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Abstract—This paper provides sufficient conditions for stabil-  needed have also appearéd][11[-[15]. Finding the minimum
ity of switched linear systems under dwell-time switchingPiece-  dwell time is known to be a hard problem and the research
wise quadratic functions are utilized to characterize the lyapunov 55 heen shifted to find testable conditions for the comioutat
functions and bilinear matrix inequalities conditions are derived f b d h o dwell i .
for stability of switched systems. By increasing the numberof ~ Of UPper bounds to the minimum dwell time. In_[16] it is
guadratic functions, a sequence of upper bounds of the minimm shown that Stabl“ty under dwell time |mp||es the existente
dwell time is obtained. Numerical examples suggest that ifhie multiple Lyapunov norms, but the result is not constructive
number of quadratic functions is sufficiently large, the segence  [12] a necessary and sufficient condition for stability [Gf i1
may converge to the minimum dwell-time. terms of piecewise linear (polyhedral) LF is provided, hoare

|. INTRODUCTION construction of such polyhedral LF are not easy. Alterredyiv
This paper investigates to the stability of switched linearl&3], [17] introduce the concept of dwell-time(DT)-corttive
s ) sets and show that existence of a polyhedral DT-contraséve
ystems: . . L
is both necessary and sufficient for stability bf (1). An algo
(t) = Ay x(1), (1)  rithm for computation of DT-contractive sets is also pragubs
for discrete-time systems, however computation of such set

wherez(t) € R” is the state variable angl(t) : RT — Zy := . . . . .
(1, 75\[)} is a time-dependent switch?r?é ;ignal thatindicatesfor continuous systems is still lacking. 10-]14], polynoinia

the current active mode of the system amanhgossible modes functlons are used to characterize the LF and the problem
in A = {Ay,---, Ay}. All matrices A;,i — 1,---, N are |s.f(_)rmulated as a set of LMIs to compute upper bounds of
assumed to be Hurwitz. m|n|mum dwell time. . . . .

This class of systems has been widely investigated in the N this paper, we use piece-wise quadratic functions to
last decade, due to their importance both in the theoreticdharacterize the Lyapunov functions and provide stabildy-

context and in engineering applications, see e.g. the tecefitions in terms of bilinear matrix inequalities (BMIs). the
surveys [1]-T4]. limiting case where the dwell-time approaches zero, syssem

The stability problem is one of the most important issueUnder arbitrary switching, and the proposed conditionsenet
associated with the study of such systems. This problem hdbe results appeared in the literatUrel[10]. Hence, thiswan
been addressed mainly using the theory of Lyapunov funstion2/S0 be seen as a generalization of those obtained forampitr
(LFs), to find conditions under which the system preserve§Witching systems. It turns out by increasing the numbehef t
stability. For example, the origin of systerfil (1) is stableduadratic functions _that characterize the Lyapunov famgti
under arbitrary switching upon the existence of a commorh® Proposed conditions has more degree of freedom and
quadratic Lyapunov functiofi[2], switched Lyapunov fupas ~ €an .t?e used to determine the minimal dwell-time needed for
[5], multiple Lyapunov functiong[1]/16], composite quatic ~ Stability of ().
functions [7] or polyhedral Lyapunov functions] [8].]1[9]. It The rest of this paper is organized as follows. This section
is known that existence of a piece-wise linear (polyhedralgnds with a description of the notations used. Sedfibn Il re-
LF [8] or a piece-wise quadratic LF [1L0] is both necessaryviews some standard terminology and results for switchyisg s
and sufficient for asymptotic stability of systef (1) undertems. SectiohTll shows the main results on the charactaiza
arbitrary switching. This implies that the class of polyred of the Lyapunov functions with piece-wise quadratic fuons
functions or piece-wise quadratic functions are univefeal for system[(1L). An algorithmic procedure for computation of
characterization of stability of switched linear systenmsler ~ sequence of upper bounds of the minimum dwell time needed
arbitrary switching. for stability is also presented in this section. Sectionsahd

