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Improving semantic segmentation in urban scenes with a cartographic
information

Abdelhak Loukkal®? , Vincent Fremont 3 , Yves Grandvalet 2 , You Li !

Abstract— This paper presents three different approaches to
inject a location information in semantic segmentation Convo-
lutional Neural Networks (CNN) applied to urban scenes. The
assumption that a location information would improve semantic
segmentation performance emerges from the idea that some
elements of urban scenes are located in a predictable manner.
This assumption is confronted to realistic data on the CARLA
autonomous driving simulator, which is used to create our own
synthetic dataset with images, depth maps and bird-eye-view
cartographic images. Simulators circumvent the difficulties due
to the scarcity of publicly available synchronous labeled images
and location information. We consider the location information
as a cartographic image as we assume it is the simplest option
to include it in a CNN. We assess the relevance of injecting the
cartographic information in three different manners: as a CRF
potential, as an additional task and as an additional encoder
input of a CNN. The three methods are evaluated and compared
with a state of the art CNN with regards to the pixel-wise
accuracy, mean intersection over union and intersection over
union of some important classes. The multi-encoder approach
improves the intersection over union of the pedestrians, vehicles
and traffic signs classes by respectively 4%, 1.6% and 9 %.

I. INTRODUCTION

Semantic segmentation has been drawing a lot of attention
from the computer vision and autonomous driving commu-
nities for many years because in addition to detecting key
elements in the scene, it adds semantic information to the
global scene understanding problem.

Urban scenes are very challenging environments for au-
tonomous driving because of the dynamics of observed
objects. However, some objects’ locations in these scenes
are quite predictable: for example it is impossible to have a
building in the middle of a road and cars are more likely to be
found on the road rather than on the sidewalk. The intuition
about using a location information in the form of a digital
high definition map in perception modules seems reasonable.
The objective of this paper is to prove that adding the
cartographic information to a semantic segmentation neural
network can improve its accuracy regarding some important
class of objects like vehicles, pedestrians or traffic signs.

For a neural network to be able to take advantage of some
cartographic information, it would be necessary to have a
dataset containing labeled images with their corresponding
cartographic information. In the publicly available datasets
for semantic segmentation, GPS data is available but we
lack a precise cartographic information. For this reason,
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we choose to work on synthetic data produced by CARLA
autonomous driving simulator [1] which provides a complete
platform with semantic segmentation, depth, LIDAR and a
precise map of a virtual town.

For each frame obtained from the simulator, we extract
the part of the map that corresponds to one hundred meters
ahead of the vehicle. These extracted portions of the map
come in a bird-eye-view configuration. We apply an inverse
perspective mapping to project the map portion in the camera
plane, so as to ease matching with camera frames. We
propose three neural networks designs for processing this
cartographic information in a CNN. First, we add the map as
a pairwise potential in a CRF on top of a state of the art CNN.
Second, we design a multi task network that outputs semantic
segmentation, depth and the cartographic map. Finally, we
add it as an additional input in a network with multiple
encoder streams.

II. RELATED WORK

The success of deep CNNs for image classification [2]
has encouraged researchers to explore the effectiveness of
these networks for dense predictions tasks like semantic
segmentation or depth estimation. The current state of the
art approaches in semantic segmentation leverage the idea of
fully convolutional neural networks [3] keeping the spatial
information, that is usually lost in regular CNNs, by avoiding
fully connected layers. These networks come in two parts:
the encoder extracts features from the input image and the
decoder up-samples the encoded feature map to match the
size of the input image. State of the art networks for pixel
wise semantic segmentation take also advantage of spatial
pyramid pooling [4] and dilated convolutions [5] to segment
objects at different scales and enlarge the receptive fields,
hence the context, of the convolution filters.

Semantic segmentation is a very complex task for which
satisfying results were obtained thanks to public datasets like
KITTI [6], CamVid [7] and Cityscapes [8] which contains
much more labeled images than the two previous ones. More
recently, thanks to a new labeling pipeline, Apolloscapes
[9], a huge dataset of more than 100k labeled images was
released.

gm random fields (CRF) are graphical models that are
commonly used for semantic segmentation. Their energy
function is composed of unary potentials and pair-wise
potentials, see (2), on neighbors (can be pixels or patches
of pixels). Originally, the main limitation of this model
was its inability to capture long range dependencies, with
pixels that are in different regions of the image. Region
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Fig. 1: Inverse perspective mapping pipeline

based approaches that incorporate hierarchical connectivity
and higher-order potentials tried to improve on the orig-
inal CRFs but lacked accuracy due to the unsupervised
segmentation that produces regions. Fully connected CRFs
are more expressive models, which present the advantage
to have pair-wise potentials between all pixels in an image
but the difficulty of inference hindered their potential. A
mean field algorithm was proposed to learn efficiently fully
connected CRFs [10]. CRFs have been successfully applied
as a post processing or refinement step in CNNSs in order to
improve boundaries delineation for segmentation tasks. [11]
proposed an approach that includes the CRF in an end-to-end
CNN-CRF where the Mean Field approximate inference is
formulated as a recurrent neural network and the Mean Field
algorithm steps reformulated as convolution operations.

