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Abstract— Multi-robot systems possess the potential of be-
coming the next generation of robots in the mining industry
due to their robustness and scalability. However, they present
challenges for the system to efficiently allocate tasks to each
robot and allow them to navigate toward their targets safely.
This paper introduces a hybrid approach method for a multi-
robot system, alongside with a case study in drilling and blasting
automation. A Centralized Control Unit delegates tasks and
information among the robots in the system, each equipped
with a decentralized motion planner that supports cooperative
inter-robot collision avoidance. The proposed system inherits
the advantage of a centralized multi-robot system in providing
a time-wise optimal solution; while also possessing the com-
putational benefit and scalability of a decentralized system.
Simulations were conducted to validate the proposed method
and discuss insights into the efficacy and performance of the
proposed method.

I. INTRODUCTION

Recently, there has been an increase in attention towards
applying robotics in the mining industry, with its perceived
benefits to provide cost-effective solutions in environmental
monitoring, efficient methods to gather information at mine
sites, and improving safety for workers. These have resulted
in implementations ranging from robots for exploration to
human assistance, such as “Julius” - a mine site assistant
robot for data collection, or “Alexander” - a mining tunnel
exploration robot.

Most robotic applications are designed as a single robot
system which suffers from a single point of failure. Multi-
robot systems, on the other hand, are more robust and
reliable against such environmental changes, presenting a
potential approach for future robotic applications in mine
sites. Furthermore, multi-robot systems can minimize human
presence in mine sites, by promoting inter-robot coordina-
tion or human-robot interaction, with the human operating
remotely.

This paper presents a hybrid design approach for a ho-
mogeneous multi-robot system, with a Centralized Control
Unit (CCU) to both allocate tasks to robot agents and
monitor their behavior. The individual robots, through the
decentralized planners, are able to coordinate and interact
with each other without explicit inter-robot communication.
The proposed design inherits the advantages from both a
centralized and decentralized multi-robot system, in deliv-
ering a system that has the ability to produce a time-wise
optimal solution, while also processes the scalability and
computational benefits for all components of the system. This
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Fig. 1: Example of a drilling and blasting operation with
multiple machines.

system can be utilized for for different robotics applications,
and for this paper, a drilling and blasting application in
mining industry is used as an example case study.

Section II reviews other works related to multi-robot sys-
tems, including centralized and decentralized system design,
task allocation, and motion planning. Section III provides an
overview of the proposed hybrid multi-robot system, while
Section IV elaborates on the simulation setup to validate the
system via a case study on drilling and blasting operations
performed by a team of drilling machines. Section V outlines
the results from the simulations while Section VI discusses
some insights into the proposed system and its efficacy.
Section VII concludes the paper with brief discussion into
future work to physically validate the proposed system.

II. REVIEW OF RELATED WORKS
A. Multi-Robot Systems in Mining Industry

Multi-robot Systems is a field of research that started in
the early 1980s [1], motivated by the desire to improve the
efficiency of existing robotic systems and achieve complex
tasks that cannot by accomplished by a single robot. They are
robust to changes in the environment due to their redundancy
in population [1]. A multi-robot system can consist of either
multiple manipulators [2], or multiple mobile robots [3], [4],
or both. The mining industry has welcomed the integration
of multi-robot systems to improve the efficiency and safety
of existing processes [5], [6].

Typical multi-robot system architecture design can be
categorized into two main approaches: centralized and de-
centralized systems [7]. A centralized multi-robot system
consists of a Centralized Control Unit (CCU), which governs
the behavior of the whole system and dictates the interaction
between the robot agents [8]. Decentralized approaches focus
on the behavior of the individual robots, which are based on
the robot’s observation of the environment and its state [9],
[10]. Hybrid approaches exist, which combine both central-
ized and decentralized properties into a unique architecture;
however limited efforts have been conducted in this area.



B. Multi-Robot Task Allocation

Multi-robot task allocation (MRTA) involves decomposing
and distributing objectives to a set of robots to achieve an
overall system goal [11]. The assigned responsibility is then
carried out by the robot team either through a coordinated or
isolated approach. MRTA can be categorized into two sub-
classes based on the type of approach taken: market-based
and optimization-based.

Market-based approaches are defined as mechanisms that
use the robot’s utilities based on a given set of tasks and
constraints, and produce a solution that maximizes the overall
system utility to satisfy a global team objective [11]. Most
market-based task allocation systems utilize the properties
of an auction in their algorithms [11], with a majority using
a decentralized model in their algorithm [12]. A variant
model where robots take turns in playing the role of both the
producer (demanding the tasks) and the consumer (executing
the tasks) was proposed by [13].

Optimization-based approaches solve the problem of task
assignment using algorithms that search for an optimal solu-
tion while satisfying given objectives. Mixed integer linear
programming [14], [15] allocates tasks to a team of robots
to solve a particular objective. Another popular approach
is genetic algorithms that have the capability to generate
robust and high-quality solutions to optimization problems.
The approach was applied in [16] to solve a task allocation
problem using robot utility values, and [17] for the multi-
robot coalition problem.

