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Abstract—This paper presents a metric global localization in  Perspective-n-Point (PnP) problem [4]. Finally, a locahBle
the urban environment only with a monocular camera and the  Adjustment (LBA) [5] is applied to improve the consistendy o

Google Street View database. We fully leverage the abundant - : : :
sources from the Street View and benefits from its topo-metd the localization regarding to the multiple Street View iraag

structure to build a coarse-to-fine positioning, namely a tpolog- ~ "etrieved.

ical place recognition process and then a metric pose estirtian

by local bundle adjustment. Our method is tested on a3 km

urban environment and demonstrates both sub-meter accurac In fact, extensive efforts have been made to solve the urban
and robustness to viewpoint changes, illumination and ocakion. localization by using GIS data such as available maps [6],

To our knowledge, this is the first work that studies the glob&  gtreet network layou{[7], geotagged traffic sighs [8], Witee
urban localization simply with a single camera and Street View. images [[9] and 3D texture city models [10]. They focus on
l. INTRODUCTION one c_>f the _above sources as a s_lngle strong constr.amt to
_ ~optimize their tasks and rarely consider the entire toptrime
The past decade has seen a substantial progress in thormation in the GIS, for instance, Street View is comnyonl
autonomous vehicles field. However, the metric localizatio employed only as an image database input to solve the place

in urban enviro.n_me.nt is still one of crucial challenges .[1.]-recognition problem[[11]. Numerous papers pay attention to
The Global Positioning System (GPS) suffers from a prenisio (e |gcalization in a large-scale environments, with thewi

degradation _and_ even fails in_“urban canyons”. The Simulta-point change or under cross-season or light variafion [12],
neous Localization and Mapping (SLAM) requires to build aTpeir pipeline is to construct a Bag-of-Words (BoW) model
large consistent map before the localization. The dateofusi [14], query an input image within the model and localize
technique based on GPS, proprioceptive sensors and existige place by comparing images vectors’ similarity. On the
maps, is still tricky to evaluate the confidence of differdata  ,iher hand. in our approach, we propose to consider the place
sources and its localization quality depends a lot on Sehsorrecognition problem as a primary selection to feed the metri
price. Alternatively, Geographical Information Syster®%),  |gcalization. Moreover, our approach consider the mudtipl

such as Google Street View, Mappy, Navteq, etc., are MOrgatapase constraints to speed up the searching instead of a
and more precise and offer a unified global representatloBure statistic Bow matching.

of our world with visual, topological, spatial and geograph

information [2]. This motivates us to fully take advantage o

the abundant sources in GIS to realize a metric localization In a similar fashion to our work, Agarwal et dl. [15] realize
urban contexts. In this paper, Google Street View is adojoied an urban localization with a sub-meter accuracy by modeling
its world-wide coverage, public accessibility, high regmn a two-phase non-linear least squares estimation. They first
geo-referenced panoramas and well-calibrated depth [8]. Wrecover 3D points position from a mono-camera sequence via
develop a coarse-to-fine position estimation system. At than optical flow and then compute the rigid body transfornmatio
coarse level, a topological localization is addressed blaeep between the Street Views and the estimated points. Street
recognition algorithm. Namely, a query image captured by ouViews are learnt as a BoW model and retrieve efficiency is
camera equipped on vehicle can be associated with geotaggiedproved via an inaccurate GPS input to narrow the searching
Street View images when sharing high appearance simdariti radius. Their key contribution is to localize globally on Ggpe

The vehicle’s position is thus restricted on an interseetesh  Maps without a heavy map construction. This method still
around the geodetic position of corresponding Street Viewollows a SLAM manner. A map building is omitted but
cameras. At this stage, an efficient retrieval method isrilesdt = numerous 3D scene points must be estimated and registered as
to shrink the search time. Then, since the depth maps angsual. The Street View imagery serves as keyframes to solve
integrated in Street View, we can refine the before-mentlonethe loop closing problem. Rather, our method fully depends o
location by computing the vehicle’s 6 degrees of freedonthe Street View and the only input is just a stream of mono-
(DoF) transformatiorw.r.t Street View images by solving the camera images without odometry or GPS information.
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II. METHOD M