Autonomous driving involves different tasks like semantic
segmentation, object detection or depth estimation. Hav-
ing a single neural network that solves all these tasks is
an important asset. Multi-task learning is a learning strat-
egy that consists in learning different tasks simultaneously,
sharing knowledge between tasks. For example, a shared
representation improves learning efficiency and prediction
accuracy. Multi-task learning is an interesting framework for
autonomous driving and mobile robotics in general because
it combines different systems in one and eases real-time
computing. The multi-task learning loss is a weighted sum
of the tasks’ individual losses. This weighting can be either
uniform or tuned manually. Recently, [12] provided a new
weighting approach based on homoscedastic uncertainty,
an uncertainty that captures the relative confidence of the
different tasks.

Dense prediction networks used for semantic segmentation
and depth estimation come in the encoder-decoder configura-
tion. Using several streams for the encoder has been studied
in several papers, among the first is [13] that fuses the
features extracted from the image and the depth at different
scales in the encoder to improve semantic segmentation.

Using a contextual information to improve semantic seg-
mentation has been explored in previous papers. [14] aug-
ment pair-wise CRFs potentials with higher order potentials
defined on sets of pixels that are determined with unsuper-
vised segmentation algorithms. [?] More recently [15] intro-
duced an approach where street layouts are estimated then
used to compute spatial prior maps that are used as additional
potentials in a CRF to improve semantic segmentation.

III. SYNTHETIC DATASET

Real world semantic segmentation datasets are very expen-
sive to annotate and large-scale public datasets do not provide
precise cartographic information. Therefore, simulation was
the designated solution for our problem. Among the available
autonomous driving simulators [16], [17], [1], we chose
CARLA as image, depth, semantic and cartographic map are
easy to access. The map of the virtual town is provided as a
PNG image encoded in three layers with one layer giving
information about roads, another one about intersections
and the last one about lanes. The car can be positioned
in the 2D image map through its world location, using
the transformation (provided by the authors) from world
coordinates to pixel coordinates in the 2D image map.

All the methods investigated in this paper rely on the
fact that the cartographic map is projected in the camera
plane. So first, for each camera frame extracted from the
simulator, using the coordinates of the vehicle, a portion of
the image map corresponding to one hundred meters ahead
of the vehicle is extracted. Then, using the transformation
between the bird-eye-view plane and the camera plane, the
points of the bird’s-eye view map are projected in the
camera plane with inverse perspective mapping, see Fig.1.
The transformation between the two planes is the following:

p ~ K[R|T)w (1)

where K is the intrinsic matrix of the camera, R the
rotation matrix, 7' the translation matrix, p = (u,v,1)7
the coordinates in the camera plane and w = (x,%,1)7 the
coordinates in the bird-eye-view plane.

This projected map is homogeneous to a segmentation
label. We assign labels to road, intersection and ‘“other”
pixels. Alignment of the projected map and the road in
images is not perfect because of the vehicle dynamics that
change the rotation and translation matrices that define the
inverse perspective mapping. This could be compensated
using the vehicle’s inertial sensors but we chose not to do it
to be more realistic.

IV. PROPOSED METHODS

Our approach is based on the idea that the cartographic
image is considered as a prior to inject in a CNN. Here we
use Deeplab V2 [18], a state of the art network for pixel-
wise semantic segmentation. We have explored three ways
of incorporating the cartographic information in the network:
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Fig. 2: Method 1: Different combinations of pairwise potentials have been tried to improve the semantic segmentation
results. Trials using the cartographic map and the depth map as separate appearance kernels and a single kernel based on
the element-wise fusion of depth and cartographic map have been performed.

o The first method consists in adding the ground truth
cartographic and depth maps as additional entries in the
pairwise potentials of the CRF-RNN layer on top of a
CNN (see Fig.2).

o The second method is similar to the previous one re-
garding the CRF except that the depth and cartographic
maps that are used for the CRF are predicted by a multi
task network instead of being ground truth (see Fig.3).

e The last method is a CNN with three encoder streams:
image, depth and cartographic maps. The features ex-
tracted from the three streams are fused by element-wise
operations and fed to a decoder that outputs a semantic
segmentation map (see Fig.4).

