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Abstract—This paper presents a metric global localization in
the urban environment only with a monocular camera and the
Google Street View database. We fully leverage the abundant
sources from the Street View and benefits from its topo-metric
structure to build a coarse-to-fine positioning, namely a topolog-
ical place recognition process and then a metric pose estimation
by local bundle adjustment. Our method is tested on a3 km
urban environment and demonstrates both sub-meter accuracy
and robustness to viewpoint changes, illumination and occlusion.
To our knowledge, this is the first work that studies the global
urban localization simply with a single camera and Street View.

I. I NTRODUCTION

The past decade has seen a substantial progress in the
autonomous vehicles field. However, the metric localization
in urban environment is still one of crucial challenges [1].
The Global Positioning System (GPS) suffers from a precision
degradation and even fails in “urban canyons”. The Simulta-
neous Localization and Mapping (SLAM) requires to build a
large consistent map before the localization. The data fusion
technique based on GPS, proprioceptive sensors and existing
maps, is still tricky to evaluate the confidence of differentdata
sources and its localization quality depends a lot on sensors’
price. Alternatively, Geographical Information Systems (GIS),
such as Google Street View, Mappy, Navteq, etc., are more
and more precise and offer a unified global representation
of our world with visual, topological, spatial and geographic
information [2]. This motivates us to fully take advantage of
the abundant sources in GIS to realize a metric localizationin
urban contexts. In this paper, Google Street View is adoptedfor
its world-wide coverage, public accessibility, high resolution
geo-referenced panoramas and well-calibrated depth [3]. We
develop a coarse-to-fine position estimation system. At the
coarse level, a topological localization is addressed by a place
recognition algorithm. Namely, a query image captured by our
camera equipped on vehicle can be associated with geotagged
Street View images when sharing high appearance similarities.
The vehicle’s position is thus restricted on an intersectedarea
around the geodetic position of corresponding Street View
cameras. At this stage, an efficient retrieval method is described
to shrink the search time. Then, since the depth maps are
integrated in Street View, we can refine the before-mentioned
location by computing the vehicle’s 6 degrees of freedom
(DoF) transformationw.r.t Street View images by solving the

Perspective-n-Point (PnP) problem [4]. Finally, a local Bundle
Adjustment (LBA) [5] is applied to improve the consistency of
the localization regarding to the multiple Street View images
retrieved.

In fact, extensive efforts have been made to solve the urban
localization by using GIS data such as available maps [6],
street network layout [7], geotagged traffic signs [8], satellite
images [9] and 3D texture city models [10]. They focus on
one of the above sources as a single strong constraint to
optimize their tasks and rarely consider the entire topo-metric
information in the GIS, for instance, Street View is commonly
employed only as an image database input to solve the place
recognition problem [11]. Numerous papers pay attention to
the localization in a large-scale environments, with the view
point change or under cross-season or light variation [12],[13].
Their pipeline is to construct a Bag-of-Words (BoW) model
[14], query an input image within the model and localize
the place by comparing images vectors’ similarity. On the
other hand, in our approach, we propose to consider the place
recognition problem as a primary selection to feed the metric
localization. Moreover, our approach consider the multiple
database constraints to speed up the searching instead of a
pure statistic BoW matching.

In a similar fashion to our work, Agarwal et al. [15] realize
an urban localization with a sub-meter accuracy by modeling
a two-phase non-linear least squares estimation. They first
recover 3D points position from a mono-camera sequence via
an optical flow and then compute the rigid body transformation
between the Street Views and the estimated points. Street
Views are learnt as a BoW model and retrieve efficiency is
improved via an inaccurate GPS input to narrow the searching
radius. Their key contribution is to localize globally on Google
Maps without a heavy map construction. This method still
follows a SLAM manner. A map building is omitted but
numerous 3D scene points must be estimated and registered as
usual. The Street View imagery serves as keyframes to solve
the loop closing problem. Rather, our method fully depends on
the Street View and the only input is just a stream of mono-
camera images without odometry or GPS information.

http://arxiv.org/abs/1605.05157v2


II. M ETHOD

In this section, we describe the coarse-to-fine localization
system in detail. A pseudo-code is provided in Algorithm 1 to
give an overview. Note that the system is divided into two
phases. The Street View panoramas are prepared and their
rectilinear views are generated offline (Line1 to 7) prior to an
actual online vehicle localization (Line8 to 18). In the offline
part, all generated imagery is trained as a BoW database. A
symmetric comparison matrix is computed for the database so
as to reduce the time to retrieve close images in online phase. It
also serves as a index reference for the following optimization
steps. In the online stage, for every vehicle query image, we
extract top similar images from the database as the topological
localization and then estimate relative poses between each
other. Finally, a LBA is employed with all estimated poses
and corresponding 3D-to-2D matching constraints to obtain
the global metric localization.

