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RCCNet: An Efficient Convolutional Neural
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Nuclei Classification
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Viswanath Pulabaigari, and Snehasis Mukherjee

Abstract—Efficient and precise classification of histological cell
nuclei is of utmost importance due to its potential applications in
the field of medical image analysis. It would facilitate the medical
practitioners to better understand and explore various factors for
cancer treatment. The classification of histological cell nuclei is
a challenging task due to the cellular heterogeneity. This paper
proposes an efficient Convolutional Neural Network (CNN) based
architecture for classification of histological routine colon cancer
nuclei named as RCCNet. The main objective of this network
is to keep the CNN model as simple as possible. The proposed
RCCNet model consists of 1, 512, 868 learnable parameters which
are significantly less compared to the popular CNN models
such as AlexNet, CIFAR-VGG, GoogLeNet, and WRN. The
experiments are conducted over publicly available routine colon
cancer histological dataset “CRCHistoPhenotypes”. The results
of the proposed RCCNet model are compared with five state-of-
the-art CNN models in terms of the accuracy, weighted average
F1 score and training time. The proposed method has achieved
a classification accuracy of 80.61% and 0.7887 weighted average
F1 score. The proposed RCCNet is more efficient and generalized
in terms of the training time and data over-fitting, respectively.

I. INTRODUCTION

The medical image analysis is one of the fundamental,
applied, and active research area during the last few decades.
The classification of medical images such as colon cancer is
one of the most popular core research areas of the medical
image analysis [1]. Categorization of tumors at the cellular
level can help medical professionals to better understand the
tumor characteristics which can facilitate them to explore
various options for cancer treatment. Classifying cell nuclei
from routine colon cancer (RCC) images is a challenging task
due to cellular heterogeneity.

The American Cancer Society publishes colon cancer (also
known as Colorectal cancer (CRC)) statistics every three years.
The American Cancer Society Colorectal Cancer Facts &
Figures 2017-2019 [2] reports the following. In 2017, in the
USA, an estimation says that 95, 520 new cases of colon
cancer were found out of which 50, 260 people died, which
includes 27, 150 men and 23, 110 women. The colon cancer is
the third most dangerous cancer which affects both men and
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women. Thus, it is required to analyze the medical images for
accurate colon cancer disease recognition.

Nucleus image classification has been applied to various
histology related medical applications. Following are some
recent attempts in applying image analysis or computer vision
techniques in the medical domain. In 2014, Veta et al. [3]
published a complete review article on breast cancer image
analysis. Many researchers worked in the area of histological
image analysis, a few of them are [4], [5]. Traditional machine
learning methods have been employed by several researchers
using handcrafted features obtained from histology images [6],
[7]. Manually engineered features may not always represent
the underlying structure of histology images. On the other
hand, convolutional neural networks (CNNs) extract high-level
and more semantic features automatically from the training
data.

Recently, deep learning based approaches have achieved
very promising performance in the field of computer vision
and image analysis [8]. In 2012, Krizhevsky et al. [9] proposed
a deep CNN model (called the AlexNet) consisting of 8
learnable layers for image classification. The AlexNet model
is further extended to VGG-16 by Simonyan et al. [10] with
16 number of trainable layers. Later, the GoogLeNet with
inception modules became popular for deep networks [11]. In
recent development, He et al. [12] proposed a deeper residual
network (ResNet) with 152 layers for image recognition in
2016. The CNN based models have also shown very encour-
aging performance for other tasks such as object detection,
segmentation, depth estimation, and action recognition, etc.
Girshick et al. [13] proposed R-CNN model (i.e., Regions
with CNN features) for object detection. The ‘You Only Look
Once (YOLO)’ model was proposed by Redmon et al. [14] for
a unified, real-time object detection. Repala et al. [15] built
a dual CNN based unsupervised model for depth estimation.
Recently, Singh et al. [16] proposed Long Short-Term Memory
(LSTM) networks and CNN based classifier to classify human
actions.