A. Deeplab with CRF-RNN layer

We design our network using Deeplab V2 as our basis.
This network takes advantage of dilated convolution to
enlarge the size of the feature maps and the receptive field
without increasing the number of parameters and a trous
spatial pyramid pooling to aggregate multi scale information.
We add an additional CRF-RNN layer at the output of the
network to allow end-to-end training of the CRF with the
CNN. The Gibbs energy of the fully connected CRF is the
following:

N
E(@) =Y dulw:) + D tp(asz)) 2
i=1 i<j
The unary potential v, (z;) is computed for each pixel by the
CNN that produces a distribution over the label assignment
z;. The pair wise potentials are a linear combination of
Gaussian kernels:

K
m=1

k(fi,f3)

where k(™) is a Gaussian kernel, w("™ a weight, f; a feature
vector and p a compatibility function that can be given by a
simple potts model pu,(x;, x;) = [z; # x;j].

The original paper on fully connected CRFs [10] defines
the following pairwise potentials that have been successfully
applied since:

i — 1> e — ¢l
k(fi, f7) = w exp(— - )
202 202

appearance kernel
2
Ipi — pj

+w® exp(— 502
2

) @

smoothness kernel

where c¢; and p; are respectively the vector of RGB values
for pixel ¢ and the position in the image.

We explore here different combinations of potentials. We
consider adding the cartographic map and the depth map as
separate appearance kernels and we also evaluated adding a
kernel based on the fusion of both depth and cartographic
map that we call focus map:

pi —pil* IR - F[
262 262

k7o (fi, £5) = exp(— ) 6)
where:
F=(1/D)xM (6)

and F is the obtained 2D focus map, D the 2D depth map,
M the 2D cartographic map (analogous to a segmentation
map with label 2 for intersections, label 1 for the road and
label 0 everywhere else) and the division and multiplication
are element-wise operations.

The weights of the different Gaussian kernels are learned
end to end through back-propagation of the gradients in the
network.

B. Multi task network

To design the multi task network, we built it on Deeplab
to which we add two decoder branches, one for the depth
estimation and one for the map estimation. The Deeplab
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Fig. 3: Method 2: Multi task network with semantic segmentation, cartographic map and depth outputs. The output of the
semantic segmentation branch is used as a unary potential in the CRF layer and depth and map outputs are used as pair-wise

potentials in the CRF.

network outputs feature maps eight times smaller than the
original input image, so bilinear sampling is used for up-
sampling. The map estimation being considered as another
segmentation task, the decoder we use is similar to the one
used in the original Deeplab. For the depth estimation task,
we added 3 up-convolution layers to resize the output to
the input size and obtain a smoother depth estimation. To
weight the different losses, we did manual tunning of the
weights. The best results were obtained with the following
configuration:

Lossiota; = 10 % Lossg + 0.1 x Lossp + Lossyy @)

where Lossg, Lossp and Lossys are respectively the loss
functions for semantic segmentation, depth estimation and
map segmentation. This particular weighting was obtained
empirically.

The loss function for the semantic segmentation and
cartographic map estimation tasks is the cross entropy loss.
For the depth estimation task, we have chosen the BerHu
loss which was shown to yield better results than the L1
loss [19]. The reverse Huber loss is defined as:

[ iffz]<c

B =
(1‘) {x2242c2 Zf|],‘| ZC

®)

For every gradient descent step where we compute B(y—7),
c is defined as:

1 N
c= gmaxiﬂyi - yil) &)

where y; and y; are respectively the ground truth depth and
predicted depth. c is in other words twenty percent of the
maximal per batch error. This loss function is equivalent to
L1 loss when = € [—c, | and to L2 loss otherwise.

We add the CRF-RNN Ilayer at the end of the semantic
segmentation branch. The output of the depth estimation
and cartographic map estimation branches are then used as
additional pair-wise potentials in the CREF, see (3).

C. Multi encoder streams network

In this section, we use a neural network with multiple
encoder streams. We build from Deeplab network to which

we add two encoder streams, one for the depth and another
one for the map. The feature maps extracted from the three
streams are fused to obtain one feature map that is passed
to the semantic segmentation decoder. The fusion strategy
that achieved the best results is done first by element-wise
multiplication of the image and map features, then the result
of the multiplication is added element-wise to the depth
features.