Algorithm 1 Metric global localization in the urban area

Input: Street View panoramasS= {S1, S2, . . . , Sn} and
their depth mapsD = {D1, D2, . . . , Dn}

Input: Query imagesIq = {I1, I2, . . . , Im} captured by a
vehicle driving in the city

Output: Global location of the vehicle
1: for i← 1 to n do
2: Rectilinear processing ofS andD
3: Feature extraction and BoW training
4: Construction ofDB as the final BoW dictionary
5: end for
6: Calculation of the intra-distance matrixDDB×DB and

speed-up matrixDDB×r ⊲ cf. Section II-B
7: Up to here the algorithm is implemented offline.
8: for t← 1 to n do
9: ParametrizeIq by BoW

10: SearchIq ’s the best similar imageIr in DB
11: Get the topk similar database images ofIr in DDB×r

12: Histogram Equalization:I
′

t/r = E
(

It/r
)

13: for j ← 1 to k do
14: Feature matching
15: Pose estimationΘj ⊲ cf. Equation 4
16: end for
17: Θ⋆ = LBA {Θj}
18: Recover the global position at stept
19: end for

A. Data preparation and generation

Google Street View is a rich street-level GIS with millions
of panoramic imagery and depth maps captured all over the
world (see Figure 1) [3]. Every panorama, geotagged with an
accurate GPS position, is registered a13, 312 × 6, 656 pixel
resolution by capturing a360◦ horizontal and180◦ vertical
field-of-view (FoV). It is composed and projected by rectilinear
images from several cameras. Generally, there is a panorama
every 6 to 15m with a nearly uniform street coverage. The
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Fig. 2. Back-projection model: 8 virtual cameras are constructed at point
O and pixels in the image planeI are bilinearly interpolated from panorama
sphere. The yaw offset changes according to the red arrow direction.

associated depth map stores the distance and orientation of
various points in the scene via laser range scans or using
image motion methods (optical flow). It only encodes the
scene’s dominant surfaces by its normal direction and its
distance, allowing to map building façades and roads while
ignoring smaller entities such as vehicles or pedestrians.For
the sake of bandwidth saving, it is sampled down to512×256
pixels but recovering the similar size to the panorama is easy.
The GPS position of Street Views is highly precise due to
a careful global optimization, while the depth map provides
a 3D structure of the scene with a relatively low accuracy
[3]. Depending on the route planner built in Street View,
all panoramic images and depth maps can be downloaded
iteratively. The panoramas ought to be transformed into a
set of overlapping or unrelated cutouts to reduce the large
angle distortion. Google offers a public API [16] to extract
rectilinear images by setting a virtual camera’s parameters,
including FoV, pitch and yaw. Currently, most of relative
researches rely on this API to generate perspective images.
Instead, we build a back-projection model to realize a more
robust and flexible extraction, as depicted in Figure 2. We
assume8 virtual pinhole cameras with the camera matrix
K are mounted in the centre of a unit sphereS with a
user fixed pitch direction and the following yaw directions
[0◦, 45◦, ..., 360◦]. The number of virtual cameras, intrinsic
matrix and pitch/yaw degree are free to select, yet empirically
the more identical they are to the actual on-board camera,
the better performance expected. That is one of the reasons
why we develop our own rectilinear model. Consider a 3D
point M ∈ R

3 in homogeneous coordinates using spherical
parametrization(θ, φ, ρ), denoted as:

M =









ρ cos(θ) sin(φ)
ρ sin(θ) sin(φ)

ρ cos(φ)
1









(1)

Its projection on the unit sphere is represent bym∗

m∗ =
M
‖M‖

=









cos(θ) sin(φ)
sin(θ) sin(φ)

cos(φ)
1









(2)

and its projection on a virtual camera image plan bym.

m = K [R, t]M (3)



