𝑖−1, 𝑢𝑖))𝐶𝑖−1(∇𝑋𝑓(𝑋𝑖−1, 𝑢𝑖))
𝑇
+ 𝑅𝑖.

Update step:

𝐾 = 𝐶̅(∇𝑋ℎ(�̅�))
𝑇
((∇𝑋ℎ(�̅�))𝐶̅(∇𝑋ℎ(�̅�))

𝑇 + �̃�)−1

𝑋𝑖 = �̅� + 𝐾(𝑍𝑖 − ℎ(�̅�))

𝐶𝑖 = (𝐼 − 𝐾(𝛻𝑋ℎ(�̅�)))𝐶̅,

where

ℎ(�̅�) = (ℎ𝑖1(�̅�), ℎ𝑖2(�̅�), … , ℎ𝑖𝑙(�̅�))
𝑇

�̃� = diag(𝑄𝑖1 , 𝑄𝑖2 , … , 𝑄𝑖𝑙
).

The above EKF equations can be summarized as a brief
expression as

[𝑋𝑖 , 𝐶𝑖] = 𝑔(𝑋𝑖−1, 𝐶𝑖−1, 𝑢𝑖, 𝑍𝑖). (6)

For more details of the EKF formula, please refer to [9] and
[13].

C. Nonlinear MPC control

In order to predict the performance in the next step without
actually performing the control action and obtaining the
observation, some assumptions are necessary. Similar to [10], for
prediction, we assume that no new piles will be detected in the next
step and the robot will acquire the observation that is most likely
given the Gaussian distribution.

That is, if the robot can sense the 𝑖1, 𝑖2, … , 𝑖𝑙 th piles at the time
step 𝑖 , it will sense the same piles in the next step. And if the
observation is 𝑍𝑖 at the time step 𝑖, the robot performs the action 𝑢
between the time step 𝑖 and the time step 𝑖 + 1 and the pose
follows Gaussian distribution 𝒩(𝑋𝑖 , 𝐶𝑖) at the time step 𝑖 , the
observation at the time step 𝑖 + 1 will be

�̅�𝑖+1 = (ℎ𝑖1(𝑓(𝑋𝑖 , 𝑢)), ℎ𝑖2(𝑓(𝑋𝑖 , 𝑢)), … , ℎ𝑖𝑙(𝑓(𝑋𝑖 , 𝑢)))
𝑇
. (7)

Combining (6) and (5), the Gaussian distribution of the robot’s pose
at the time i+1 will be easy to predict as:

[�̅�𝑖+1, 𝐶�̅�+1] = 𝑔(𝑋𝑖 , 𝐶𝑖 , 𝑢, �̅�𝑖+1). (8)

In order to minimize the multiple objective functions in (1), we
design a weighted sum of them, which is

𝐽(𝑢):= 𝑤1𝐽𝑑(�̅�𝑖+1, 𝐶�̅�+1) + 𝑤2𝐽𝑒(𝐶�̅�+1) + 𝑤3||𝑢|| (9)

Subject to: 𝐽𝑐(�̅�𝑖+1, 𝐶�̅�+1) = 0, 𝑢 ∈ [−𝑎, 𝑎]

Let us explain all the terms of (8). The term 𝐽𝑑(𝑋, 𝐶) is the
average length of the shortest path from the point in the ellipsoid

(𝑥, 𝑦) (
𝐶11 𝐶12
𝐶21 𝐶22

) (𝑥, 𝑦)𝑇 = 4 (10)

to the destination, where C𝑖𝑗 indicates the entry in the 𝑖 th row and

𝑗 th column of 𝐶. This ellipsoid covers 95% confidence region area
of the actual position of the underwater robot. Furthermore,
𝐽𝑑(𝑋, 𝐶) can be easily computed by using sample-based method.
The principle is that sample many points in the ellipsoid (9)

according to the Gaussian distribution 𝒩(�̅�𝑖+1, 𝐶�̅�+1) , and then
compute the average length of shortest paths from the sampled
points to destination. The length of shortest path can be considered
as a function 𝐿𝑒(𝑥, 𝑦), which can be computed offline by using
Dijkstra’s algorithm. In this part, computational complexity is
polynomial time, which is practical and acceptable. Using 𝐽𝑑(𝑋, 𝐶)
is helpful for the robot arriving to destination without falling in to
the local stable point unlike some cases in the force field method.