The deep learning has been also utilized extensively for
medical image and video analysis due to its capabilities to deal
with complex data. In 2016, IEEE Transactions on Medical
Imaging published a special issue on deep learning in medical
imaging which focused on the achievement of CNN and
other deep learning based approaches [17]. Litjens et al. [18]
conducted a survey on deep learning in medical imaging by
considering nearly 300 latest contributions, including image
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Fig. 1: Proposed RCCNet architecture for routine colon cancer nuclei classification. The first two convolutional layers (i.e.,
Conv1 and Conv2 layers) have 32 filters of size 3× 3. The two convolutional layers in the middle (i.e., Conv3 and Conv4
layers) have 64 filters of size 3×3, each. The last three fully connected layers (i.e., FC1, FC2 and FC3 layers) have 512, 512,
and 4 neurons, respectively. Two pooling layers (i.e., Pool1 and Pool2 layers) are used to down-sample the spatial dimension
after Conv2 and Conv4 layers, respectively.

classification, object detection and segmentation tasks where
deep learning techniques were used. Esteva et al. [19] proposed
a deep CNN based classifier for skin cancer detection by
training the model over a dataset of 1, 29, 450 clinical images
covering over 2, 032 different types of diseases. In 2017,
Rajpurkar et al. [20] proposed CheXNet which is a 121 layer
CNN model. The ChexNet model is trained over Chest X-
ray14 dataset which is one of the largest publicly available
chest X-ray dataset containing 1, 00, 000 X-ray images be-
longing to 14 different diseases.

Xu et al. [21] proposed an unsupervised deep learning
model called auto-encoder to classify cell nuclei, where the
higher level features are classified using soft-max classifier.
Korbar et al. [22] introduced a deep neural network model
to classify different types of colorectal polyps in whole-slide
images. Very recently, Bychkov et al. [23] proposed a classifier
by combining the convolutional and recurrent neural network
architectures for Colorectal cancer classification.

Sirinukunwattana et al. [1] proposed a convolutional neural
network named as softmaxCNN IN27 to classify cell nuclei
in histology images. Their softmaxCNN IN27 architecture
has 5 trainable layers and 8, 99, 200 learnable parameters.
We have experimentally observed that the softmaxCNN IN27
model used by Sirinukunwattana et al. [1] is not deep
enough as compared to the complexity of the histology im-
age dataset. To overcome this problem, we have proposed
a deep CNN model named as RCCNet having 7 trainable
layers with 1, 512, 868 learnable parameters which outper-
forms softmaxCNN IN27 [1] for the histological routine colon
cancer nuclei classification task.

The main objective of this paper is to develop an efficient
and simple CNN architecture suitable for the classification of
histological colon cancer images. The simplicity considered
is in terms of the number of layers and number of trainable
parameters, which are compared against the widely used CNN
models such as AlexNet, CIFAR-VGG, GoogLeNet and WRN.
In this work, we figured out that a careful consideration
of number of trainable layers and trainable parameters can
lead to an efficient CNN model. The proposed model is
called the RCCNet which is used for the RCC classification
task. Experimentally, we compared the proposed method with
other popular models such as softmaxCNN IN27 [1], softmax-

CNN [1], AlexNet [9], CIFAR-VGG [24], GoogLeNet [11],
and WRN [25]. A promising performance is observed using
the RCCNet in terms of the efficiency and accuracy.

The rest of the paper is organized as follows. Section
II is devoted to the detailed description of the proposed
RCCNet architecture. Section III presents the experimental
setup including dataset description along with a description
of compared methods. Results and Analysis are reported in
section IV. Finally, section V concludes the paper.

II. PROPOSED RCCNET ARCHITECTURE

Categorization of histology images is hard problem due to
the high inter-class similarity and intra-class variablility. The
primary objective of our work is to design a Convolutional
Neural Network (CNN) based architecture which classifies
the colon cancer images. This section describes the proposed
RCCNet which has seven trainable layers.