Fig. 1. An example of Street View panorama (top-left) and itsassociated depth map (top-right) in Versailles, France. The below8 rectilinear images and depth
maps are extracted from the above ones by the back projection. The 8 virtual pinhole cameras, are configured similarly to the vehicle’s camera, including the
same focal length and image size. It creates overlapping views.

where the camera extrinsic matrix[R, t] is deduced from the
above configuration. The translationt equals zero when camera
is fixed in the same point. The perspective virtual views can
be synthesized by the rays tracing back to the panorama with
a bilinear interpolation around the back-projected points. The
warp process is noted asω.

m ω
−→ m∗ (4)

The corresponding perspective depth map can be addressed
likewise. A generation example from a Street View panorama
of Versailles in France is illustrated in Figure 1.

In the experiment, we have totally collected a test set of
3655 query images captured by a MiPSee camera on the
vehicle with a57.6◦ FoV. Images were captured at the city
centre of Versailles. The ground truth at each localizationwas
recorded by a centimeter-level real-time kinematic GPS (RTK-
GPS).

B. Database construction and retrieval acceleration

After the artificial generation, the Street View database
becomes 8 times larger in quantity. We use BoW retrieval
techniques to represent database images as numerical vectors
quantized by feature descriptors, and to perform a hierarchi-
cal clustering (K-means) of the image descriptors in a tree
structure. After the weighing strategies, the whole tree is
referred to as a dictionary and its leaves as visual words. A
topological localization is estimated according to a distance
criterion based on the vectors similarity. In our test, we use
the Term Frequency-Inverse Document Frequency (TF-IDF)
reweighing and the efficient cosine similarity distance metric.
In particular, considering the dynamic changes in viewpoints,
illumination and occlusions, we construct two independent
dictionaries generated from the SIFT and MSER detectors,
and then normalize them. The final dictionary can take into
account both local and regional feature descriptors.

As a rule of thumb, the bigger the database is, the slower
will be the information retrieval from it. The aim now is to
facilitate the run-time search even if a metropolis database is
constructed. In a natural manner, we explore the intra database

similarities and integrate the potential topological information
to reduce the computational cost. Figure 3 shows the similarity
between images within the whole databaseDDB×DB as well
as the relationship between the database and query images
DDB×Q. The results, detailed in the figure caption, show a
certain regularity to locate top similar imagesw.r.t a query
image. To some degree, these regularities reflect the topology
and inner connections in the GIS, e.g. all database images are
downloaded successively according to the Street View route
planner. Intuitively, neighboring panoramas share similar ap-
pearances and correspondingly their similar rectilinear images
ought to situate in an analogous yaw or auxiliary angle of yaw
offset (only for two-way streets). That is the reason why many
yellow parallel lines and vertical dark lines lie inDDB×DB

and DDB×Q respectively. All these regularities make our
database a sparse “searching map”, which are advantageous
to significantly reduce the number of image comparisons in
the online phase. It is summarized as follows:

• In a piecewise route databaseDDB×DB, for each
database imageIr we register its topk similar database
images’I0...k location in an arrayDDB×r.

• A maximum appearance distancedistmax is defined as
the farthest radius around a panorama where its neighbor-
ing panoramas share an overlapping view. Normally,6 to
8 nearest panoramas share a common scene around50 to
70 meters. InDDB×DB, thedistmax can be fixed as48
or 64 matrix index steps.

• With the help of the route planner, we can localize the first
incoming query image easily by searching the database
image around the starting point. Then for an ordinary
query image, its searching range can be narrowed to all
DDB×r within the thresholddistmax.

According to our experiment, the above approach can avoid
nearly 90% of the comparisons without any retrieval loss
compared to a whole database search.

