
  

  

Abstract— A vaccination strategy based on the state 
feedback control theory is proposed. The objective is to fight 
against the propagation of an infectious disease within a host 
population. Such a propagation is modelled by means of a SISV 
(susceptible-infectious-susceptible-vaccinated) epidemic model 
with a time varying whole population and with a mortality 
directly associated with the disease. This model contains some 
free-design parameters, namely, the feedback gains of the 
vaccination control law. The paper analyses the positivity of 
such a model under the proposed vaccination strategy as well 
as the conditions for the existence of the equilibrium points of 
its normalized model. In this context, it is proved that an 
appropriate adjustment of the control gains avoids the 
existence of endemic equilibrium points in the normalized SISV 
model while guaranteeing the existence of a unique disease-free 
equilibrium point being globally asymptotically stable. 

I. INTRODUCTION 

The propagation of epidemic diseases by means of 
mathematical models has been broadly analysed [1]. Such 
researches can be a starting point to elucidate the type of 
control strategy to be applied in order to minimise the 
impact of the disease within the host population. Also, the 
behaviour of the disease propagation under the application 
of a designed control strategy can be predicted by using such 
models. The control strategies can be of different types, 
namely, vaccination, quarantines, isolation in hospitals and 
use of antiviral drugs among others [2-6]. The epidemic 
models used in the literature are of different types. The most 
used ones are the compartmental models where the host 
population is split in different categories depending on its 
status with respect to the infection [7]. In this sense, the 
model can contain the categories of susceptible, exposed, 
infectious, recovered, vaccinated, hospitalized and so on. 

The analysis of a SISV epidemic model, with a time-
varying population and mortality directly associated to the 
disease, under a vaccination strategy based on a state 
feedback control law is carried out in this paper. The model 
takes into account that the efficiency of the vaccines can be 
less than 100%, i.e., only a portion of the susceptible 
individuals who receive a vaccine passes to the vaccinated 
category [8]. Furthermore, a portion of vaccinated individuals 
loses the immunity after an immunity period, i.e., the 
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immunity for life of all the vaccinated individuals is not 
guaranteed by the vaccines [9]. The vaccination strategy 
provides four free design parameters. Three of them are the 
constant control gains, each one associated to each state 
variable of the model. The other one is used to switch off the 
vaccination action when the proportion of susceptible 
subpopulation is smaller than a prescribed threshold. The 
analysis includes the proof of the positivity of the model 
under the proposed vaccination strategy. Also the influence 
of the control gains on the dynamics of the disease 
transmission within the host population is studied by means 
of a normalized SISV model. Such a normalized model has 
two independent state variables, instead of the three of the 
original SISV model, what simplifies the analysis. The 
conditions for the existence of the equilibrium points of this 
normalized model depending on the assigned values to the 
control gains are analysed. In this context, the existence of 
appropriate choices for the control gains guaranteeing the 
non-existence of endemic equilibrium (EE) points and the 
existence of a unique globally asymptotically stable disease-
free equilibrium (DFE) point for the normalized SISV model 
is proved. In this way, the main objective of eradicating the 
disease propagation, while guaranteeing the persistence of 
the host population, can be achieved by means of the 
application of a vaccination strategy based on the state 
feedback control law with an appropriate adjustment of the 
control gains. A main reason is that EE points can be 
removed through the choice of the control gains. 
Furthermore, the proportion of the vaccinated subpopulation 
in such a globally asymptotically stable DFE point depends 
on the values of the control gains. Then, the number of 
vaccines to be used during the vaccination campaign can be 
prefixed by adjusting such gains. In a practical situation, this 
fact can be used to choose the control gains according to the 
number of available vaccines while guaranteeing the unique 
existence of the globally asymptotically stable DFE point. 

II. THE SISV EPIDEMIC MODEL 

The SISV epidemic model splits the host population in 
three different categories: susceptible, infectious and 
vaccinated subpopulations. The transitions between these 
subpopulation categories are given by: 

   

!S(t) = υN(t) + γI(t)−βS(t)I(t)
N(t)

−µS(t) + pσV(t)− fU(t)

!I(t) =β
S(t)I(t)

N(t)
− (γ+α+µ)I(t)

!V(t) = −(µ + pσ)V(t) + fU(t)

 (1) 

subject to S(0) ≥ 0 , I(0) ≥ 0 , V(0) ≥ 0  and 
S(0) + I(0) + V(0) > 0 , where S(t) , I(t)  and V(t)  denote 
respectively the susceptible, infectious and vaccinated 
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subpopulations at the instant t , N(t) = S(t) + I(t) + V(t)  
denotes the whole host population and U(t)  is a control 
function to be specified later on. By summing up the 
equations of (1) one obtains the dynamics of the whole 
population given by: 

   !N(t) = (υ−µ)N(t)−αI(t) . (2) 

