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Abstract—This paper provides sufficient conditions for stabil-
ity of switched linear systems under dwell-time switching.Piece-
wise quadratic functions are utilized to characterize the Lyapunov
functions and bilinear matrix inequalities conditions are derived
for stability of switched systems. By increasing the numberof
quadratic functions, a sequence of upper bounds of the minimum
dwell time is obtained. Numerical examples suggest that if the
number of quadratic functions is sufficiently large, the sequence
may converge to the minimum dwell-time.

I. I NTRODUCTION

This paper investigates to the stability of switched linear
systems:

ẋ(t) = Aσ(t) x(t), (1)

wherex(t) ∈ R
n is the state variable andσ(t) : R+ → IN :=

{1, · · · , N} is a time-dependent switching signal that indicates
the current active mode of the system amongN possible modes
in A := {A1, · · · , AN}. All matricesAi, i = 1, · · · , N are
assumed to be Hurwitz.

This class of systems has been widely investigated in the
last decade, due to their importance both in the theoretical
context and in engineering applications, see e.g. the recent
surveys [1]–[4].

The stability problem is one of the most important issue
associated with the study of such systems. This problem has
been addressed mainly using the theory of Lyapunov functions
(LFs), to find conditions under which the system preserves
stability. For example, the origin of system (1) is stable
under arbitrary switching upon the existence of a common
quadratic Lyapunov function [2], switched Lyapunov functions
[5], multiple Lyapunov functions [1], [6], composite quadratic
functions [7] or polyhedral Lyapunov functions [8], [9]. It
is known that existence of a piece-wise linear (polyhedral)
LF [8] or a piece-wise quadratic LF [10] is both necessary
and sufficient for asymptotic stability of system (1) under
arbitrary switching. This implies that the class of polyhedral
functions or piece-wise quadratic functions are universalfor
characterization of stability of switched linear systems under
arbitrary switching.

Another condition for stability is that based on dwell-time
consideration. When allAi’s are stable, stability of the origin
can be ensured if the time duration spent in each subsystem is
sufficiently long [2]. Upper bounds of the minimal dwell-time

needed have also appeared [11]–[15]. Finding the minimum
dwell time is known to be a hard problem and the research
has been shifted to find testable conditions for the computation
of upper bounds to the minimum dwell time. In [16] it is
shown that stability under dwell time implies the existenceof
multiple Lyapunov norms, but the result is not constructive. In
[12] a necessary and sufficient condition for stability of (1) in
terms of piecewise linear (polyhedral) LF is provided, however
construction of such polyhedral LF are not easy. Alternatively,
[13], [17] introduce the concept of dwell-time(DT)-contractive
sets and show that existence of a polyhedral DT-contractiveset
is both necessary and sufficient for stability of (1). An algo-
rithm for computation of DT-contractive sets is also proposed
for discrete-time systems, however computation of such sets
for continuous systems is still lacking. In [14], polynomial
functions are used to characterize the LF and the problem
is formulated as a set of LMIs to compute upper bounds of
minimum dwell time.

In this paper, we use piece-wise quadratic functions to
characterize the Lyapunov functions and provide stabilitycon-
ditions in terms of bilinear matrix inequalities (BMIs). Inthe
limiting case where the dwell-time approaches zero, systemis
under arbitrary switching, and the proposed conditions retrieve
the results appeared in the literature [10]. Hence, this work can
also be seen as a generalization of those obtained for arbitrary
switching systems. It turns out by increasing the number of the
quadratic functions that characterize the Lyapunov function,
the proposed conditions has more degree of freedom and
can be used to determine the minimal dwell-time needed for
stability of (1).

The rest of this paper is organized as follows. This section
ends with a description of the notations used. Section II re-
views some standard terminology and results for switching sys-
tems. Section III shows the main results on the characterization
of the Lyapunov functions with piece-wise quadratic functions
for system (1). An algorithmic procedure for computation of
sequence of upper bounds of the minimum dwell time needed
for stability is also presented in this section. Sections IVand
V contain, respectively, numerical examples and conclusions.

The following standard notations are used.R
+ is the set

of non-negative real numbers. Positive definite (semi-definite)
matrix, P ∈ R

n×n, is indicated byP ≻ 0(� 0) andIn is the
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n× n identity matrix. Given aP ≻ 0, E(P ) := {x : xTPx ≤
1}. Other notations are introduced when needed.

II. PRELIMINARIES

This section reviews definitions of dwell-time, admissible
switching sequences, piece-wise quadratic functions and pre-
liminary results on stability of (1) under dwell-time switching.
These definitions have appeared in prior papers (see, e.g. [10],
[13], [14], [18]) but are repeated here for completeness and
for setting up the needed notations and results.