The term 𝐽𝑒(𝐶) is used to quantify the uncertainty of the robot
pose because

𝐽𝑒(𝐶): = det (
𝐶11 𝐶12
𝐶21 𝐶22

) (11)

is proportional to the area of the ellipsoid (9).

The term ||𝑢|| has two effects. One is that we want to minimize
the energy consumption which is assumed to be positively
correlated with the steering angle u. Another is that the transition
model (3) is an approximate when the steering angle u is small.

The constraint 𝐽𝑐(�̅�𝑖+1, 𝐶�̅�+1) = 0 is to guarantee collision-
avoidance as far as possible. 𝐽𝑐(𝑋, 𝐶)is the common area of the
ellipsoid (9) and the obstacles. In the proposed 2D scenario,

checking if the common area of the ellipsoid (8) and the obstacles
(squares and strips) is zero or not is very quick.

The second constraint 𝑢 ∈ [−𝑎, 𝑎]corresponds to the limitation
of the steering angle. A practical way for the optimization problem
(8) is to discretize the set [−𝑎, 𝑎]. This simplification is reasonable
and also reduces much computing time.

𝑤𝑖 (𝑖 = 1,2,3) in (8) is the weight coefficient. However, it is
very difficult to quantify the weight coefficient without prior
knowledge. If the weight coefficients are fixed, the robot may stay
at some region that locally minimize (8). Considering the main
objective is that the underwater robot arrives at the destination as
soon as possible, we devise a self-adaptive strategy to address this
problem. The principle is simple and natural:

If 𝐽𝑑(𝑋𝑖 , 𝐶𝑖) > 𝐽𝑑(𝑋𝑖−𝑘0 , 𝐶𝑖−𝑘0) , 𝑤1 will be enlarged

temporarily until 𝐽𝑑(𝑋𝑖 , 𝐶𝑖) < 𝐽𝑑(�̅�𝑖−𝑀, 𝐶�̅�−𝑀), where 𝑖 means the
current time and 𝑖 − 𝑘0 means the last 𝑘0 step. In our simulation in
Section V, 𝑘0 is set as 5.

The solution 𝑢∗ of the optimization problem (8) is the optimal
action between the time step 𝑖 and the time step 𝑖 + 1.

The MPC-based method described above only considers one
step look ahead. The multi-step look ahead MPC strategy is similar,
but requires more computational cost [9].

IV. THE POMDP-BASED METHOD

The POMDP-based method is a strategy for planning under
uncertainty with infinite time horizon. Different from the MPC-
based method using EKF, POMDP has no Gaussian distribution
assumption on the initial pose, the noise on transition model and
the observation model. Strictly, a POMDP model is a tuple
(𝑆, 𝐴, 𝑂, 𝑇, 𝑍, 𝑅, 𝑟). The details are given below.

A. Transition model and observation model

𝑆 includes all possible robot’s poses and an absorbed state end.
The state end is used to end the navigation. 𝐴 is the action set. T is
the transition model according to (2).

𝑇(𝑠, 𝑢, 𝑠′) ≔ Pr(𝑠′|𝑠, 𝑢) is the probability that the robot’s pose
would be 𝑠′ under the action 𝑢 if the current pose is 𝑠 . The
absorbed state 𝑒𝑛𝑑 is to stop the whole process. Generally
speaking,

𝑇(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑢, 𝑒𝑛𝑑) = 1, ∀𝑢 ∈ 𝐴 (12)
𝑇(𝑒𝑛𝑑, 𝑢, 𝑒𝑛𝑑) = 1, ∀𝑢 ∈ 𝐴. (13)

𝑂includes all the possible observations. 𝑍 is the observation
model, 𝑍(𝑜|𝑠) is the probability that the robot is at the pose 𝑠 and
acquires the observation o. In the proposed problem, we formulate
𝑜 as the distance between the robot and the nearest pile.