In this section, we describe the coarse-to-fine localimatio
system in detail. A pseudo-code is provided in Algorithim 1 to
give an overview. Note that the system is divided into two
phases. The Street View panoramas are prepared and their
rectilinear views are generated offline (Lihdo 7) prior to an
actual online vehicle localization (Lingto 18). In the offline
part, all generated imagery is trained as a BoW database. A
symmetric compa_lrison matrix s computed f0|j the Qatabase Sl(—)|g. 2. Back-projection model: 8 virtual cameras are camséd at point
as to reduce the time to retrieve close images in online pittase o and pixels in the image plarieare bilinearly interpolated from panorama
also serves as a index reference for the following optiriomat sphere. The yaw offset changes according to the red arraetitin.
steps. In the online stage, for every vehicle query image, we
extract top similar images from the database as the topmbgi associated depth map stores the distance and orientation of
localization and then estimate relative poses between eaGlirious points in the scene via laser range scans or using
other. Finally, a LBA is employed with all estimated posesimage motion methods (optical flow). It only encodes the
and corresponding 3D-to-2D matching constraints to obtaigcene’s dominant surfaces by its normal direction and its
the global metric localization. distance, allowing to map building facades and roads while
ignoring smaller entities such as vehicles or pedestrigos.
Algorithm 1 Metric global localization in the urban area the sake of bandwidth saving, it is sampled dowi318 x 256

[R.1]

Input: Street View panoramaS= {S;, Ss,...,S5,} and pixels but recovering the similar size to the panorama ig.eas
their depth map® = {D;, Ds,...,D,} The GPS position of Street Views is highly precise due to
Input: Query imaged, = {I1, I, ..., I} captured by a a careful global optimization, while the depth map provides
vehicle driving in the city a 3D structure of the scene with a relatively low accuracy
Output: Global location of the vehicle [3]. Depending on the route planner built in Street View,
1: for i+ 1to n do all panoramic images and depth maps can be downloaded
2:  Rectilinear processing & andD iteratively. The panoramas ought to be transformed into a
3: Feature extraction and BoW training set of overlapping or unrelated cutouts to reduce the large
4. Construction ofDB as the final BowW dictionary angle distortion. Google offers a public ARI [16] to extract
5. end for rectilinear images by setting a virtual camera’s paramseter
6: Calculation of the intra-distance matriRppxpp and including FoV, pitch and yaw. Currently, most of relative
speed-up matrixDp g« > cf. Section 1I-B researches rely on this API to generate perspective images.
7: Up to here the algorithm is implemented offline. Instead, we build a back-projection model to realize a more
8 for t+ 1tondo robust and flexible extraction, as depicted in Figlle 2. We
9:  Parametrize, by Bow assumes virtual pinhole cameras with the camera matrix
10:  Searchl,’s the best similar imagé, in DB K are mounted in the centre of a unit spheewith a

11:  Get the topk similar database images &f in Dppx, user fixed pitch direction and the following yaw directions
[0°,45°,...,360°]. The number of virtual cameras, intrinsic

12:  Histogram EqualizationIt'/T =E (L) matrix and pitch/yaw degree are free to select, yet emfliyica
13: for j< 1to k do the more identical they are to the actual on-board camera,
14 Feature matching the better performance expected. That is one of the reasons
15: Pose estimatio® ; > cf. Equatior[4 why we develop our own rectilinear model. Consider a 3D
16: end for point M € R? in homogeneous coordinates using spherical
17 ©*=LBA{O;} parametrizatior(d, ¢, p), denoted as:
18: Recover the global position at step pcos(6) sin(¢)
19: end for v — psin(6) sin(¢) a

| peos(e)
A. Data preparation and generation 1

Google Street View is a rich street-level GIS with millions Its projection on the unit sphere is representby

of panoramic imagery and depth maps captured all over the cos(6) sin(¢)
world (see Figur&l1)]3]. Every panorama, geotagged with an . M sin(#) sin(¢)
accurate GPS position, is registered 3312 x 6,656 pixel m- = ™ = cos(¢) ()
resolution by capturing &60° horizontal and180° vertical 1

field-of-view (FoV). It is composed and projected by reotar
images from several cameras. Generally, there is a panorarﬁlg
every 6 to 15m with a nearly uniform street coverage. The m= K [R,t{]M 3)

d its projection on a virtual camera image plannby
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Fig. 1. An example of Street View panorama (top-left) andagsociated depth map (top-right) in Versailles, France. Bélow8 rectilinear images and depth
maps are extracted from the above ones by the back projedtmm8 virtual pinhole cameras, are configured similarly to theislefs camera, including the
same focal length and image size. It creates overlappingsvie