V. EXPERIMENTS

We run the experiments on a set of two NVIDIA Titan
X. We use ADAM optimizer [20] with an initial learning
rate of 10~* and exponential decay. We compare the three
networks with the original Deeplab without CRF. We com-
pare with different CRF pair-wise potentials and encoder
streams to highlight the impact of the cartographic map. All
networks are fine-tuned from the pretrained solution fitted
on Cityscapes and Pascal VOC. All the networks containing
the CRF-RNN layer were trained with a batch size of one
because of implementation limits of the custom CRF-RNN
layer, other networks were trained with a batch size of
three , due to limited computational resources. In this paper,
Tensorflow has been used to design and train the CNNs. For
the CRF part of the code, the keras/tensorflow code given by
[11] was used. The metric used to evaluate the performance
of the network is the IoU, intersection over union, defined
as:

TP
~ TP+FP+FN
where TP, FP and FN are respectively the true positive, false
positive, and false negative pixel counts on the set of test
images. This metric is evaluated for each class and the mean
over all classes is computed as a general summary.

IoU

A. Dataset

We generated 4700 labeled images using the CARLA
autonomous driving simulator. We ran 10 episodes of 470
frames each, each episode starting from a different position
in the virtual world. We used virtual town number one for
all our experiments. The number of vehicles in the world
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Fig. 4: Method 3: Multi encoder stream network. The features extracted from the depth and map encoders are fused, by
element wise multiplication for the map and element wise addition for the depth, with the features extracted from the RGB

image.

was fixed to 140 and the number of pedestrians to 120. For
each episode, the weather was randomly selected among 4
possibilities: Clear noon, cloudy noon, clear morning, cloudy
morning. During the simulation, the vehicle was controlled
by the autopilot included in CARLA simulator code. The
dataset was split in a training set composed of 4230 images
and a test set of 470 images (one episode).

B. Deeplab with CRF-RNN layer

We have first fine-tuned a pretrained Deeplab V2 network
on our dataset for 10 epochs. We train a Deeplab network
with an additional CRF-RNN layer and compare the results
with those of the regular Deeplab network that was fine-
tuned on the training data. We tested different additional
pairwise potentials. The results are shown in Table 1. We
observe that the CRF with the cartographic map and depth
map as separate additional potentials has the best results
regarding the fences and traffic signs IoU improving the ToU
by respectively 2.2 % and 3.3% compared to the regular
Deeplab and the focus map additional potential has the best
results for the vehicles, pedestrians and poles IoU improving
the IoU by respectively 0.9% , 3.9% and 0.5 %. This gives
a hint on the fact that adding the cartographic information
in the CRF adds an information on the location of some
important classes like pedestrians, vehicles or traffic signs
that are more likely to be found respectively on or outside
the road. The Deeplab network with CRF and no additional
potential has the best overall performance regarding the
classes of interest and achieves the best mIloU and pixel wise
accuracy and the best road and road lines IoUs.

C. Multi task model

For the multi task model, we have used the pretrained
weights for the encoder and trained the network for ten
epochs first. Once the network has learned to predict depth
and cartographic map, the outputs of these two branches
have been injected in a CRF-RNN layer at the end of the
semantic segmentation branch and the network was trained

for ten more epochs. Therefore, results with the different
CRF pairwise additional potentials are compared with the
regular Deeplab and the multi task network without CRF
both trained during 20 epochs. The results are shown in
Table II. The multi-task network is referred to as MT for
brevity. The networks with additional pair-wise potentials are
referred to as MT + CRF + additional — potentials. The
CRF with the focus map, here the focus map is obtained
by fusing the output of the depth and map branches of the
network, has the highest mean IoU out performing the regular
Deeplab by 1.2 % but regarding the classes of interest, the
regular Deeplab has the highest IoUs. When comparing the
multi task network with and an without CRF, we observe
that in this case, the CRF doesn’t improve the results in the
main classes of interest.

D. Multi encoder model

For this approach, we have used the pretrained weights
for the image branch and trained from scratch the depth and
map branches. We have tested different fusion strategies and
different fusion combinations. The best results were obtained
by multiplying the image features by the cartographic map
features and then adding the depth features. The results are
shown in Table III. The multi-encoder network is referred
to as ME to simplify notation. The networks with additional
encoders are referred to as M E : Operations. This method
achieves the best results among the three tested methods and
even in ten epochs has better results in the important classes
than the CREF, regular Deeplab and multi task approaches in
respectively ten, twenty and twenty epochs. The multi stream
network where we multiply by the map and add the depth
improves the IoU of the pedestrians, vehicles and traffic
signs classes by respectively 4%, 1.6% and 9 %. Multiplying
by the features of the cartographic map insures a stronger
relationship with the features of the image and enforces the
relation between the classes and there location in the map.