The parameters of the model are all strictly positive. 
Namely, υ  and µ  denote respectively the birth and the 
mortality by natural causes rates of the host population. The 
transmission of the infection from mothers to sons/daughters 
is not considered so the new births are included directly in the 
susceptible category. The rest of the parameters are 
associated with the infectious disease: β  denotes the 
infection transmission rate, γ  is the recuperation rate and α  
is the mortality rate by causes directly related to the disease. 
The inverse of γ  denotes the average time interval that an 
infectious individual stays within the infectious category 
before passing to the susceptible category. The transition of 
an individual from the susceptible category to the infectious 
one can happen, with certain probability, when such a 
susceptible individual contacts with an infectious one. In this 
sense, the factor βI(t) N(t)  is the per capita probability of 
acquiring the infection at the instant t  and the term 
βS(t)I(t) N(t)  represents the total rate of transmissions of 

the infection at the instant t  [1]. The parameter f ∈ 0, 1⎡⎣ ⎤⎦  
denotes the vaccination efficiency, i.e., the fraction of 
susceptible individuals who pass to the vaccinated category 
after receiving a vaccine. The value f =1  means a 100% of 
efficacy in the vaccines. Finally, the parameter p∈ 0, 1⎡⎣ ⎤⎦  
denotes the portion of vaccinated individuals who loses the 
immunity and passes to the susceptible category after passing 
a certain time period σ−1 . The value p = 0  points out that all 
the vaccinated individuals acquire an immunity for life after 
receiving a vaccine. 

The function U(t)  works as a control signal and it 
denotes the number of susceptible individuals receiving a 
vaccine at the instant t . Such a control signal is defined by: 

   U(t) =
Max 0, ksS(t) + k

ι
I(t) + kvV(t){ }   if   S(t) ≥ εsN(t) > 0

              0                       otherwise

⎧
⎨
⎪

⎩⎪
(3) 

where ks , k
ι
 and kv  are constants, namely, the controller 

gains. Such a vaccination control law is based on the 
feedback of the variables of the SISV model while it is non-
negative definite. Furthermore, the vaccination is switched 
off while the proportion of susceptible subpopulation is 
strictly smaller than a prescribed threshold εs ∈ 0, 1( ) . 

Theorem 1 (positivity of the SISV model). The SISV 
epidemic model (1) is positive under the application of the 
control signal (3) irrespective of the values assigned to the 
control gains since S(t) ≥ 0 , I(t) ≥ 0  and V(t) ≥ 0  ∀t ≥ 0  
provided that S(0) ≥ 0 , I(0) ≥ 0  and V(0) ≥ 0 . 

Proof. It is omitted by space reasons.         *** 

III. NORMALIZED SISV MODEL 

A variables change lets us obtain a normalized SISV 
epidemic model useful to analyse the dynamics of the 
propagation of the disease under the proposed vaccination 
strategy. Such a variables change is given by: 

   s(t) =
S(t)
N(t)

     ;     ι(t) =
I(t)
N(t)

     ;     v(t) =
V(t)
N(t)

 (4) 

where the resulting new variables s(t) , ι(t)  and v(t)  
represent, respectively, the proportion of susceptible, 
infectious and vaccinated individuals within the host 
population. Note that s(t)∈ 0, 1⎡⎣ ⎤⎦ , ι(t)∈ 0, 1⎡⎣ ⎤⎦  and 

v(t)∈ 0, 1⎡⎣ ⎤⎦  ∀t ≥ 0  is derived from Theorem 1 if a 
vaccination strategy based on the control law (3) is applied in 
the epidemic model. One obtains the following normalized 
SISV model: 

   
!ι(t) = β− (υ+ γ+α)( )ι(t)− (β−α)ι2 (t)−βι(t)v(t)
!v(t) = −(υ+ pσ)v(t) +αι(t)v(t) + fu(t)

 (5) 

where: 

   u(t) =
U(t)
N(t)

=
Max 0, kss(t) + k

ι
ι(t) + kvv(t){ }   if  s(t) ≥ εs > 0

              0                        otherwise

⎧
⎨
⎪

⎩⎪
 (6) 

denotes the normalized control signal and the fact that 
s(t) + ι(t) + v(t) =1  ∀t ≥ 0  has been used. The following 
subsection analyses the equilibrium points for the model (5) 
under the control law (6) depending on the values of the 
controller gains. 

Remark 1. The dynamics of the normalized SISV model 
(5) in absence of vaccination, i.e. with u(t) = 0  ∀t ≥ 0 , and 
an initialization with v(0) = 0  is given by: 

   !ι(t) = β− (υ+ γ+α)( )ι(t)− (β−α)ι2 (t)  (7) 

together with s(t) =1−ι(t)  and v(t) = 0  ∀t ≥ 0 . This model 
has two potential equilibrium points obtained by introducing 
the condition !ι(t) = 0  in (7). One of them is a DFE point 

where the proportions of the subpopulations are s* =1  and 
ι* = v* = 0 . The other one is an EE point where 
s* = (υ+ γ) (β−α) , ι* = β− (υ+ γ+α)( ) (β−α)  and v* = 0 . 
The DFE point exists irrespective of the values of the model 
parameters while the existence of the EE one requires that 
β ≥ υ+ γ+α  so that ι* ∈ 0, 1⎡⎣ ⎤⎦ . Note that both points 

degenerate in one if β = υ+ γ+α . Moreover, one obtains 

that !ι(t) ≤ β− (υ+ γ+α)( )ι(t)  if β ≥ α  while 
!ι(t) ≤ −(υ+ γ)ι(t)  if β ≤ α  from (7) where the fact that 