Another condition for stability is that based on dwell-time Ml contain, respectively, numerical examples and conchssio
consideration. When alli;’s are stable, stability of the origin The following standard notations are uséi® is the set
can be ensured if the time duration spent in each subsystem @ non-negative real numbers. Positive definite (semi-dejin
sufficiently long [2]. Upper bounds of the minimal dwell-&m matrix, P € R"*", is indicated byP > 0(>= 0) and I,, is the


http://arxiv.org/abs/1411.7944v1

n x n identity matrix. Given aP > 0, £(P) := {z : 27 Pz <  Theorem 1. [16] System (@) is asymptotically stable in S, if

1}. Other notations are introduced when needed. and only if there exist continuous functions V;(z), associated
to each mode 4, such that
Il. PRELIMINARIES Vi(z) > 0 Va £ 0, Vi (5a)
'[h;]s section reviews_definit.ions of ddwtgll—:imet,. admiss;ble Vi(:v;Ai:v) <0 Vo #0,VYi (5b)
switching sequences, piece-wise quadratic functions aa , o
g seq P g P Vj(eAT'TJ?) < Vi(x) Vo #£ 0,Vi # j (5¢)

liminary results on stability of (1) under dwell-time swhiag.

These definitions have appeared in prior papers (see @fg. [1  The above theorem shows that stability of the sysfém (1) the
[13], [14], [18]) but are repeated here for completeness angdquivalent the existence of a mode-dependent Lyapunov func
for setting up the needed notations and results. tion, V, (), which is strictly decreasing for non-switching
Denoting byty, k = 0,1,2,--- the switching instants, we times, i.e.t # t, and it is strictly decreasing at the switching
assume that the following dwell-time restriction is impd$®  instances, i-e-Vo(tk+1)(x(tk+l)) < Vg(tk)(w(tk)), however

the switching sequence, i.e.o € S, the the above theorem is not constructive. [In| [11], quadirati
_ functions are used to characterize ftiés, but the conditions
Sr={o(t) thpr —th 2 7} @ are only sufficient for stability. IN[12], polyhedral (pieavise

linear) LFs are used to characterize & and it is shown that
piece-wise linear functions that satisfy conditioh (5) aogh
necessary and sufficient for stability &f (1). However, toba
ditions obtained are nonlinear and cannot be solved efflgien
Motivated by the fact that piece-wise quadratic functiors a
universal for characterization of stability similar to pgewise
linear functions[[18], the following section derives thalstity

Tomin = inf{7 >0 : (@) is Asymptotically stabl&/o(t) € S,} conditions using piece-wise quadratic functions.

I1l. MAIN RESULTS

where S, is the set of admissible switching signals that
satisfies the dwell-time- > 0 restriction. Note that (t) is

a piecewise constant function, in the sense tha} = o (%)

for t € [tk,tkt1). The minimum dwell-timeg,,;,, is defined
as the minimumr ensuring asymptotic stability of systefd (1)
for all possibles € S;.. More specifically, it is defined as

A. Piece-wise Quadratic Functions
Given a positive integefn, a piece-wise quadratic func-
tion characterized byn quadric functions is considered as
the candidate Lyapunov functiol; in Theorem[lL, namely
Ly ={z eR": V(z) <1} Vi(z) = max{xT_Pi,T:v cr=1,---,m}, i € Iy. USing_ S-
procedure, conditions of Theordr 1 can be converted into ma-
The one sided directional derivative Bf(z) is defined with  trix inequalities. The following theorem provides a sufici
respect to two variablesand(, where¢ specifies the direction condition for stability of [1) under dwell-time switching.
of increment or motion

For a positive semidefinite functiol” : R™" — [0, 00),
denote itsl-level set as

Theorem 2. Assume that, for a given = > 0 and posi-

¥ (w:¢) = lim V(z +¢h) —V(x) tive integer m, there exist scalars a;rs > 0, Yjgirs > 0,
>0 hlo h S Yjgirs < 1 such that
whereh | 0 denotes decreasing P, >0 Vi,r=1,---,m (6)
Given m positive definite matrice®,. - 0, r = 1,--- ,m, m
a piece-wise quadratic function can be obtainedby [18]: AP, + P, A < Zairs(Pi,s - Pi;)
s=1
Vinae(z) = max{z? P.x:r=1,--- ,m} 3) il

Vi,r=1,---,m (7)

as the pointwise maximum ofn functions z” Pz, r = . m
1,---,mand its 1-level set is the intersection of the ellipsoids ~ ¢* "Pj 4 e™™ < P, + > Yjgirs(Pis — Piy)
E(P,), ie. Ly, =" E(P,). o

. ! . SFET
The directional derivative o¥,,,, along thei-th mode of

system [(1L) is[[18]:
Vmam(«r,Alx) = max {IT(A;TPS + PsAz)«fC .
s € {S : Vmam(l') = CETPS ,CC}} (4)

Vi jr=1,---.m
g=1,---,m (8)

Then, system (@) is asymptotically stable for every o € S,.