where the camera extrinsic matiR, t] is deduced from the similarities and integrate the potential topological im@tion
above configuration. The translatibequals zero when camera to reduce the computational cost. Figlife 3 shows the siityilar
is fixed in the same point. The perspective virtual views carbetween images within the whole databd3gp.pp as well
be synthesized by the rays tracing back to the panorama withs the relationship between the database and query images
a bilinear interpolation around the back-projected poiiitte = Dpgxg. The results, detailed in the figure caption, show a
warp process is noted as certain regularity to locate top similar imagesr.t a query
image. To some degree, these regularities reflect the tgpolo
and inner connections in the GIS, e.g. all database images ar
The corresponding perspective depth map can be addressddwnloaded successively according to the Street View route
likewise. A generation example from a Street View panoramalanner. Intuitively, neighboring panoramas share sindlp-
of Versailles in France is illustrated in Figure 1. pearances and correspondingly their similar rectilinesages

In the experiment, we have totally collected a test set obught to situate in an analogous yaw or auxiliary angle of yaw
3655 query images captured by a MiPSee camera on theffset (only for two-way streets). That is the reason why ynan
vehicle with a57.6° FoV. Images were captured at the city yellow parallel lines and vertical dark lines lie iPppxps
centre of Versailles. The ground truth at each localizatims and Dppyxq respectively. All these regularities make our
recorded by a centimeter-level real-time kinematic GPKRT database a sparse “searching map”, which are advantageous
GPS). to significantly reduce the number of image comparisons in
the online phase. It is summarized as follows:

e In a piecewise route databasPpp«pp, for each

After the artificial generation, the Street View database database imagé. we register its topk similar database
becomes 8 times larger in quantity. We use BoW retrieval images' I, location in an arrayDp gy
T

techniques to represent database images as numericats/ecto | A maximum appearance distandest is defined as
max

quantized by feature descriptors, and to perform a hierarch  he tarthest radius around a panorama where its neighbor-
cal clustering (K-means) of the image descriptors in a tree ing panoramas share an overlapping view. Normallig

structure. After the weighing strategies, the whole tree is g egrest panoramas share a common scene afuted
referred to as a dictionary and its leaves as visual words. A -\ meters INDppxpp, the dist can be fixed ag8
. 1 max

topological localization is estimated according to a dista or 64 matrix index steps.

criterion based on the vectors similarity. In our test, we us | \wjith the help of the route planner, we can localize the first
the Term Frequency-Inverse Document Frequency (TF-IDF) incoming query image easily by searching the database
reweighing and the efficient cosine similarity distance noet image around the starting point. Then for an ordinary
_In pqrticylar, considering the dynamic changes in viewfmin query image, its searching range can be narrowed to all
illumination and occlusions, we construct two independent Dp i, Within the thresholdlist

. . . T max-
dictionaries generated from the SIFT and MSER deteCtorsAccording to our experiment, the above approach can avoid

and then normalize them. _The final dlctlonary can take 'mchearly 90% of the comparisons without any retrieval loss
account both local and regional feature descriptors. compared to a whole database search

As a rule of thumb, the bigger the database is, the slower
will be the information retrieval from it. The aim now is to C. Global metric localization
facilitate the run-time search even if a metropolis datakias In the previous sections, a candidate set of images has
constructed. In a natural manner, we explore the intra dat@b been retrieved from database. In order to realize a metric lo

m - m* (4)

B. Database construction and retrieval acceleration



Fig. 3. lllustration of distance matrices and intra-relati: a) The intra-
database symmetric matri®p g« p . The rows and columns represext)
rectilinear views generated frof® panoramas in 850m urban route, and the
matrix intensity is computed by mapping the cosine sintifafiom [0, 1] to
[0, 255], therein, the darker pixels depict the higher similaritesl diagonal
values are always equal &H5. b) The above matrix is a close-up viewr.t
the blue rectangle in), it shows two obvious yellow lines with high intensity,
that are parallel to the diagonal line indicating a locatiegularity for similar
images in the matrixc) The distance matrixD p g g rows represent th240
database images and columns represent a query sequencéO@iframes.
Several darkest vertical lines are highlighted by purpleksiameaning that
a short query sequence can find its most similar databaseegmagy in few
range of the database as shown by the purple arrow. Congidiné candidate
location at query time steps= 2, 6, 10, we compare their close-ups to the

database shown i) and conclude that even in the same panorama, the similar

candidates sparsely focus on some certain yaw offsets. @thecycles and
rectangles represent top similar candidates from the samerama.d) The
panoramas are searched3atime steps inb).