ι(t)∈ 0, 1⎡⎣ ⎤⎦  ∀t ≥ 0   and then ι2 (t) ≤ ι(t)  has been taken into 

account. As a consequence, ι(t) ≤ ι(0) eλt  with either 
λ =β− (υ+ γ+α)  if β ≥ α  or λ = −(υ+ γ)  if β ≤ α . Thus, 
the DFE point is unique and globally exponentially stable if 
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β < υ+ γ+α . Furthermore, !ι(t) = −(β−α)ι2 (t)  if 
β = υ+ γ+α  from (7) and one obtains that 

ι(t) = ι(0) 1+ (υ+ γ)ι(0)t( )  by direct calculations. Then, the 

DFE point is globally asymptotically stable since ι(t)→ 0  
as t →∞  irrespective of the initial condition. Finally, the 
local stability of the model around the equilibrium points is 
given by: 

   !δ
ι
(t) = β− (υ+ γ+α)− 2(β−α)ι*( )δι (t)  (8) 

if β > υ+ γ+α  where δ
ι
(t) = ι(t)−ι*  denotes the deviation 

of the proportion of infectious subpopulation with respect to 
such a proportion at the equilibrium point. In this context, 
the DFE point where ι* = 0  is locally exponentially unstable 
since δ

ι
(t) = δ

ι
(t0 ) eλ( t−t0 ) , with λ =β− (υ+ γ+α) > 0 , is 

obtained by direct calculations from (8). The global stability 
of the EE point is analyzed by applying the variable change 
x(t) = ι(t)− β− (υ+ γ+α)( ) (β−α)  to (7). Then, one obtains 

that !x(t) = − β− (υ+ γ+α)( )x(t)− (β−α)x2(t)  and then 

!x(t) ≤ − β− (υ+ γ+α)( )x(t)  since β > υ+ γ+α > α . As a 

consequence, x(t) ≤ x(0) eλt  with λ = − β− (υ+ γ+α)( ) < 0 . 

It implies that x(t)→ 0  exponentially as t →∞  or, 

equivalently, ι(t)→ β− (υ+ γ+α)( ) (β−α)  exponentially as 

t →∞  irrespective of the initial condition. Thus, the EE 
point is globally exponentially stable if β > υ+ γ+α . A 
basic reproduction number defined as R0 =β (υ+ γ+α)  can 
be used to summarize these stability results. In this sense, 
the normalized SISV model in absence of vaccination and 
with v(0) = 0  has a unique equilibrium point, namely the 
DFE point, which is globally exponentially stable if R0 <1 . 
Such a model has only the DFE point which is globally 
asymptotically stable if R0 =1. Finally, the model has both 

equilibrium points if R0 >1  being the DFE point locally 
exponentially unstable while the EE point being globally 
exponentially stable.           *** 

The design of a vaccination strategy is of special interest 
when β > υ+ γ+α  or, equivalently, R0 >1  to avoid the 
evolution of the model towards an EE point. Then, the 
assumption β > υ+ γ+α  is considered in the following. 

A.  Equilibrium Points 
The normalized SISV model (5) under the control law (6) 

asymptotically reaches an equilibrium point given by ι* , v*  
and s* =1−ι* − v*  when !ι(t) = 0  and !v(t) = 0 . Then: 

   
β− (υ+ γ+α)( )ι* − (β−α)ι*2 −βι*v* = 0
−(υ+ pσ)v* +αι*v* + fu* = 0

 (9) 

where u*  denotes the value of the control signal at each 
potential equilibrium point. Such a value can be 

u* = ks + (k
ι
− ks )ι

* + (kv − ks )v
* ≥ 0  or u* = 0  by taking into 

account the control law (6). The first equation of (9) has two 
solutions, namely, ι* = β− (υ+ γ+α)−βv*( ) (β−α)  and 

ι* = 0 . The potential equilibrium points of the model are 
obtained by combining each feasible expression for u*  with 
both solutions for ι*  and they depend on the control gains. In 
this way: 

(a) If ι* = 0  and u* = 0  then the solution v* = 0  is obtained 
from the second equation of (9). Then, a DFE point is 
obtained, namely, the point DFE1 defined by: 

   DFE1:     s* =1   ;   ι* = 0   ;   v* = 0  (10) 

The point DFE1 exists if the control gain ks  is chosen 

such that ks ≤ 0  and then u* = 0 . Moreover, such an 
existence is irrespective of the values chosen for the 
control gains k

ι
 and kv . Such facts are deduced from (6) 

by taking into account that s* =1> εs  at such a point. 