Proof: Let V;(z) = max{z" P,z :r=1,--- ;m},i €
B. Sability Results Zn. We have to show that conditioh$ 5(a)-(c) are satisfied. a)

We start from the following theorem which states theQbVlOUSIy’ (6) implies thav;(x) > 0 for all z # 0 and for all

e . " i € Zy. b) From [7) and[{¥), it follows that;(z; A;z) < 0
gsvceiisi;rgfnd sufficient condition for stability &1 (1) with for all = £ 0 and for alli & Ty, see [I8] for details. c)

Without loss of generality considér;(z) = max{z? P; ,z :



q=1,---,m}, j # i. We have to show than(eA ) <
Vi(z ) To th|s end, consideie" )T P; , (e? )for anyq_
1,-- . For everyz such that:cTP”:Z: > aTP gz, s =
1,---,m, V( ) = 2T P; .z. This and[(8) together impliy that

2T TPy e e <2 Pya 4+ Yjqirs 87 (Pis — P
W—/ s—1
Vi(x) s#T <0
< Vi(zx)
Thus, V(e 7z) = max,{z7 Al TP et Tx) < Vi(2).

The same argument holds for all the other regions wher
TP,z < 2T P, s x. Hence conditiond{5a}4(5c) of Theorem n fact

@ are all satisfied and the proof is complete. [ |

Remark 1. Note that, for m = 1, Vi(z) = 27 P2 and
conditions (6)-(8) become: P, ; > 0, Vi,

A?H,l + Pi71Ai <0 Vi

e TP eNT < Py Vi j

and it retrieves the conditions appeared in [11].

For a givenm, definer,, as the smallest upper bound of

Tmin Quaranteed by Theore 2, i.e.
inf{r > 0: @ — @) hold}.

The following result provides a key property of the condito
of Theoreni2, which allows us to calculatg,) via a bisection
search where at each iteration the conditidmhs[(B)-(8) atede

Theorem 3. Assume that (©)-(8) hold for some 7 > 0 and
positive integer m. Then, conditions (©)-(®) hold for 7+ § for
any ¢ > 0 with the same m.

Proof: Suppose that[16J-[8) hold, and l&t;(z) =
max{z? P, ,x:r=1,---,m}. Consider any > 0. From [7)
it follows that V; (z; A;z) < 0 and hencé/; (z(3)) < Vi(z(0))
for everyz(0), which implies thateAiT‘;Pi,reAi‘; < P;... Now,
pre- and post-multiply[{8) by“i? and ¢4 respectively. It
follows that

Tim] 1=

eAI.T(TJré)Pj’qui(TH) _<6A1T6P_ eAid

+ Z Yigirsett * (Pr,s = Pip)eid
s#'r
m -
= Pi”f + Z “/jqirseAi’ 6(Pi,s - Pi,r)eAi(S

s=1
s#r

Thus, V;(e*! +9)2) < V() and the theorem holds. m

Another important property of conditions of TheorEm 2 that

allows us to calculatey,, is stated in the following lemma.

Lemma 1. For a given 7, suppose that conditions (G)-(8) are
feasible for some m. Then, they are also feasible for m + 1.