calization, high-inlier feature correspondence betwesnera

Fig. 4. lllustration of Local Bundle Adjustment to estim#te global position
of the vehicle. The vehicle, the best similar database inaageother togc — 1
similar database images are the triangles respectivetyramlin black, orange
and blue. The red stars represent good matching featureedretthe query
and database images.

statesz;_; andx;. No odometric input is integrated between
successive states. At the statg the best database image
ry associated to the query image is retrieved through the
topological localization. As mentioned before, via theatiatse
Dppxr, the topk — 1 analogous database images to the best
one are found and denoted @s,rs,...,r;]. Naturally, we
suppose that the query image shares the overlapping vidw wit
thesek — 1 images as well. The constraints between them
are found thanks to the accurate matching features. With the
help of depth maps in the database, the 6 DoF pose of the
vehicle ® = (R,t), parametrized in Lie algebr8E(3), can
be computed by minimizing the reprojection error between a
pair of images, i.e.:

N .
O —argmén;w(ﬂmz—P(MZ,@)H) (5)

where P(M;, ©) is the image projection from the scene
point M;. The 3D-to-2D correspondence is improved by
RANSAC andm, as a M-estimator based on Tukey Biweight

images and the candidate set should be guaranteed. Other thfanction [20], is used to improve convergence and to cophk wit

a statistic comparison with the BoW, the conventional pecsp
tive matching is done by following this kind of pipeline [17]

(a) a set of keypoints are extracted in both query and database
images, e.g. SIFT() their descriptors are matched by nearest

neighbor search algorithms, e.g. FLAN{N) matching outliers
are rejected by the ratio test and geometric verificationgisi

wrong correspondence.

9 [y (22 3 .

t/6<1 [1 (t)}> if 2] <t ©)
t2/6 if |z| >t

Finally, ¥ poses and corresponding image pairs are put into a

7 (x) =

constraints from the homograhy or the fundamental matrix|_ BA to refine the vehicle’s pose and its global position.

e.9. RANSAC 8-point algorithm. Unfortunately, we found

We use the optimization frameworRo [21] as our non-

this pipeline is unstable and inaccurate because of impbrtalinear least squares solver. The error regarding to theifeat
changes from viewpoint, illumination and occlusion in urtba detection is assumed to follow a Gaussian distribution. Fhe

area.

geotagged views extracted from panoramas are constrained i

To counter this effect, we use the histogram equalizatiorFigure[4 and their camera configuration are given. We can use
[18] to enhance the contrast of all images prior to featurghem to verify the performance of our metric localizationcsi

extraction. Also the Virtual Line Descriptor (kVLD).[19] is their absolute positions are known. Moreover, the pararsete
applied to determine the inlier feature point corresposésn  of the LBA, can be first initialized by this verification as Wwel
It is a SIFT-like descriptor by signing virtual lines to the "

points with geometrical consistency. The algorithm coreput
In order to evaluate the performance of our algorithm, we

and matches & connected virtual line graph to reject the
outliers, see Figurel 6. test on several city streets and record query images when the
Figure[4 depicts our global metric localization process. INRTK-GPS reaches a localization with2dcm precision. Using

this system, the vehicle captures images at consecutiveream this kind of RTK-GPS positions as the ground truth is suffitie

EXPERIMENTAL EVALUATION AND DISCUSSION



for our metric accuracy qualification. In the experimenty ou

vehicle is mainly tested on the roads around the area with GPS
coordinate$48.801631, 2.131509]. The intrinsic parameters of
Google virtual cameras are fixed according to our own MiPSee
camera. Only one-side of city facades are captured.