(b) If ι* = 0  and u* = ks + (k
ι
− ks )ι

* + (kv − ks )v
* ≥ 0  then the 

solution v* = fks f (ks − kv ) + υ+ pσ( )  is obtained from 
the second equation of (9). Then, a DFE point is obtained, 
namely, the point DFE2 defined by: 

   

DFE2 :     s* =
υ+ pσ − fkv

f (ks − kv ) + υ+ pσ
   ;   ι* = 0

              v* =
fks

f (ks − kv ) + υ+ pσ

. (11) 

The feasibility of the point DFE2 requires that 
s* ∈ 0, 1⎡⎣ ⎤⎦ , v* ∈ 0, 1⎡⎣ ⎤⎦  and u* ≥ 0 . Such conditions are 

simultaneously satisfied if the gains ks  and kv  are chosen 

so that εs ≤ (υ+ pσ − fkv ) f (ks − kv ) + υ+ pσ( ) ≤1 . This 

implies that the point DFE2 exists if (i) ks > 0  and 

kv ≤ mv1 ks, εs( ) = (υ+ pσ) f −εsks (1−εs ) , (ii) ks < 0  

and kv ≥ mv1 ks, εs( )  or (iii) ks = 0  and kv ≠ (υ+ pσ) f . 
Note that the point DFE2 is the same that DFE1 in the last 
case. Also, note that if ks = 0  and kv = (υ+ pσ) f  then 

u* = (υ+ pσ)v* f  since ι* = 0 . Then, ι* = 0  with any s*  

and v* , such that s* + v* =1 , are solutions for the 
equations system (9). The feasibility of such equilibrium 
points requires that s* ∈ εs , 1⎡⎣ ⎤⎦ , v* ∈ 0, 1−εs

⎡⎣ ⎤⎦  so that 

u* ≥ 0  from (6). Then, a set of DFE points defined by: 

   DFE3:     s* ∈ εs , 1⎡⎣ ⎤⎦   ;   ι
* = 0   ;   v* ∈ 0, 1−εs

⎡⎣ ⎤⎦  
              such that  s* + v* =1

 (12) 
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is obtained with such a choice of ks  and kv  irrespective 

of the value assigned to k
ι
. Note that the point DFE1 is 

included in the set of points DFE3. 

(c) If ι* = β− (υ+ γ+α)−βv*( ) (β−α)  and u* = 0  then two 

solutions for v*  are obtained from the second equation of 
(9), namely, v* = β(α− υ)−α(γ+α)− pσ(β−α)( ) αβ  

and v* = 0 . Then, the model has two potential EE points, 
namely, the point EE1 defined as: 

   EE1:     s* =
υ+ γ
β−α

   ;   ι* =
β− (υ+ γ+α)

β−α
   ;   v* = 0  (13) 

and the point EE2 given by: 

   
EE2 :    s* =

γ+α− pσ
β

   ;   ι* =
υ+ pσ
α

           v* =1−βυ+α(γ+α) + pσ(β−α)
αβ

 (14) 

The feasibility of such points requires that s* ∈ 0, 1⎡⎣ ⎤⎦ , 

ι* ∈ 0, 1⎡⎣ ⎤⎦ , v* ∈ 0, 1⎡⎣ ⎤⎦  and u* = 0  at them. In this context, 
the existence of the point EE1 requires that 
s* = (υ+ γ) (β−α) < εs  or, otherwise, that the controller 

gains ks  and k
ι

 are chosen such that 

ks (υ+ γ) + k
ι
β− (υ+ γ+α)( ) ≤ 0  so that u* = 0  at such a 

point by taking into account (6). Note that s* ∈ 0, 1⎡⎣ ⎤⎦ , 

ι* ∈ 0, 1⎡⎣ ⎤⎦  and v* ∈ 0, 1⎡⎣ ⎤⎦  for the point EE1 provided that 

β > υ+ γ+α . 

The existence of the point EE2 requires that: 

   
α ≥ υ   ;   β ≥ α(γ+α) (α− υ)
p ≤ p = α σ − (αγ+βυ) σ(β−α)( )  (15) 

so that: 

   

s* =
γ+α− pσ

β
≥
γ+α− pσ

β
=
υ+ γ
β−α

> 0

ι* =
υ+ pσ
α

≤
υ+ pσ
α

=
β− (υ+ γ+α)

β−α
<1

v* =1−βυ+α(γ+α) + pσ(β−α)
αβ

   ≥1−βυ+α(γ+α) + pσ(β−α)
αβ

= 0

 (16) 

In this way, s* ∈ 0, 1( ) , ι* ∈ 0, 1( )  and v* ∈ 0, 1⎡⎣ )  at 
the point EE2 since the model parameters are defined 
positive and provided that β > υ+ γ+α . Furthermore, the 
existence of the point EE2 requires that either 

εs >
γ+α− pσ

β
 so that s* ∈ 0, εs

⎡⎣ )  and u* = 0  at such a 

point by taking into account (6) or, otherwise, 

εs ≤
γ+α− pσ

β
 together with the controller gains ks , k

ι
 

and kv  chosen such that: 

   
ksα(γ+α− pσ) + k

ι
β(υ+ pσ) +

kv β(α− υ)−α(γ+α)− pσ(β−α)( ) ≤ 0  (17) 

so that s* ∈ εs , 1⎡⎣ ⎤⎦  and u* = 0  by taking into account (6). 