The proposed RCCNet architecture is illustrated in Fig. 1. In
the proposed architecture, we considered histology images of
dimension 32×32×3 as input to the network. This CNN model
has three blocks with seven trainable layers. In the 1st block,
two convolutional layers, viz., Conv1 and Conv2 are used
just after the input layer. The Conv2 layer is followed by a
pooling layer (Pool1) to reduce the spatial dimension by half.
In the 2nd block, two convolutional layers (i.e., Conv3 and
Conv4 layers) are followed by another pooling layer (Pool2).
In the 3rd block, three fully connected layers, namely FC1,
FC2, and FC3 are used in the proposed architecture. The
input to 1st layer of 3rd block is basically the flattened features
obtained from Pool2 layer. The 1st convolutional layer Conv1
produces a 32×32×32 dimensional feature map by convolving
32 filters of dimension 3×3×3. The zero padding by 1 pixel
in each direction is done in Conv1 layer to retain the same
spatial dimensional feature map. The Conv2 layer has the 32
filters of dimension 3×3×32 with no padding which produces
a 30 × 30 × 32 dimensional feature map. The stride is set to
1 in both Conv1 and Conv2 layers. In Pool1 layer, the sub-
sampling with the receptive field of 2 × 2 is applied with a
stride of 2 and without padding which results in feature map of
size 15×15×32. The Conv3 layer produces 64 feature maps
of spatial dimension 15×15 (i.e., spatial dimension is retained
by applying zero padding with a factor of 1), which is obtained
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by applying 64 filters of dimension 3×3×32 with a stride of
1. Similar to Conv2 layer, Conv4 layer also does not apply
padding and uses stride of 1. The Conv4 layer produces 64
features maps of dimension 13× 13, obtained by convolving
the 64 filters of size 3 × 3 × 64. The second sub-sampling
layer Pool2 also uses the kernel size of 2 × 2 with a stride
of 2, which results in a 6× 6× 64 dimensional feature map.
The right and bottom border feature values of input are not
considered in Pool2 layer to get rid of dimension mismatch
between input and kernel size. The feature map generated
by Pool2 layer is flattened into a single feature vector of
length 2304 before 3rd block (i.e., fully connected layers).
So, the input to FC1 layer is 2304 dimensional feature vector
and output is 512 dimensional feature vector. Both input and
output to FC2 layer is 512 dimensional feature vectors. The
last fully connected layer FC3 takes the input of dimension
512 (i.e., the output of FC2 layer) and produces the 4 values
as the output corresponding to the scores for 4 classes. This
architecture consists of 1, 512, 868 trainable parameters from
7 trainable layers (i.e., Conv1, Conv2, Conv3, Conv4, FC1,
FC2, and FC3 layers).

On top of the last fully connected layer FC3 of proposed
RCCNet model, a ‘softmax classifier’ for multi-class classifi-
cation is used to generate the probabilities for each class. The
probabilities generated by the ‘softmax classifier’ is further
used to compute the loss during training phase and to find the
predicted class during testing phase.

A. Training Phase

The categorical cross entropy loss is computed during the
training phase. The parameters (weights) of the network are
updated by finding the gradient of parameters with respect to
the loss function. The cross-entropy loss (also known as the
log loss) is used to compute the performance of a classifier
whose output is a probability value ranging between 0 and 1.
Let x be a three-dimensional input image to the network with
class label c ∈ C where C = {c1, c2, ...cn} is the set of class
labels. In the current classification task, C = {1, 2, 3, 4}. The
output of the network is a vector y which is,

y = f(x) (1)

where f denotes the forward pass computation function and
y = [y1, y2, ..., ycn ] represents the class scores for the n
classes. The cross-entropy loss for x, assuming that the target
class (as given in the training set) is ci,

L = −log

(
eyi∑cn

k=c1
eyk

)
. (2)

The total loss over a mini-batch of training examples is
considered in the training process.