C. Global metric localization

In the previous sections, a candidate set of images has
been retrieved from database. In order to realize a metric lo-
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Fig. 3. Illustration of distance matrices and intra-relations: a) The intra-
database symmetric matrixDDB×DB. The rows and columns represent240
rectilinear views generated from30 panoramas in a350m urban route, and the
matrix intensity is computed by mapping the cosine similarity from [0, 1] to
[0, 255], therein, the darker pixels depict the higher similaritiesand diagonal
values are always equal to255. b) The above matrix is a close-up vieww.r.t
the blue rectangle ina), it shows two obvious yellow lines with high intensity,
that are parallel to the diagonal line indicating a locationregularity for similar
images in the matrix.c) The distance matrixDDB×Q rows represent the240
database images and columns represent a query sequence with100 frames.
Several darkest vertical lines are highlighted by purple marks, meaning that
a short query sequence can find its most similar database images only in few
range of the database as shown by the purple arrow. Considering the candidate
location at query time stepst = 2, 6, 10, we compare their close-ups to the
database shown inb) and conclude that even in the same panorama, the similar
candidates sparsely focus on some certain yaw offsets. The red cycles and
rectangles represent top similar candidates from the same panorama.d) The
panoramas are searched at3 time steps inb).

calization, high-inlier feature correspondence between camera
images and the candidate set should be guaranteed. Other than
a statistic comparison with the BoW, the conventional perspec-
tive matching is done by following this kind of pipeline [17]:
(a) a set of keypoints are extracted in both query and database
images, e.g. SIFT;(b) their descriptors are matched by nearest
neighbor search algorithms, e.g. FLANN;(c) matching outliers
are rejected by the ratio test and geometric verification using
constraints from the homograhy or the fundamental matrix,
e.g. RANSAC 8-point algorithm. Unfortunately, we found
this pipeline is unstable and inaccurate because of important
changes from viewpoint, illumination and occlusion in urban
area.

To counter this effect, we use the histogram equalization
[18] to enhance the contrast of all images prior to feature
extraction. Also the Virtual Line Descriptor (kVLD) [19] is
applied to determine the inlier feature point correspondences.
It is a SIFT-like descriptor by signing virtual lines to the
points with geometrical consistency. The algorithm computes
and matches ak connected virtual line graph to reject the
outliers, see Figure 6.

Figure 4 depicts our global metric localization process. In
this system, the vehicle captures images at consecutive camera

r1

r2

r3

m1

m2

m3 rk

xt

xt+1

...

xt−1

Fig. 4. Illustration of Local Bundle Adjustment to estimatethe global position
of the vehicle. The vehicle, the best similar database imageand other topk−1
similar database images are the triangles respectively colored in black, orange
and blue. The red stars represent good matching features between the query
and database images.

statesxt−1 andxt. No odometric input is integrated between
successive states. At the statext, the best database image
r1 associated to the query image is retrieved through the
topological localization. As mentioned before, via the database
DDB×r, the topk − 1 analogous database images to the best
one are found and denoted as[r2, r3, . . . , rk]. Naturally, we
suppose that the query image shares the overlapping view with
thesek − 1 images as well. The constraints between them
are found thanks to the accurate matching features. With the
help of depth maps in the database, the 6 DoF pose of the
vehicleΘ = (R, t), parametrized in Lie algebraSE(3), can
be computed by minimizing the reprojection error between a
pair of images, i.e.:

Θ⋆ = argmin
Θ

∑

i

π (‖mi − P(M i,Θ)‖) (5)

where P(M i,Θ) is the image projection from the scene
point M i. The 3D-to-2D correspondence is improved by
RANSAC andπ, as a M-estimator based on Tukey Biweight
function [20], is used to improve convergence and to cope with
wrong correspondence.

π (x) =







t2 / 6

(

1−
[

1−
(

x
t

)2
]3
)

if |x| ≤ t

t2 / 6 if |x| > t
(6)

Finally, k poses and corresponding image pairs are put into a
LBA to refine the vehicle’s pose and its global position.

We use the optimization frameworkg2o [21] as our non-
linear least squares solver. The error regarding to the feature
detection is assumed to follow a Gaussian distribution. Thek
geotagged views extracted from panoramas are constrained in
Figure 4 and their camera configuration are given. We can use
them to verify the performance of our metric localization since
their absolute positions are known. Moreover, the parameters
of the LBA, can be first initialized by this verification as well.

III. E XPERIMENTAL EVALUATION AND DISCUSSION

In order to evaluate the performance of our algorithm, we
test on several city streets and record query images when the
RTK-GPS reaches a localization within20cm precision. Using
this kind of RTK-GPS positions as the ground truth is sufficient



for our metric accuracy qualification. In the experiment, our
vehicle is mainly tested on the roads around the area with GPS
coordinates[48.801631, 2.131509]. The intrinsic parameters of
Google virtual cameras are fixed according to our own MiPSee
camera. Only one-side of city façades are captured.