(d) If ι* = β− (υ+ γ+α)−βv*( ) (β−α)  or, equivalently, 

v* = β− (υ+ γ+α)− (β−α)ι*( ) β  together with 

u* = ks + (k
ι
− ks )ι

* + (kv − ks )v
* ≥ 0  then two potential 

solutions for ι*  are obtained from the second equation of 
(9), namely, the solutions of 
ι*2 + g1 ks, kι , kv( )ι* + g0 ks, kv( ) = 0  with the coefficients 

g0 ks, kv( )  and g1 ks, kι , kv( ) , depending on the controller 
gains, defined as: 

  
g0 =

(υ+ pσ − fkv ) β− (υ+ γ+α)( )− f (υ+ γ+α)ks

α(β−α)

g1 =
f α(ks − kv ) +β(kv − k

ι
)( )−βυ+α(2υ+ γ+α−β)

α(β−α)
−

pσ
α

. (18) 

Then, the model has two potential EE points, namely, 
the points EE3 and EE4 defined as: 

   
EE3:     s* = s3 =1−ι3 − v3    ;   ι* = ι3    ;   v* = v3

EE4 :    s* = s4 =1−ι4 − v4    ;   ι* = ι4    ;   v* = v4

 (19) 

where vj = (β−α)(1−ι j )− (υ+ γ)( ) β  and 

sj = α(1−ι j ) + υ+ γ( ) β  for j∈ 3, 4{ } . The feasibility of 

the point EE3, respectively EE4, requires that ι j ∈ 0, 1⎡⎣ ⎤⎦ , 

vj ∈ 0, 1⎡⎣ ⎤⎦  and sj ∈ εs , 1⎡⎣ ⎤⎦  for j = 3 , respectively j = 4 , 

for a prescribed εs ∈ 0, 1( )  so that u* = u3 ≥ 0 , 

respectively u* = u4 ≥ 0 . The four conditions for the 
feasibility of the point EE3, respectively EE4, are jointly 
fulfilled if ι j ∈ 0, min q1, q2, q3{ }⎡

⎣
⎤
⎦  where: 

   

q1 =
β− (υ+ γ+α)

β−α
   ;   q2 =

υ+ γ+α−εsβ

α

q3 =
ks (υ+ γ+α) + kv β− (υ+ γ+α)( )

β(kv − k
ι
)−α(kv − ks )

     

 (20) 

for j = 3 , respectively j = 4 , as it can be deduced by 
direct calculations and taking into account (6). Note that 
if the free-design control parameter εs  is chosen such that 

εs > (υ+ γ+α) β  then q2 < 0  and there is not solution for 
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ι j  satisfying simultaneously the four conditions ι j ∈ 0, 1⎡⎣ ⎤⎦

, vj ∈ 0, 1⎡⎣ ⎤⎦ , sj ∈ εs , 1⎡⎣ ⎤⎦  and u* = uj ≥ 0 . Then, the points 
EE3 and EE4 do not exist but the normalized model has 
at least one EE point, namely, the point EE2, in such a 
case. 

Theorem 2 (conditions for inexistence of EE points in 
the normalized SISV model). The normalized SISV model 
(5), under the control law (6), does not have EE points if the 
control parameter εs  satisfies the condition: 

(c1) 0 < εs ≤ (υ+ γ) (β−α)  

and the control gains ks , k
ι
 and kv  simultaneously satisfy: 

(c2) ks (υ+ γ) + k
ι
β− (υ+ γ+α)( ) > 0 , 

(c3) 
ksα(γ+α− pσ) + k

ι
β(υ+ pσ) +

kv β(α− υ)−α(γ+α)− pσ(β−α)( ) > 0  if the model 

parameters fulfil the conditions in (15) and 
(c4) k

ι
≥ mi1 kv( )  and ms1 kv( ) ≤ ks ≤ ms2 k

ι
, kv( )  where: 

   

mi1(kv ) =
υ+ γ

υ+ γ+α
kv +

α
f
−

(υ+ γ)(υ+ pσ)
f (υ+ γ+α)

             +
α υ2 −α2 + γ(2υ+ γ)( )

fβ(υ+ γ+α)

ms1(kv ) =
β− (υ+ γ+α)
f (υ+ γ+α)

(υ+ pσ − kv )

ms2 k
ι
, kv( ) =

β
α

k
ι
−
β−α
α

kv

                +
β(υ−α) +α(α− 2υ− γ) + pσ(β−α)

fα

. (21) 

As a consequence, only the points DFE1, DFE2 and 
DFE3 are feasible under such conditions. 