B. Testing Phase

At test time, for a given input image, the class label having
the highest score is the predicted class label. The predicted
class label cj is computed as,

cj = argmax
i
p(yi) (3)

Fig. 2: The sample patches from each class of “CRCHistoPhe-
notypes” dataset [1]. The 1st, 2nd, 3rd, and 4th rows show the
patches from the classes, ‘Epithelial’, ‘Fibroblast’, ‘Inflamma-
tory’, and ‘Miscellaneous’, respectively. The different columns
in a row represent different samples from the same class.

where p(yi) is the probability that x belongs to class ci, which
is computed as follows.

p(yi) =
eyi∑cn

k=c1
eyk

. (4)

III. EXPERIMENTAL SETUP

This section is devoted to present the experimental setting
including dataset description, a briefing about the compared
models, training details and the evaluation criteria.

A. Dataset Description

In order to find the performance of the proposed RCCNet
for the task, we have used a publicly available ‘CRCHistoPhe-
notypes’ dataset1 which consists of the histological routine
colon cancer nuclei patches [1]. This dataset consists of
22444 nuclei patches that belong to the four classes, namely,
‘Epithelial’, ‘Inflammatory’, ‘Fibroblast’, and ‘Miscellaneous’.
In total, there are 7722 patches from the ‘Epithelial’ class,
5712 patches from the ‘Fibroblast’ class, 6971 patches from
the ‘Inflammatory’ class and the remaining 2039 patches
from the ‘Miscellaneous’ class. The dimension of each patch
is 32 × 32 × 3. The sample cell nuclei patches from the
‘CRCHistoPhenotypes’ dataset is given in Fig. 2.

B. Compared CNN Models

In order to justify the performance of the proposed RCCNet
for the task, five state-of-the-art CNN models are implemented
and a comparison is drawn. A brief overview of these archi-
tectures is given in the rest of this subsection.

1) softmaxCNN IN27 [1]: Sirinukunwattana et al. [1] pro-
posed softmaxCNN IN27 architecture for the classification
task. This model has 5 learnable layers including 2 con-
volutional and 3 fully connected layers. Each convolutional
layer is followed by a max-pooling layer to reduce the spatial
dimension by half. The 1st convolutional layer has 36 filters
of size 4 × 4, which results in a feature map of dimension

1https://warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe
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24 × 24 × 36. The 1st max-pool reduces the dimension of
feature map to 12× 12× 36. The 2nd convolutional layer has
48 filters of kernel size 3× 3, which produces a feature map
of dimension 10 × 10 × 48. The 2nd max-pooling produces
the 5× 5× 48 dimensional feature map. It is further followed
by three fully connected layers, which have 512, 512, and
4 nodes, respectively. softmaxCNN IN27 model consists of
899200 trainable parameters.

We also modified the architecture of sirinukunwattana et
al. [1] with some minimal changes to make it suitable for 32×
32×3 dimensional input. It is called softmaxCNN. Initially, the
input images are up-sampled to 33×33×3. Then, zero padding
by 1 pixel in each direction is done, which results in a 35 ×
35×3 dimensional image. The 1st convolution layer produces
a 31×31×32 dimensional feature map by convolving 32 filters
of size 5×5×3. This is followed by another convolution layer,
which produces a 27 × 27 × 32 dimensional feature map by
applying 32 filters of size 5×5×32. The rest of the architecture
is same as the original softmaxCNN IN27 [1]. softmaxCNN
model consists of 944032 trainable parameters from 7 trainable
layers.

2) AlexNet [9]: AlexNet [9] is the most popular CNN ar-
chitecture, originally proposed for natural image classification.
Initially we tried to make use of the original AlexNet [9] archi-
tecture by up-sampling the image dimension from 27×27×3
to 227 × 227 × 3. However, we experimentally observed no
improvement even after training this model for 200 epochs.
With this observation, we made minimal modifications to the
AlexNet to fit for low resolution images. The image dimen-
sions are up-sampled from 32× 32× 3 to 33× 33× 3. Then,
zero padding by 1 pixel in each direction is done, which results
in a 35× 35× 3 dimensional image. This is followed by 1st

convolution layer which produces a 31× 31× 96 dimensional
feature vector by applying 96 filters of dimension 5 × 5 × 3.
The 2nd convolutional layer produces the feature map of
dimension 27×27×256 by convolving 256 filters of dimension
5 × 5 × 96. The rest of the architecture is same as original
AlexNet [9] (the last fully connected layer is modified to have
4 neurons instead of 1000). This architecture corresponds to
197, 731, 396 trainable parameters with 8 trainable layers.