TABLE I: Results of the first method. Best results are shown in bold. All networks are trained on 10 epochs.

Deeplab  Deeplab + CRF  Deeplab + CRF + depth  Deeplab + CRF + depth & map  Deeplab + CRF + focus map
mloU 50.2 524 48.2 50.5 51.1
Pixel accuracy 88.3 88.8 86.5 87.8 88.6
Vehicle IoU 86.3 87.00 86.3 86.5 87.2
Pedestrians IoU  18.0 20.7 16.6 19.8 219
Traffic sign IoU  57.0 60.2 57.2 60.3 60.0
Fences IoU 37.1 38.7 34.7 39.3 39.3
Poles IoU 29.7 30.2 28.0 30.1 30.2
Road ToU 89.7 90.7 88.6 89.2 89.7
Road lines IoU  22.6 394 35.2 36.5 249

TABLE II: Results of the second method. Best results are shown in bold. Regular Deeplab and MT without CRF are trained
on 20 epochs, the MT CRF networks are trained first on 10 epochs without CRF then on another 10 epochs with CRF.

Deeplab MT  MT + CRF  MT + CRF + depth  MT + CRF + depth & map  MT + CRF + focus map
mloU 52.1 523 532 52.4 51.9 53.3
Pixel accuracy 88.8 88.8 88.5 88.2 88.4 88.7
Vehicle IoU 87.4 873 872 87.0 87.1 86.9
Pedestrians IoU  20.8 189 19.0 20.0 19.3 18.9
Traffic sign IoU  61.7 63.3 622 64.2 63.4 63.5
Fences IoU 394 384 377 38.5 38.2 385
Poles IoU 30.6 30.1 304 29.7 30.0 30.2
Road ToU 89.9 89.9 908 89.5 89.8 89.3
Road lines IoU  22.4 234 39.0 29.6 22.5 354

TABLE III: Results of the third method. Best results are shown in bold. The networks evaluated in this table are trained on

10 epochs
Deeplab  ME: Image + depth  ME: Image + focus map  ME: Image * map  ME: Image* map + depth
mloU 50.2 51.6 50.7 49.6 50.7
Pixel accuracy 88.3 88.5 88.6 88.55 88.6
Vehicle ToU 86.3 87.5 87.5 87.6 87.9
Pedestrians IoU  18.0 19.7 20.9 20.6 22.0
Traffic sign IoU  57.0 63.5 62.8 62.6 66.0
Fences IoU 37.1 40.4 39.8 38.3 39.9
Poles IoU 29.7 30.2 30.1 30.1 30.6
Road IoU 89.7 89.8 89.93 90.0 90.0
Road lines IoU  22.6 23.1 21.7 22.1 23.5

E. Discussion

This paper confirms the idea that the predictability of
some objects’ location in a road scene can help improving
the semantic segmentation and presents encouraging results
regarding the use of a cartographic information as an image
in CNNs. We hope that this line of works will encourage
the release of publicly available real world datasets with
synchronous semantic segmentation labels and precise car-
tographic information. The maps would need to have a high
precision at centimeter-level. This kind of maps is already

popular for autonomous driving and is called High Definition
maps. In this paper, the only available information in the
map is about the road boundaries and intersections. HD
maps contain richer information: about the lanes which can
potentially improve the accuracy of the segmentation even
more, especially road lines IoU. Whatever format these HD
maps come in, it would be possible to rasterize them to use
them as proposed in this paper.



VI. CONCLUSION

The location information yields important information
about a vehicle surroundings. In this paper, we have in-
vestigated how to inject a location information in a CNN,
considering it as another image input to the network. We
have explored adding the map image as a pair wise potential
in a CRF, as an additional task in a multi task framework
and as an additional encoder branch. After comparison with
the regular Deeplab network, adding a map based pair-wise
potential in the CRF can improve slightly the intersection
over union of important classes but the regular CRF still
has a better overall performance. Training a multi task
network with a cartographic map prediction branch fails
to improve the performance regarding the most important
classes. Finally, adding the map information as an additional
encoder branch of a segmentation network insures the best
results improving significantly the intersection over union of
important classes like vehicles, pedestrians or traffic signs.
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