Proof. The proportion of susceptible subpopulation at the 
point EE1 fulfils that s* ≥ εs  under the condition (c1). Then, 
the normalized control signal at such a point satisfies that 
u* > 0  under the condition (c2) by taking into account (6). 
This fact contradicts the requirement for the existence of the 
point EE1. The existence of the point EE2 requires that the 
model parameters satisfy all the conditions in (15). Note that 
if, at least, one of such conditions is not fulfilled then 
ι* ∉ 0, 1⎡⎣ ⎤⎦  or v* ∉ 0, 1⎡⎣ ⎤⎦  at the point EE2 what implies the 
inexistence of such a point. In this context, if 
β < α(γ+α) (α− υ)  then p < 0  so that the condition p ≤ p  
is not fulfilled since the parameter p  is non-negative by 

definition. Then, p > p  and one obtains that v* < 0  at the 
point EE2 by direct calculations from (14). This fact implies 
the non-existence of the point EE2. Moreover, if α < υ  then 
ι* >1 at the point EE2 from (14) which is not compatible 
with the existence of such a point. On the other hand, if the 
model parameters fulfil the conditions in (15) then: 

   s* =
γ+α− pσ

β
≥
γ+α− pσ

β
=
υ+ γ
β−α

≥ εs  (22) 

by taking into account the condition (c1). This fact together 
with the condition (c3) implies that u* > 0  at the point EE2 
by taking into account (6). This fact contradicts the 
requirement for the existence of such a point. Finally, the 
points EE3 and EE4 do not exist if the condition (c4) is 
satisfied. Concretely, such a condition implies that ι j ∉ 0, 1⎡⎣ ⎤⎦  

for j∈ 3, 4{ }  as it is proved in the following way. The 
proportion of infectious subpopulation at the potential 
equilibrium points EE3 and EE4 are the solutions of the 
equation ι j

2 + g1 ks, kι , kv( )ι j + g0 ks, kv( ) = 0 . Note that the 

function F(ι j ) = ι j
2 + g1 ks, kι , kv( )ι j + g0 ks, kv( ) , for any given 

values of ks , k
ι
 and  kv , corresponds to a parabola which is 

opening to the top and its intersecting points with the 
abscissas axis are the solutions of F(ι j ) = 0 . In this context, 
direct calculations prove that such intersecting points are not 
within the domain 0, 1⎡⎣ ⎤⎦  under the condition (c4). First, note 

that F(0) = g0 ks, kv( )  and ι j,min = −g1 ks, kv , k
ι( ) 2  where 

ι j,min  is the value of ι j  at which the parabola F(ι j )  reaches 
its minimum value. Under the condition (c4) one obtains that: 

F(0) ≤
(υ+ pσ − kv ) β− (υ+ γ+α)( )− f (υ+ γ+α)ms1

α(β−α)
= 0

ι j,min ≥
f βk

ι
− (β−α)kv( ) +βυ−α(2υ+ γ+α−β)− fαms2

2α(β−α)
+

pσ
2α

=1

 

where the condition k
ι
≥ mi1 kv( )  is necessary to guarantee 

ms1 kv( ) ≤ ms2 k
ι
, kv( )  and then the existence of values for ks  

such that ms1 kv( ) ≤ ks ≤ ms2 k
ι
, kv( )  be able, as one can 

deduce by direct calculations. The result ι j,min ≥1  implies 

that F(ι j )  is monotonically decreasing ∀ι j ∈ 0, 1⎡⎣ ) . Such a 

fact, together with F(0) ≤ 0 , implies that F(ι j ) < 0  

∀ι j ∈ 0, 1( ⎤⎦  since the parabola F(ι j )  is opening to the top. 

Then, F(ι j ) = 0  cannot have solutions within ι j ∈ 0, 1( ⎤⎦  
under such a condition (c4) implying the non-existence of 
the points EE3 and EE4. In summary, there are not feasible 
solutions for EE points under the conditions established in 
the theorem and the result is proved.         *** 

B. Stability analysis of the DFE points 
The following theorem analyses the local stability of the 

DFE points of the normalized SISV model (5) under the 
control law (6) depending on the assigned values for the 
control parameters. 

Theorem 3 (local stability/instability of the DFE 
points of the normalized SISV model). 

(i) The point DFE1 is locally exponentially unstable 
whenever it exists, i.e. when ks ≤ 0 , if β > υ+ γ+α . 
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(ii) The point DFE2 is locally exponentially stable if ks > 0 , 

εs < (υ+ γ+α) β  and mv2 ks( ) < kv ≤ mv1 ks, εs( )  where 

mv2 ks( ) = (υ+ pσ) f − (υ+ γ+α)ks β− (υ+ γ+α)( ) . The 
point DFE2 is locally exponentially unstable if either (a) 
ks > 0 , kv < mv2 ks( )  and kv ≤ mv1 ks, εs( )  or (b) ks < 0  

and kv ≥ mv1 ks, εs( )  or (c) ks = 0  and kv ≠ (υ+ pσ) f . 

(iii) The point DFE3 is locally exponentially unstable 
whenever it exists, i.e. when ks = 0  and kv = (υ+ pσ) f , 

if v* <1− (υ+ γ+α) β  with v* ∈ 0, 1−εs
⎡⎣ ⎤⎦ . The local 

stability of this point is critical if v* ≥1− (υ+ γ+α) β  

with εs ≤ (υ+ γ+α) β  so that v* ∈ 0, 1−εs
⎡⎣ ⎤⎦ . 