For the proposed scenario, 𝑆 , 𝐴 and 𝑂 are discrete sets.
Naturally, the transition model is given according to the
discretization of (2):

𝑇((𝑥′, 𝑦′, 𝜃 + 𝑢)|(𝑥, 𝑦, 𝜃), 𝑢) ∝ exp[−(𝑑𝑥
2+𝑑𝑦

2)], (14)

 where

𝑑𝑥 = 𝑥′ − 𝑥 − 𝑣0 cos(𝑢 + 𝜃), (15)

 𝑑𝑦 = 𝑦′ − 𝑦 − 𝑣0 sin(𝑢 + 𝜃). (16)

 The observation model is given according to the discretization
of (4):

𝑍((𝑜1 , 𝑜2, … 𝑜𝐿)|(𝑥, 𝑦, 𝜃)) ∝ ∏ exp [
−1

2
(√𝑞𝑖,𝑥

2 +𝑞𝑖,𝑦
2 − 𝑜𝑖)

2
𝐿
𝑖=1],

 (17)

where 𝐿 is the number of piles, 𝑜𝑖 is the measurement that indicates

the distance between the robot and the i th pile, and 𝑞𝑖,𝑥 = 𝑥 −

𝐿𝑥
𝑖 ,𝑞𝑖,𝑦 = 𝑦 − 𝐿𝑦

𝑖 , where (𝐿𝑥
𝑖 , 𝐿𝑦

𝑖) is the position of the the i th pile.

The observation model in POMDP is a little different from that
in MPC. In POMDP, the event that the robot cannot sense any pile
is also regarded as an observation while the method based on MPC
ignores this.

B. Reward function and discount coefficient

Reward function 𝑅(𝑋, 𝑢) means the robot will obtain a value as
reward under the action u when it is in the state x. Discount
coefficient r is a constant in (0,1). The POMDP solution is to
maximize the total rewards.

In order to minimize the multiple objective functions in (1),
reward function 𝑅(𝑠, 𝑢) can be devised as:

𝑅(𝑒𝑛𝑑, 𝑢) = 0, (18)

𝑅((𝑥, 𝑦, 𝜃), 𝑢): = −𝑅𝑑(𝑥, 𝑦) − ||𝑢|| − 𝑅𝑜((𝑥, 𝑦, 𝜃), 𝑢), (19)

where 𝑅𝑑(𝑥, 𝑦) is the length of shortest path from (𝑥, 𝑦) to the
destination. R𝑜 is the penalty function for obstacles: if the
underwater robot at the position (𝑥, 𝑦) moves to obstacles under
action 𝑢 with high probability, the value of 𝑅𝑜(𝑋, 𝑢) will be very
large. Furthermore, 𝑅(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑢) is set as a large value,
which encourages that the underwater robot arrives at the
destination as soon as possible.

C. POMDP solution

POMDP solution is a mapping from the space of the probability
distribution of the robot to the action set 𝐴. The solution 𝜋 can
maximize the function value

𝑉𝜋(𝑏) = 𝐸[∑ 𝑟𝑖𝑅(𝑋𝑖 , 𝑢𝑖|𝑏, 𝜋)
∞
𝑖=0] (20)

for arbitrary probabilistic distribution 𝑏. Computing the solution is
done offline and it usually takes much time. This solution provides
an action 𝑢 = 𝜋(𝑏′) at each step where 𝑏′ is the probability
distribution of the robot pose in the current step. See more details
in [12] and [13].