Proof: Suppose a set of matricé3, - 0,r=1,---,m
satisfies conditions of Theoref 2 for a given A feasible
solution for the case afi+ 1 is obtained by setting’, ,,,+1 =
P; ., and keeping the rest of thi ,’'s the same. [ |

An immediate conclusion of Lemnid 1 and Theodgm 3, is
that the sequence af,,,;, m = 1,2,--- is a non-increasing
sequence and the limit,,, := lim,,, o0 7},,,) €Xists. Obviously,
Tim] IS @n upper bound on the minimum dwell time, irg,,) >

Tmin -

A. Numerical Solution of Conditions of Theorem[2

The stability conditions[{6)-{8) appeared in TheorEm 2
are bilinear matrix inequalities with respect to variablés,
airs, Vjirs- OF course linearity is recovered if one fixes the
matrices P;,. or the scalarsx and ~. Unfortunately, nested
%eratmns by iteratively fixing?;,. and computing proper values

's by means of convex optimization does not converge.
it is known that finding the global solutions of BMI
problems are NP-hard. We, however, find out that using the

path-following method[[19], we can find feasible solutions f
the BMI conditions [(B)t(B). The basic idea of path-follogin
method is to use the first order approximation of the vari-
ables. To this end, we perturb the variablesRg + AP;,.,
Qirs +Ars and%mth%qm Then, by ignoring the higher
order terms, the conditions of Theorﬂn 2 become:

P+ AP, >0 (9a)
A?Pi,r + PirAi + AZTAPi,r + AP A < Z [Oéirs (Pi,s — Pir)
s#r
+ irs (AP s — AP ) + (P — Pi;r)AOCiTs} (9b)
eAiTTP];,T e 4 eAiTTAPj,T- eiT
<3 [iairs (Pus + APL) + Ayis Pis (%)

s#r

For given P, airs, Yjqigs the above conditions are LMI
with respect to variabled P, , Ars, AYjqirs-

One can start with a feasible solution fd (8)-(8) and then
solve [9a){(Pc) forAP;,, Aciys, Avyjqirs- The next step is to
update the scalars by letting, < rs +Acirs @andy;is
Vigirs + AYjqirs- NOW by fixing these variabledJ(61(8) is an
LMI in P;,. and its feasibility can be checked efficiently. This
iteration is then combined with a bisection search ono
find the minimumr,,,; for a givenm. When7,,,; cannot be
improved with a fixedm, we increase then until 7, ) =
Tim)- Note that condition of Theorefd 2 fon = 1 is an LMI
and the solution to that can be used for the initializatiothef
above iterative procedure.

IV. EXAMPLE

To illustrate the effectiveness of the proposed method, an
examples is presented in this section. The example is taken
from [12] where the system matrices are

0 1 0 1
Al:{—m —1}7’42:{—0.1 —0.5]

It has already been seen that for this system the minimum
dwell time is 2.7078[[12]. The dwell-time obtained from
method of [12] with a polyhedral characterization2i§420.

The sequence of the upper boundsrgf,, obtained from our
proposed method is shown in Talile I, where the minimum
dwell time 7,,;, = 2.70801 can be obtained withn = 4
quadratic functions. Th&;,. are reported here for verification:



p., _ | 196.665 17.322 ] . = [ 196.502 38.442
= * 25.408 |' 1127 * 12.137 |’
P, _ | 187.555  4.997 p.. _ | 196.502 38.455
13 = * 19.280 |' 7T * 11.973 |’
137.512  177.991

Py; = Pog = Pazg = Poy = 37*5 328228

m 1 2 3 4 5

Tlm) | 2.75090 2.70794 2.70782 2.70781 2.70781

TABLE |
THE SEQUENCE OF UPPER BOUNDS OFin

-0.1 -0.05 0 0.05 0.1 0.15

Fig. 1. Level set ofV;, Va for m = 4.

Figure[d shows the level-sets of the Lyapunov functions, (8]

ie. Ly, = N*_,&(P;) and a state trajectory from,
(0.0689,0.0119) under periodic switching wherg, 1 — t =
747 and o(0) 1. The Lyapunov functionV, (z(t)) for
this trajectory is also shown in Fidl 2(a). Whilg, (x(t))
increases at switching instants, the sequenc&, ¢k (tx)) is
monotonically decreasing (see Fig. 2(b)).

Fig. 2.

lllustration of V, (z(t)), Vo (x(tg)).

V. CONCLUSIONS

Piece-wise quadratic functions are utilized to derive suf-

ficient conditions for stability of switched linear systems
under dwell-time switching. The stability conditions ame i

the form of bilinear matrix inequalities and are solved with
path-following method. By increasing the number of quadrat

time is obtained. Numerical examples suggested that the con
ditions has the potential to be also necessary provided that
the number of quadratic functions is sufficiently large.tRar
investigation is required to prove the necessity of the psepl
conditions.
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