The performance of our coarse-to-fine algorithm depends
closely on both topological and metric localization pantfdct,
if the coarse topological localization fails, the furtheetnic
part based on it works in vain. However, in city scenario, it
is difficult to construct a strict ground truth to evaluate th
topological localization. In[[10] and_[22], authors propds
a manual labeling way to build up a confusion matrix as the |
ground truth. This method is too time consuming to employ as
our test dataset contains more than 3000 frames. As expected
the visual overlap must exist between the query and databass
image if the Bow algorithm works well. Therefore we can
evaluate the topological localization based on the gedmetr
consistency. If the inlier-match number between two imdges
larger thanl2, we can get a bound with 9.8m radius around
the Street View in which the corresponding query imageske,
shown by the red circle in Figufé 5. The bound radius distance
is calculated between the RTK-GPS of query images and the
geo-data of retrieved Street View. After manually verifyithe
pairs matches along a street wiiR panoramic Street Views,
our method is able to recognia®0% visual similar database
images corresponding to query images. Ttd rectilinear
Street Views are trained to a mixed 5000 SIFT and 2000 MSER
visual words.

Based on the previous topological localization, we choose
the EPnP-RANSAC to compute the pose between each queryl
monocular image and matched Street View. The solution is
selected with a highest consensus by setting a minimum
reprojection error withir3 pixels and maximum inliers. Then a fig. 5. Bird's-eye view of the metric global localizationhd red Google
g2o framework is used to optimize all computed solutions. Thispointers represent the locations of the Street View camefag orange
process is realized under the cartesian coordinates wh s Tark e SSITAe] pestens o e rerocusr e e e
Lambert conformal conic projection and the result is cot®@®r pound around a panorama denoted by the cross mark.
back to geo-coordinates under the WSG84.

Figure[® shows the metric global localization in2&7m
city street wherei23 query images and 13 panoramic Street
Views are used. There aB® metric positions obtained within
an error of6.5m w.r.t the RTK-GPS and8.6% keeps within a
2m accuracy. An example of matches between the query an
retrieved Street View is depicted in Figure 6.

Although the accuracy is higher than the regular au-
tonomous GPS (average error &h ) [23], readers may still
wonder the discontinuity (onl$8/423 frames localized) and
drifts. The cause of errors during the metric localizatibogt
is analyzed in two aspects: the topological distance beatwee
the chosen Street View and RTK-GPS ground truth, and th
inner matches between the query and Street View image i Meanth
The inlier-match number reflects the feature quantity tkat i Metric. Localization Error =055m
used in the 3D-to-2D pose estimation process, and the re
topological distance between the query and Street View émag
can describe the feature quality. Commonly, the less or théitg- 6t- vAn Qxampli Ofk$€ESe§ bet\_Nfen aan:OHOCltJl_arlim;ge aﬂdti‘iﬁved
further the features are tracked, the less accurate thé- locg rac: »ror IMage by esTrplors: e METIC 'ac1an reaches a

o . . . .58m accuracy by refining from the topological localizatidhO@m).
ization is. We select all query images that retrieve the same

Sopiany

L

LYy
a4

9=
+

2

30 S

Sopan

ly.

e 1) S\e 1‘3

Y

-

Inlier  Matches = 36



40 . . . . 20

—G— Inlle number
—&— Topological distance

Inlier matches number
5
Error between RTK-GPS & estimated position(m)

4 8 12 16
Topological distance between RTK-GPS and Street View (m)

Fig. 7.
distance.

Street View located at the coordinates.801631,2.131509)

Metric error analysisv.r.t inlier-match numbers and the topological

(4]

(5]

(6]

(7]

(8]

El

[20]

and obtain the relationships in Figureé 7. Our effective Bow
algorithm guarantees the visual overlaps between quergesa [11]

and retrieved Street Views arourd®m bound. In this way,
the inlier-match number affects little to the drifts. Howeey

the errors appear in a cumulative trend when topological
distance increases between query and Street View. Debgite t[12]

optimization improves the accuracy, too many further fesgu
only show small motions and still cause disastrous erroes ev
passing the bound of topological localization. As a resud,
eliminate lots of localization like this and cause unavbida

localization discontinuity. Naturally the synthesis vidmom

[13]

the Street View can be created to augment nearer features and]

enhance the accuracy. This will be one of our future work.

IV. CONCLUSION

To conclude, this paper presents a metric urban localizatio

. : ; 6

by matching 3D Street View points to a monocular camera. Ouﬁn
approach requires neither the construction of a consistept
nor the prior visit of the environment. This simple set-ugkes

our algorithm affordable and easy to be widely deployed & re

urban localization. In order to realize a reliable locdiiaa,

we throughly explores multiple information of Street View

and strictly respects their intra relationships. Our téghe

demonstrates both the high accuraeyt the Street View and

robustness in complicated urban environments.
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