V. RESULTS AND COMPARISON

We apply the MPC-based method and the POMDP-based
method in two simulation examples. In the simulation examples,
the terminal conditions are that the underwater robot arrives at the
destination. The boundaries are also considered as obstacles.
Furthermore, the sensor of the robot is assumed to have the
omnidirectional field and the robot velocity is set as 1m/s. The
length function 𝐿𝑒(𝑥, 𝑦) of the shortest path in the MPC-based
method is computed by using Dijkstra’s algorithm. The sensor
range in the first example (Fig.3 and Fig. 4) is assumed to be 10m
while it is set as 5m in the second example (Fig. 5 and Fig. 6).

The parameters of the MPC-based method are set as the
following:

𝑎 = 𝜋/4, 𝑤1 = 2,𝑤2 = 1,𝑤3 = 1.

𝐶0 = 𝑅i = 𝑑𝑖𝑎𝑔(0.001, 0.001, 0.1) (𝑖 = 1,2,3…)

In the first example,

𝑋0 = (2, 20, 0)𝑇 , 𝑄𝑗 = 0.5 (𝑗 = 1,2, … ,8),

In the second example,

𝑋0 = (−3,−3,−𝜋/4)𝑇 , 𝑄𝑗 = 0.5 (𝑗 = 1,2, … ,6).

Figure 3. A simulation run by MPC

Figure 4. A simulation run by POMDP

The details of the POMDP transition model and observation
model are trivial and thus omitted. In both of the first example and
the second example, the underwater robot would get +10000
reward value when it arrives at the destination. Furthermore, the
discount coefficient 𝑟 is set as 0.98.

In the first map, the size of POMDP is:

|𝑆| = 14001,

|𝐴| = 7, |𝑂| = 25.

The size of the POMDP model in the second map is much
smaller:

|𝑆| = 5001,

|𝐴| = 7, |𝑂| = 36.

For each example, to estimate the function value of (1), we
perform 100 simulation runs under the MPC-based method and the
POMDP-based method, respectively and compute the expectations.

Fig. 3 and Fig. 4 show that the trajectories by the two methods
are very similar. TABLE I also illustrates this point. In the first

example, 𝐸(𝑡) and 𝐸(𝑐) values from TABLE I show that the paths
have small difference in length and the collision probability is also
at the same level. The smaller 𝐸(𝑒) in the MPC-method means
more accurate localization. The smaller 𝐸(𝑞) in the MPC-method
means the smoother trajectory and the smaller power consumption.

Figure 5. A simulation run by MPC in the second map

Figure 6. A simulation by POMDP in the second map

The range of view field in the second map is only 5m. The
results are given in Fig. 5 and Fig. 6. The comparison of the two
methods is given in TABLE II. It can be seen that the result in
TABLE II, 𝐸(𝑒) and 𝐸(𝑞) by the POMDP-based method are
smaller. This is interesting. One reason is that POMDP can utilize
more “information” to update the robot’s knowledge while the
MPC-method usually ignores the event that some piles cannot be
sensed.

Furthermore, the POMDP-based method needs much more
offline time to get a relative accurate solution while the MPC-based
method requires less offline time. However, the POMDP-based
method takes less time on the online part. Three reasons may
explain the big difference on computation time between the MPC-
based method and the POMDP-based method. The first reason is
that the online part of the POMDP-based method is usually very

simple (strictly, the complexity of the online computation depends
on the number of 𝛼 -vectors). The second reason is that the
POMDP-based method considers the infinite steps while the MPC-
based method only considers finite steps. The last reason is that the
MPC-based method simplifies the process of updating the
probability distribution of the robot’s pose by utilizing EKF that
calculates an approximation to the true probability distribution [14].

TABLE I. COMPARISON IN THE FIRST MAP

Results
Methods

MPC method POMDP

E(t) 98 95

E(e) 2 2.7

E(q) 3.9 5.2

E(c) 0.02 0.02

Compu

ting
time

0.1s (online)

+10m (offline)

0.01s (online)

+2h (off line)

TABLE II. COMPARISON IN THE SECOND MAP

Results
Methods

MPC method POMDP

E(t) 33 32

E(e) 3.1 2.7

E(q) 2.74 2.4

E(c) 0 0

Compu

ting

time

0.1s (online)
+5m (offline)

0.001s (online)
+2h (off line)

The MPC-based method is implemented in Matlab 2009b, and
the code used to solve the POMDP problem in this paper is Sarsop,
specified details of which are given in [12]. The two planners are
run in a PC with 4.0GHz Intel processor and 16GB RAM.