Denoting bytk, k = 0, 1, 2, · · · the switching instants, we
assume that the following dwell-time restriction is imposed on
the switching sequenceσ, i.e. σ ∈ Sτ ,

Sτ = {σ(t) : tk+1 − tk ≥ τ} (2)

where Sτ is the set of admissible switching signals that
satisfies the dwell-timeτ ≥ 0 restriction. Note thatσ(t) is
a piecewise constant function, in the sense thatσ(t) = σ(tk)
for t ∈ [tk, tk+1). The minimum dwell-time,τmin, is defined
as the minimumτ ensuring asymptotic stability of system (1)
for all possibleσ ∈ Sτ . More specifically, it is defined as

τmin := inf{τ ≥ 0 : (1) is Asymptotically stable,∀σ(t) ∈ Sτ}

A. Piece-wise Quadratic Functions

For a positive semidefinite functionV : R
n → [0,∞),

denote its1-level set as

LV := {x ∈ R
n : V (x) ≤ 1}

The one sided directional derivative ofV (x) is defined with
respect to two variablesx andζ, whereζ specifies the direction
of increment or motion

V̇ (x; ζ) := lim
h↓0

V (x+ ζh)− V (x)

h

whereh ↓ 0 denotes decreasing to0.
Given m positive definite matricesPr ≻ 0, r = 1, · · · ,m,

a piece-wise quadratic function can be obtained by [18]:

Vmax(x) := max{xTPr x : r = 1, · · · ,m} (3)

as the pointwise maximum ofm functions xTPrx, r =
1, · · · ,m and its 1-level set is the intersection of the ellipsoids
E(Pr), i.e. LVmax

= ∩mr=1E(Pr).
The directional derivative ofVmax along thei-th mode of

system (1) is [18]:

V̇max(x ;Aix) := max
{
xT (AT

i Ps + PsAi)x :

s ∈ {s : Vmax(x) = xTPs x}
}

(4)

B. Stability Results

We start from the following theorem which states the
necessary and sufficient condition for stability of (1) with
dwell-time τ .

Theorem 1. [16] System (1) is asymptotically stable in Sτ , if
and only if there exist continuous functions Vi(x), associated
to each mode i, such that

Vi(x) > 0 ∀x 6= 0, ∀i (5a)

V̇i(x ;Aix) < 0 ∀x 6= 0, ∀i (5b)

Vj(e
Aiτx) < Vi(x) ∀x 6= 0, ∀i 6= j (5c)

The above theorem shows that stability of the system (1) the
equivalent the existence of a mode-dependent Lyapunov func-
tion, Vσ(t)(x), which is strictly decreasing for non-switching
times, i.e.t 6= tk, and it is strictly decreasing at the switching
instances, i.e.,Vσ(tk+1)

(
x(tk+1)

)
< Vσ(tk)

(
x(tk)

)
, however

the the above theorem is not constructive. In [11], quadratic
functions are used to characterize theVi’s, but the conditions
are only sufficient for stability. In [12], polyhedral (piece-wise
linear) LFs are used to characterize theVi’s and it is shown that
piece-wise linear functions that satisfy condition (5) areboth
necessary and sufficient for stability of (1). However, the con-
ditions obtained are nonlinear and cannot be solved efficiently.
Motivated by the fact that piece-wise quadratic functions are
universal for characterization of stability similar to piece-wise
linear functions [18], the following section derives the stability
conditions using piece-wise quadratic functions.

III. M AIN RESULTS

Given a positive integerm, a piece-wise quadratic func-
tion characterized bym quadric functions is considered as
the candidate Lyapunov functionVi in Theorem 1, namely
Vi(x) = max{xTPi,r x : r = 1, · · · ,m}, i ∈ IN . Using S-
procedure, conditions of Theorem 1 can be converted into ma-
trix inequalities. The following theorem provides a sufficient
condition for stability of (1) under dwell-time switching.

Theorem 2. Assume that, for a given τ > 0 and posi-
tive integer m, there exist scalars αirs > 0, γjqirs ≥ 0,
∑m

s=1 γjqirs < 1 such that

Pi,r ≻ 0 ∀i, r = 1, · · · ,m (6)

AT
i Pi,r + Pi,rAi ≺

m∑

s=1
s6=r

αirs(Pi,s − Pi,r)

∀i, r = 1, · · · ,m (7)

eA
T

i
τPj,q e

Aiτ ≺ Pi,r +
m∑

s=1
s6=r

γjqirs(Pi,s − Pi,r)

∀i 6= j, r = 1, · · · ,m

q = 1, · · · ,m (8)

Then, system (1) is asymptotically stable for every σ ∈ Sτ .