3) CIFAR-VGG [10], [24]: Originally, the VGG-16 model
was introduced by Simonyan et al. [10] for ImageNet chal-
lenge. Liu et al. [24] proposed a modified VGG-16 architecture
(CIFAR-VGG) for training low scale images like CIFAR-
10 [26]. We have utilized the CIFAR-VGG architecture [24] to
train over histology images by changing the number of neurons
in last FC layer to 4. This model has 16 trainable layers with
8, 956, 484 trainable parameters.

4) GoogLeNet [11]: GoogLeNet [11] is the winner
of ILSVRC 2014, which consists 22 learnable layers.
GoogLeNet [11] is originally proposed for classification of

large scale natural images. We made minimal changes to
the GoogLeNet architecture [11] to work for low-resolution
images. The 1st convolutional layer produces a 30× 30× 64
dimensional feature map by applying 64 filters of dimension
3×3×3. Then, 2nd convolution layer computes a 28×28×128
dimensional feature map by applying 128 filters of dimension
3×3×64. This is followed by an inception block, which results
in a 28× 28× 256 dimensional feature vector. The remaining
part of the model is similar to original GoogLeNet [11] except
the last fully connected layer which is is modified to have
4 neurons instead of 1000. This CNN model corresponds to
11, 526, 988 trainable parameters.

5) WRN [25]: He et al. [12] introduced the concept of
residual networks for natural image classification. Zagoruyko
et al. [25] proposed a wide Residual Network (WRN) to train
low resolution images of CIFAR-10 dataset. In this paper,
we have adapted the WRN architecture [25] for comparison
purpose. The number of nodes in the last fully connected layer
is changed to 4 corresponding to the number of classes in used
histology dataset. The WRN architecture used in this paper
consists of 23, 542, 788 trainable parameters.

C. Training Details

The initial value of the learning rate is considered as
6 × 10−5, and iteratively decreased with a factor of 2

√
0.1 if

there is no improvement in validation loss during training.
The rectified linear unit (ReLU) [9] is employed as the
activation function in all the implemented models. To reduce
over fitting, dropout [27] is used after ReLU of each fully
connected layer with a rate of 0.5 and Batch Normalization
[28] used after every trainable layer(except last FC layer)
after ReLU is applied. All the models are trained for 500
epochs using Adam optimizer [29] with β1 = 0.9, β2 = 0.99,
and decay = 1×10−6. The 80% of entire dataset (i.e., 17, 955
images) is used for the training and remaining 20% (i.e., 4, 489
images) is used to test the performance.

D. Evaluation Criteria

In order to assess the performance of CNN models, we have
considered two performance measures accuracy and weighted
average F1 score. In this paper, the training time is also
considered as one of the evaluation metrics to judge the
efficiency of the CNN models.

IV. RESULTS AND ANALYSIS

We have conducted the extensive experiments to compare
the performance of proposed RCCNet model with other state-
of-the-art CNN models like softmaxCNN [1], AlexNet [9],
CIFAR-VGG [24], GoogLeNet [11], and WRN [25]. Table I
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TABLE I: The performance comparison of proposed RCCNet with state-of-the-art softmaxCNN IN27, AlexNet[9], CIFAR-
VGG[24], GoogLeNet[11], and WRN[25] models in terms of the Training Accuracy, Testing Accuracy, Overfitting %, Training
F1 Score, and Testing F1 Score. The dimension of input images to softmaxCNN IN27 model [1] is 27× 27× 3, whereas for
other models input size is 32× 32× 3. The best accuracies and F1 scores are highlighted in bold.