VI. CONCLUSION AND FUTURE WORK

Two path planners for the underwater robot navigation under
uncertainty have been presented and compared. The particular
objectives include quick arrival, accurate localization, collision-
avoidance and reducing the power consumption.

We can make a preliminary conclusion from the simulation
results that the MPC-based method is very efficient and effective
but its performance heavily depends on the range of view filed. The
POMDP-based method can exploit more information in theory.
Especially, it is more suitable for the case that the number of
possible observations is few. For real application, whether to use
the MPC-based method or the POMDP-based method depends on
the balance between performance and computing time.

Significant effort is still required before implementing the
method into the real world. Gaussian distribution in the MPC-based
method may be extended to the general probability distribution. On
the other hand, POMDP and MPC are high level control method,
so developing a smart algorithm combing them and low level
control is also necessary. Future work also includes trying to
combine the local update policy from the recent POMDP algorithm
[14] with the MPC-based method.

REFERENCES

[1] LaValle, Steven M. Planning algorithms. Cambridge university press,
2006.

[2] R. Simmons and S. Koenig, "Probabilistic robot navigation in partially
observable environments," in IJCAI, 1995, pp. 1080-1087.

[3] R. Kaplow, A. Atrash, and J. Pineau, "Variable resolution
decomposition for robotic navigation under a POMDP framework," in
Robotics and Automation (ICRA), 2010 IEEE International Conference
on, 2010, pp. 369-376.

[4] L. J. Guibas, D. Hsu, H. Kurniawati, and E. Rehman, "Bounded
uncertainty roadmaps for path planning," in Algorithmic Foundation of
Robotics VIII, ed: Springer, 2009, pp. 199-215.

[5] B. Burns and O. Brock, "Sampling-based motion planning with sensing
uncertainty," in Robotics and Automation, 2007 IEEE International
Conference on, 2007, pp. 3313-3318.

[6] J. P. Van Den Berg and M. H. Overmars, "Roadmap-based motion
planning in dynamic environments," Robotics, IEEE Transactions on,
vol. 21, pp. 885-897, 2005.

[7] D. M. Roijers, J. Scharpff, M. Spaan, F. A. Oliehoek, M. de Weerdt,
and S. Whiteson, "Bounded approximations for linear multi-objective
planning under uncertainty," International Conference on Physics and
Astronomical Sciences, 2014.

[8] V. Indelman, L. Carlone, and F. Dellaert, "Planning Under Uncertainty
in the Continuous Domain: a Generalized Belief Space Approach."
unpublished.

[9] C. Leung, S. Huang, N. Kwok, and G. Dissanayake, "Planning under
uncertainty using model predictive control for information gathering,"
Robotics and Autonomous Systems, vol. 54, pp. 898-910, 2006.

[10] A. R. Cassandra, "A survey of POMDP applications," in Working
Notes of AAAI 1998 Fall Symposium on Planning with Partially
Observable Markov Decision Processes, 1998, pp. 17-24.

[11] G. Theocharous, K. Murphy, and L. P. Kaelbling, "Representing
hierarchical POMDPs as DBNs for multi-scale robot localization," in
Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE
International Conference on, 2004, pp. 1045-1051.

[12] H. Kurniawati, D. Hsu, and W. S. Lee, "SARSOP: Efficient Point-
Based POMDP Planning by Approximating Optimally Reachable
Belief Spaces," in Robotics: Science and Systems, 2008, pp. 65-72.

[13] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics: MIT press,
2005.

[14] H. Kurniawati and V. Yadav, "An Online POMDP Solver for
Uncertainty Planning in Dynamic Environment," in International
Symposium on Robotics Research, 2014.