Proof. It is omitted by space reasons.         *** 

Remark 2. Assume that the free-design parameter εs  

and the control gains ks , k
ι
 and kv  simultaneously satisfy 

the conditions of Theorem 2 so that the normalized SISV 
model has not EE points. Moreover, if ks > 0  then the 
normalized SISV model only has a DFE point, namely, the 
point DFE2. Furthermore, if εs < (υ+ γ+α) β  and 

mv2 ks( ) < kv ≤ mv1 ks, εs( )  then such a DFE point is locally 
exponentially stable in view of Theorem 3. A relevant result 
is that the point DFE2 is globally stable under such 
conditions for the controller parameters from the following 
facts: (i) the variables of the normalized SISV epidemic 
model are bounded, since s, ι, v ∈ 0, 1⎡⎣ ⎤⎦  from the positivity 
of the original SISV model as Theorem 1 establishes, (ii) the 
point DFE2 is the unique equilibrium point of the 
normalized SISV epidemic model and (iii) such a point is 
locally exponentially stable.          *** 

IV. SIMULATION RESULTS 

A. SISV Epidemic Model without Vaccination 
The model (1) with a control signal U(t) = 0  ∀t ≥ 0  and 

an initial condition given by S(0) = 990 , I(0) =10  and 
V(0) = 0  is considered. In this way, the vaccination 
subpopulation is V(t) = 0  ∀t ≥ 0  so that the SISV model is 
equivalent to a simple SIS model. The values for the 
parameters υ = 2.6301×10−5  d−1 , µ = 2.4658×10−5  d−1 , 

β =1.66 d−1 , γ = 0.4545 d−1  and α = 0.001 d−1 , where d−1  

means days−1 , are used to obtain the time evolution of the 
subpopulations and that of the whole population under the 
influence of the infectious disease. Such values are based on 
the transmission of influenza in a developed country [1]. The 
proportions of susceptible and infectious subpopulations, i.e. 
the normalized subpopulations, can be obtained by using (4). 
Also, such subpopulations could be directly obtained by 
using the normalized SISV model (5) with the 
aforementioned values for the parameters and u(t) = 0  

∀t ≥ 0 . The basic reproduction number of this normalized 
model results R0 = 3.6438  in such a situation so that its 
DFE point is globally unstable while its EE point is globally 
exponentially stable as Remark 1 points out. Fig. 1 shows 
the time evolution of the susceptible, infectious and whole 
populations. One can see that the whole population tends to 
the extinction because of the dominant effect of the mortality 
associated to the disease. As a consequence, the application 
of a vaccination is indispensable in order to eliminate the 
infection irrespective of the initial conditions or, at least, 
diminish its effect within the host population and, in this 
way, achieve the persistence of the host population. 

 
Figure 1. Susceptible, infectious and whole populations in absence of 

vaccination. 

B. SISV Epidemic Model with Vaccination 
The model (1), with the same values for the parameters 

and the same initial condition than those considered 
previously, is used under the application of a vaccination 
strategy based on a feedback of the model variables as that 
given in (3). Several situations are analysed depending on as 
the efficiency of the applied vaccines as the proportion of 
vaccinated population acquiring the immunity for life after 
receiving a vaccine. In this sense, three values for the 
parameters f  and p  are considered and 9 different 
examples are analysed by combining such values. The use of 
the vaccination strategy, with an appropriate choice of the 
free-design control parameters εs , ks , k

ι
 and kv  is crucial 

to eradicate the disease while guaranteeing the persistence of 
the host population in all the examples. In this way, a 
suitable choice of the control parameters is: εs = 0.01 , 

kv = −13υ = −3.4192×10−4  and ki = 3000υ = 0.0789  for 

all the examples while the value for ks  is chosen according 
to the assigned values for the parameters f  and p  in each 
example so that the conditions (c2), (c3) and (c4) of 
Theorem 2, which depend on ks , f  and p , are satisfied. In 
this way, all the conditions of Theorem 2 are fulfilled in all 
the examples and then the normalized SISV model (5) under 
the control law (6) only has a DFE point, namely, the point 
DFE2 defined in (11). Moreover, the conditions of Theorem 
3 are also satisfied with such choices and then the point 
DFE2 is globally stable from the facts that it is locally 
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exponentially stable while the normalized subpopulations 
being bounded, see Remark 2. Other alternative ways can be 
used to assign the values of the control gains satisfying the 
conditions of Theorems 2 and 3. The used one is interesting 
from the fact that the smaller the gain ks  is, the smaller the 
cost in vaccines is when the proportion of susceptible 
individuals is large within the host population, as it occurs in 
the first days in all the examples. For such a purpose, the 
gain ks  is fixed to the minimum possible value for satisfying 
the condition of those theorems after assigning the other 
control parameters for each example. Concretely, 9 different 
examples are considered. 