Model Name #Trainable
Parameters

Training Time
(in minutes)

Classification Accuracy Weighted Average F1 Score
Training Accuracy % Testing Accuracy % Overfitting % Training F1 score Testing F1 score

softmaxCNN IN27 [1] 899,200 27.673 82.90 71.15 11.75 0.9332 0.7124
softmaxCNN [1] 944,032 28.774 83.63 73.71 9.92 0.9581 0.7439

AlexNet [9] 197,731,396 818.675 92.38 76.96 15.42 0.9897 0.7664
CIFAR-VGG [24] 8,956,484 102.259 85.43 75.94 9.49 0.9983 0.7708
GoogLeNet [11] 11,526,988 391.566 99.99 78.99 21.00 0.9999 0.7856

WRN [25] 23,542,788 77.829 98.61 61.88 36.73 0.9968 0.6227
RCCNet (Proposed) 1,512,868 31.404 89.79 80.61 9.18 0.9037 0.7887
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Fig. 3: The Epoch wise test accuracies for different CNN
models used in this paper for experiments.

presents the performance comparison among the CNN models
in terms of the number of trainable parameters, training time,
training accuracy, testing accuracy, amount of over-fitting,
training F1 score, and testing F1 score. Followings are the
main observations from the results of Table I:

1) The proposed RCCNet model outperforms the other
CNN models both in terms of test accuracy and test
weighted F1 score because the proposed model is highly
optimized for histological routine colon cancer images.

2) The proposed RCCNet model has the lowest number
of trainable parameters except softmaxCNN IN27 and
softmaxCNN [1]. Whereas, the AlexNet [9] model has
largest number of learnable parameters.

3) The softmaxCNN model [1] proposed originally for
histological routine colon cancer images is not enough
complex, whereas our model is enough complex to
produce a reasonable performance.

4) The proposed RCCNet model is better generalized as
compared to other CNN models and results in lowest
amount of over-fitting as depicted in Table I. The
highest amount of over-fitting is observed for wide
residual network (WRN) [25]. This analysis points out

that the amount of over-fitting is closely related to
the network structure like depth of network, number
of learnable parameters, and type of network (i.e.,
plain/inception/residual).

5) The test accuracy using RCCNet architecture is im-
proved by 13.3%, 9.36%, 4.74 %, 2.05%, and 30.4% as
compared to softmaxCNN IN27 [1], softmaxCNN [1],
AlexNet [9], GoogLeNet [11], and WRN [25] mod-
els, respectively due to the even size filters in
softmaxCNN IN27 and softmaxCNN [1] and high over-
fitting occurred in other models.

6) The proposed RCCNet is more efficient in terms of the
training time which is improved by 96.16%, 69.28%,
91.97%, and 56.64% as compared to AlexNet [9],
CIFAR-VGG [24], GoogLeNet [11], and WRN [25], re-
spectively due to the less number of learnable parameters
and plain network architecture.

Fig. 3 shows the comparison among test accuracies of
implemented CNN architectures. From Fig. 3, it is observed
that the AlexNet [9], GoogLeNet [11] and WRN [25] con-
verge quickly compared to other CNN architectures. The
softmaxCNN IN27 [1] model is slow in terms of the con-
vergence. However, the proposed RCCNet architecture is very
reasonable and converges smoothly.

V. CONCLUSION

In this paper, we have proposed an efficient convolutional
neural network based classification model to classify colon
cancer images. The proposed RCCNet model is highly com-
pact and optimized for histological low-resolution patches.
Only 7 plain trainable layers are used with 1, 512, 868 trainable
parameters. The classification experiments are performed over
histological routine colon cancer patches. The performance
of the proposed RCCNet model is compared with the other
popular models like AlexNet, CIFAR-VGG, GoogLeNet, and
WRN. The experimental results point out that the RCCNet is
better generalizes and outperforms other models in terms of
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the test accuracy and weighted average F1 score. The proposed
RCCNet model attains 80.61% classification accuracy and
0.7887 weighted average F1 score. The RCCNet is also highly
efficient in terms of the training time as compared to deeper
and complex networks.
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