Proof: Let Vi(x) = max{xTPi,r x : r = 1, · · · ,m}, i ∈
IN . We have to show that conditions 5(a)-(c) are satisfied. a)
Obviously, (6) implies thatVi(x) > 0 for all x 6= 0 and for all
i ∈ IN . b) From (7) and (4), it follows thaṫVi(x;Aix) < 0
for all x 6= 0 and for all i ∈ IN , see [18] for details. c)
Without loss of generality considerVj(x) = max{xTPj,q x :



q = 1, · · · ,m}, j 6= i. We have to show thatVj(e
Aiτx) <

Vi(x). To this end, consider(eAiτx)TPj,q (e
Aiτx) for anyq =

1, · · · ,m. For everyx such thatxTPi,r x ≥ xTPi,s x, s =
1, · · · ,m, Vi(x) = xTPi,rx. This and (8) together impliy that

xT (eA
T

i
τPj,q e

Aiτ )x < xTPi,rx
︸ ︷︷ ︸

Vi(x)

+

m∑

s=1
s6=r

γjqirs x
T (Pi,s − Pi,r)x

︸ ︷︷ ︸

≤0

< Vi(x)

Thus, Vj(e
Aiτx) = maxq{x

T eA
T

i
τPj,q e

Aiτx} < Vi(x).
The same argument holds for all the other regions where
xTPi,r x ≤ xTPi,s x. Hence conditions (5a)-(5c) of Theorem
(1) are all satisfied and the proof is complete.

Remark 1. Note that, for m = 1, Vi(x) = xTPi1 x and
conditions (6)-(8) become: Pi,1 ≻ 0, ∀i,

AT
i Pi,1 + Pi,1Ai ≺ 0 ∀i

eA
T

i
τPj,1 e

Aiτ ≺ Pi,1 ∀i 6= j

and it retrieves the conditions appeared in [11].

For a givenm, defineτ[m] as the smallest upper bound of
τmin guaranteed by Theorem 2, i.e.

τ[m] := inf{τ ≥ 0 : (6)− (8) hold}.

The following result provides a key property of the conditions
of Theorem 2, which allows us to calculateτ[m] via a bisection
search where at each iteration the conditions (6)-(8) are tested.

Theorem 3. Assume that (6)-(8) hold for some τ ≥ 0 and
positive integer m. Then, conditions (6)-(8) hold for τ + δ for
any δ ≥ 0 with the same m.

Proof: Suppose that (6)-(8) hold, and letVi(x) =
max{xTPi,r x : r = 1, · · · ,m}. Consider anyδ ≥ 0. From (7)
it follows that V̇i(x;Aix) < 0 and henceVi(x(δ)) < Vi(x(0))

for everyx(0), which implies thateA
T

i
δPi,re

Aiδ ≺ Pi,r . Now,
pre- and post-multiply (8) byeA

T

i
δ and eAiδ respectively. It

follows that

eA
T

i
(τ+δ)Pj,qe

Ai(τ+δ)
≺ eA

T

i
δPi,re

Aiδ

+
m∑

s=1
s6=r

γjqirse
AT

i
δ(Pi,s − Pi,r)e

Aiδ

≺ Pi,r +
m∑

s=1
s6=r

γjqirse
AT

i
δ(Pi,s − Pi,r)e

Aiδ

Thus,Vj(e
AT

i
(τ+δ)x) < Vi(x) and the theorem holds.

Another important property of conditions of Theorem 2 that
allows us to calculateτ[m] is stated in the following lemma.

Lemma 1. For a given τ , suppose that conditions (6)-(8) are
feasible for some m. Then, they are also feasible for m+ 1.

Proof: Suppose a set of matricesPi,r ≻ 0, r = 1, · · · ,m
satisfies conditions of Theorem 2 for a givenτ . A feasible
solution for the case ofm+1 is obtained by settingPi,m+1 =
Pi,m, and keeping the rest of thePi,r ’s the same.

An immediate conclusion of Lemma 1 and Theorem 3, is
that the sequence ofτ[m], m = 1, 2, · · · is a non-increasing
sequence and the limit̄τ[m] := limm→∞ τ[m] exists. Obviously,
τ̄[m] is an upper bound on the minimum dwell time, i.e.τ̄[m] ≥
τmin.