The performance of our coarse-to-fine algorithm depends
closely on both topological and metric localization part. In fact,
if the coarse topological localization fails, the further metric
part based on it works in vain. However, in city scenario, it
is difficult to construct a strict ground truth to evaluate the
topological localization. In [10] and [22], authors proposed
a manual labeling way to build up a confusion matrix as the
ground truth. This method is too time consuming to employ as
our test dataset contains more than 3000 frames. As expected,
the visual overlap must exist between the query and database
image if the BoW algorithm works well. Therefore we can
evaluate the topological localization based on the geometric
consistency. If the inlier-match number between two imagesis
larger than12, we can get a bound with a19.8m radius around
the Street View in which the corresponding query images lie,as
shown by the red circle in Figure 5. The bound radius distance
is calculated between the RTK-GPS of query images and the
geo-data of retrieved Street View. After manually verifying the
pairs matches along a street with33 panoramic Street Views,
our method is able to recognize100% visual similar database
images corresponding to query images. The264 rectilinear
Street Views are trained to a mixed 5000 SIFT and 2000 MSER
visual words.

Based on the previous topological localization, we choose
the EPnP-RANSAC to compute the pose between each query
monocular image and matched Street View. The solution is
selected with a highest consensus by setting a minimum
reprojection error within3 pixels and maximum inliers. Then a
g2o framework is used to optimize all computed solutions. This
process is realized under the cartesian coordinates with the
Lambert conformal conic projection and the result is converted
back to geo-coordinates under the WSG84.

Figure 5 shows the metric global localization in a287m
city street where423 query images and 13 panoramic Street
Views are used. There are58 metric positions obtained within
an error of6.5m w.r.t the RTK-GPS and58.6% keeps within a
2m accuracy. An example of matches between the query and
retrieved Street View is depicted in Figure 6.

Although the accuracy is higher than the regular au-
tonomous GPS (average error of8m ) [23], readers may still
wonder the discontinuity (only58/423 frames localized) and
drifts. The cause of errors during the metric localization thus
is analyzed in two aspects: the topological distance between
the chosen Street View and RTK-GPS ground truth, and the
inner matches between the query and Street View image.
The inlier-match number reflects the feature quantity that is
used in the 3D-to-2D pose estimation process, and the real
topological distance between the query and Street View image
can describe the feature quality. Commonly, the less or the
further the features are tracked, the less accurate the local-
ization is. We select all query images that retrieve the same

Fig. 5. Bird’s-eye view of the metric global localization. The red Google
pointers represent the locations of the Street View cameras. The orange
dots mark the estimated positions of the monocular camera. The green line
illustrates RTK-GPS ground truth and the red circle shows the topological
bound around a panorama denoted by the cross mark.

Topological Distance = 2.03m

Metric Localization Error = 0.58m

Inlier Matches = 36

Fig. 6. An example of matches between a monocular image and its retrieved
Street View image by kVLAD descriptors. The metric localization reaches a
0.58m accuracy by refining from the topological localization (2.03m).
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Fig. 7. Metric error analysisw.r.t inlier-match numbers and the topological
distance.

Street View located at the coordinates[48.801631, 2.131509]
and obtain the relationships in Figure 7. Our effective BoW
algorithm guarantees the visual overlaps between query images
and retrieved Street Views around20m bound. In this way,
the inlier-match number affects little to the drifts. However,
the errors appear in a cumulative trend when topological
distance increases between query and Street View. Despite the
optimization improves the accuracy, too many further features
only show small motions and still cause disastrous errors even
passing the bound of topological localization. As a result,we
eliminate lots of localization like this and cause unavoidable
localization discontinuity. Naturally the synthesis viewfrom
the Street View can be created to augment nearer features and
enhance the accuracy. This will be one of our future work.

IV. CONCLUSION

To conclude, this paper presents a metric urban localization
by matching 3D Street View points to a monocular camera. Our
approach requires neither the construction of a consistentmap
nor the prior visit of the environment. This simple set-up makes
our algorithm affordable and easy to be widely deployed in real
urban localization. In order to realize a reliable localization,
we throughly explores multiple information of Street View
and strictly respects their intra relationships. Our technique
demonstrates both the high accuracyw.r.t the Street View and
robustness in complicated urban environments.
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