The efficacy of the vaccines is of 100%, i.e. f =1 , in the 
first three ones with a different value for p  in each one, 
namely p = 0 , p = 0.5  and p =1 . Such a parameter points 
out the proportion of vaccinated population acquiring the 
immunity for life. The p = 0  means that all the vaccinated 
individuals acquire the immunity for life after receiving a 
vaccine, p = 0.5  implies that one half of them acquires the 
immunity for life while the other half acquires a temporal 
immunity and they pass to the susceptible category after 
losing the immunity and p =1  means that all of them 
acquire a temporal immunity. Fig. 2 displays the time 
evolution of the subpopulations under the proposed 
vaccination for these three examples. The value for the 
control gain ks  is ks = 38υ = 9.9945×10−4  when p = 0 , 

ks =1713υ = 0.0451  when p = 0.5  and 

ks = 3388υ = 0.0891  when p =1 . Fig. 3 shows the time 
evolution of the applied vaccines for these three examples. 

The efficacy of the vaccines is of 75%, i.e. f = 0.75 , in 
the second three examples with a different value for p  in 
each one, namely p = 0 , p = 0.5  and p =1 . Fig. 4 displays 
the time evolution of the subpopulations under the proposed 
vaccination for these three examples. The value for the 
control gain ks  is ks = 50υ = 0.0013  when p = 0 , 

ks = 2284υ = 0.0601  when p = 0.5  and 

ks = 4517υ = 0.1188  when p =1 . Fig. 5 shows the time 
evolution of the applied vaccines for these three examples. 

The efficacy of the vaccines is of 50%, i.e. f = 0.5 , in 
the last three examples with a different value for p  in each 
one, namely p = 0 , p = 0.5  and p =1 . Fig. 6 displays the 
time evolution of the subpopulations under the proposed 
vaccination for these three examples. The value for the 
control gain ks  is ks = 75υ = 0.002  when p = 0 , 

ks = 3425υ = 0.0901  when p = 0.5  and 

ks = 6776υ = 0.1782  when p =1 . Fig. 7 shows the time 
evolution of the applied vaccines for these three examples. 

 
Figure 2. Susceptible, infectious and vaccinated populations with the 
proposed vaccination strategy if the vaccines efficacy is of 100% with 

different proportions of vaccinated acquiring permanent immunity. 

 
Figure 3. Applied vaccines with the proposed vaccination strategy if the 

vaccines efficacy is of 100% with different proportions of vaccinated 
acquiring permanent immunity. 

 
Figure 4. Susceptible, infectious and vaccinated populations with the 
proposed vaccination strategy if the vaccines efficacy is of 75% with 
different proportions of vaccinated acquiring permanent immunity. 
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Figure 5. Applied vaccines with the proposed vaccination strategy if the 

vaccines efficacy is of 75% with different proportions of vaccinated 
acquiring permanent immunity. 

 
Figure 6. Susceptible, infectious and vaccinated populations with the 
proposed vaccination strategy if the vaccines efficacy is of 50% with 
different proportions of vaccinated acquiring permanent immunity. 

 
Figure 7. Applied vaccines with the proposed vaccination strategy if the 

vaccines efficacy is of 50% with different proportions of vaccinated 
acquiring permanent immunity. 

The vaccination campaign has a finite period if all the 
vaccinated individuals acquire the immunity for life after 
receiving a vaccine. Obviously, the duration of the 
vaccination campaign increases if the efficacy of the 
vaccines decreases, as one can deduce from Figs. 3, 5 and 7. 
On the other hand, the vaccination campaign has to be kept 
active for all time if the immunity for life is not acquire for 

all the vaccinated individuals. The evolution of the applied 
vaccines reaches a constant value once the system converges 
to the point DFE2 in such cases. Such a value is the number 
of vaccines to be applied each day in order to maintain the 
disease propagation under control. Furthermore, the number 
of vaccines increases if p increases, i.e. the proportion of 
vaccinated acquiring the immunity for life decreases, and/or 
f decreases, i.e. the efficacy of the vaccination decreases, as 
one can see in Figs. 3, 5 and 7. 

The number of infectious individuals reaches a 
maximum value and then it decreases towards zero. Such a 
peak value decreases if p and/or f increase. In this sense, an 
improvement in the efficacy of the vaccination imply a 
decreasing in the number of vaccines as well as in the peak 
of the infectious subpopulations, as one can expect. On the 
other hand, a larger proportion of vaccinates acquiring the 
immunity for life implies a smaller cost in vaccines with a 
larger peak in the evolution of the infectious subpopulation, 
as one can deduce from Figs. 2 to 7. 

V. CONCLUSION 
A vaccination strategy based on the state feedback 

control technique to fight against the propagation of an 
infectious disease is proposed in a SISV epidemic model. 
The main result points out that an appropriate adjustment of 
the control parameters can avoid the existence of endemic 
solutions. Such a fact is key to guarantee the eradication of 
the infectious disease in different situations depending on 
the efficacy of the vaccines as well as the proportion of 
individuals acquiring the immunity for life after being 
vaccinated. Future researches will analyze the dynamics of 
the controlled epidemic model subject to uncertainty in the 
measures needed to implement the control law. 
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