A. Numerical Solution of Conditions of Theorem 2
The stability conditions (6)-(8) appeared in Theorem 2

are bilinear matrix inequalities with respect to variablesPi,r ,
αirs, γjirs. Of course linearity is recovered if one fixes the
matricesPir or the scalarsα and γ. Unfortunately, nested
iterations by iteratively fixingPir and computing proper values
of α, γ’s by means of convex optimization does not converge.
In fact, it is known that finding the global solutions of BMI
problems are NP-hard. We, however, find out that using the
path-following method [19], we can find feasible solutions for
the BMI conditions (6)-(8). The basic idea of path-following
method is to use the first order approximation of the vari-
ables. To this end, we perturb the variables toPir + ∆Pir ,
αirs+∆αirs andγjirs+∆γjqirs. Then, by ignoring the higher
order terms, the conditions of Theorem 2 become:

Pi,r +∆Pi,r ≻ 0 (9a)

A
T
i Pi,r + Pi,rAi +A

T
i ∆Pi,r +∆Pi,rAi ≺

∑

s6=r

[

αirs(Pi,s − Pi,r)

+ αirs(∆Pi,s −∆Pi,r) + (Pi,s − Pi,r)∆αirs

]

(9b)

e
AT

i
τ
Pj,r e

Aiτ + e
AT

i
τ∆Pj,r e

Aiτ

≺

∑

s6=r

[

γjqirs(Pi,s +∆Pi,s) + ∆γi,r,sPi,s

]

(9c)

For givenPir, αirs, γjqigs the above conditions are LMI
with respect to variables∆Pir ,∆αirs,∆γjqirs.

One can start with a feasible solution to (6)-(8) and then
solve (9a)-(9c) for∆Pir ,∆αirs,∆γjqirs. The next step is to
update the scalars by lettingαirs ← αirs+∆αirs andγjirs ←
γjqirs +∆γjqirs. Now by fixing these variables, (6)-(8) is an
LMI in Pir and its feasibility can be checked efficiently. This
iteration is then combined with a bisection search onτ to
find the minimumτ[m] for a givenm. When τ[m] cannot be
improved with a fixedm, we increase them until τ[m+1] =
τ[m]. Note that condition of Theorem 2 form = 1 is an LMI
and the solution to that can be used for the initialization ofthe
above iterative procedure.

IV. EXAMPLE

To illustrate the effectiveness of the proposed method, an
examples is presented in this section. The example is taken
from [12] where the system matrices are

A1 =

[

0 1
−10 −1

]

, A2 =

[

0 1
−0.1 −0.5

]

It has already been seen that for this system the minimum
dwell time is 2.7078 [12]. The dwell-time obtained from
method of [12] with a polyhedral characterization is2.7420.
The sequence of the upper bounds ofτmin obtained from our
proposed method is shown in Table I, where the minimum
dwell time τmin = 2.70801 can be obtained withm = 4
quadratic functions. ThePir are reported here for verification:



P11 =

[

196.665 17.322
∗ 25.408

]

, P12 =

[

196.502 38.442
∗ 12.137

]

,

P13 =

[

187.555 4.997
∗ 19.280

]

, P14 =

[

196.502 38.455
∗ 11.973

]

,

P21 = P22 = P23 = P24 =

[

137.512 177.991
∗ 360.358

]

m 1 2 3 4 5
τ[m] 2.75090 2.70794 2.70782 2.70781 2.70781

TABLE I
THE SEQUENCE OF UPPER BOUNDS OFτmin
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Fig. 1. Level set ofV1, V2 for m = 4.

Figure 1 shows the level-sets of the Lyapunov functions,
i.e. LVi

= ∩4r=1E(Pir) and a state trajectory fromx0 =
(0.0689, 0.0119) under periodic switching wheretk+1 − tk =
τ[4] and σ(0) = 1. The Lyapunov functionVσ(x(t)) for
this trajectory is also shown in Fig. 2(a). WhileVσ(x(t))
increases at switching instants, the sequence ofVσ(x(tk)) is
monotonically decreasing (see Fig. 2(b)).
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Fig. 2. Illustration ofVσ(x(t)), Vσ(x(tk)).

V. CONCLUSIONS

Piece-wise quadratic functions are utilized to derive suf-
ficient conditions for stability of switched linear systems
under dwell-time switching. The stability conditions are in
the form of bilinear matrix inequalities and are solved with
path-following method. By increasing the number of quadratic
functions, a sequence of upper bounds of the minimum dwell

time is obtained. Numerical examples suggested that the con-
ditions has the potential to be also necessary provided that
the number of quadratic functions is sufficiently large. Further
investigation is required to prove the necessity of the proposed
conditions.
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