C. Multi-Robot Motion Planning

Mobile robot motion planning finds a collision-free path
for the robot to move from its initial position to a target
location. Motion planning can be categorized into offline and
online approaches. Offline planning methods are generally
applied in scenarios where the environment is known and
static. Two popular examples are Probabilistic Roadmaps
(PRM) [18] and Rapidly-Exploring Random Trees (RRT)
[19], [20]. Online planning approaches are prevalent in
systems traversing environments with limited information or
dynamic environments. Notable works include Vector-field
Histograms (VFH) [21] and Dynamic Window Approach
(DWA) [22], which are used when an environment is ob-
served partially. If there are moving objects, a variation of
RRT for dynamic environments [23], and Velocity Obstacles
(VO) [24] can be used for motion planning.

Multi-robot motion planning is similar to single robot
motion planning but needs to ensure an inter-robot collision-
free path for each robot in the system. Unlike single robot
motion planning, multi-robot motion planning is split into
coupled and decoupled planning. Coupled motion planners
take into account the motions of all robots to resolve potential
collisions [25], [26]. It also guarantees an optimal path for
all agents, using offline motion planners. However, they are
impractical for systems with a large robot population.

Decoupled motion planners, on the other hand, plan the
path for a single robot using online motion planners. Unlike
coupled planners, decoupled planners do not guarantee an
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Fig. 2: RVO’s derivative motion planning methods: (a) Colli-
sion Cone models potential collisions between robot, A and a
static object, B by formulating a set of velocities (the colored
section) that result in a collision; (b) Velocity Obstacle builds
on Collision Cone to avoid collisions with a moving object,
B by translating the cone using B’s velocity vector.

optimal path for the robot. However, they are more robust
to environmental and population size changes. Even though
DWA or VO motion planning for a single robot can be
applied for multi-robot systems as well, they lack the ele-
ment of coordination between robots, which may result in
scenarios where the robots fail to agree on certain actions
for collision avoidance. Subsequently, Reciprocal Velocity
Obstacle (RVO) [27] introduces coordination between robots,
with each robot assuming shared responsibility in avoiding
inter-robot collisions.

III. METHODOLOGY

A. Proposed System Overview

The proposed multi-robot system leverages features of
both the centralized and decentralized approach in designing
a hybrid system. A CCU governs the behaviors of the
robots, while also handling the allocation and distribution
of information and data between them, while the individual
robots use a local motion planner that supports inter-robot
collision avoidance.

The CCU assigns tasks by evaluating the estimated time
required for each robot to travel to the target location and
execute the task. Once a target is received, each robot
plans it own motion to move toward their assigned target
while avoiding the other robots. During this process, the
robots communicate with the centralized unit by sending
their current state and task. While in motion, a decentralized
algorithm establishes a collision perimeter around each robot.
If a robot enters the collision perimeter (as communicated by
the CCU), alternative motions are planned online.

Due to the large computational demand associated with
creating a motion plan for large populations online in a
centralized manner, a decentralized approach is utilized to
handle online multi-robot motion planning. This distributes
the computational load equally among the robots, reducing
computational stress on the CCU and thus, supports a scal-
able robot population.



B. Centralized Control Unit

The Centralized Control Unit utilizes a centralized market-
based task allocation system, which assigns tasks based on
the individual robot’s utility value. This ensures that the
global objective of time to complete all tasks is optimized,
whilst also allowing the tasks to be allocated dynamically
to the group of robots. If any robot or group of robots
finish their respective tasks, they can request new tasks to
be assigned from the CCU.

The CCU collects local information from each robot such
as its current state, current task assigned, and current task
execution state. This information is redistributed to other
robots in the system for inter-robot collision avoidance.

Unlike some other market-based approaches, the proposed
CCU uses the Hungarian Algorithm [28] to assign tasks.
The algorithm optimizes task allocation by minimizing the
total task cost, with the CCU allocating tasks to the robots
based on their utility vectors. Furthermore, since the CCU
has all relevant information from the robots, the Hungarian
algorithm only has to run once using the utility matrix U,
decreasing computations for the CCU.

C. Matrix and Vector Formulation

1) Task Matrix: The task matrix is held by the CCU and is
constructed from the properties and description of the given
tasks. A task is defined by a location and various operation
parameters. These operation parameters are defined by the
CCU and are based on the chosen task, which vary in length
and complexity. The task contents are analytically separated
and described using numbers, which are placed in a particular
order that is agreed upon by both the robots and the CCU.
For a target pose, F; and operation parameters, O;, the task
matrix for task ¢ is defined as:

P O
T=1|: . (1)
P O,

2) Utility Matrix: When the task matrix is received by
the robots, each robot estimates how well it will perform
each of the given tasks using local information. A utility
value is determined using the estimated time to reach the
target location and time to execute the assigned task. Other
objectives such as the total energy consumption, or the ability
of a robot to perform that task can also be used. The
utility value can be used to prevent impossible allocations
by setting the value to oo, such as when a task is beyond the
workspace of a robot, or when a robot is not equipped with
the appropriate tool to perform a particular task.

As long as the operation parameters of the task matches
the expected format, the robot will derive a utility vector
Ui, = [u1,us,...,u,] for n number of tasks. The utility
vectors of m robots are collected by the CCU to form the

Result: pose,opor == Prask

Initialization();

while POSCrobot != Diask dO

CalcVelocityToTarget();

states = empty();

rvos = empty();

if IsLowPriority() then

for i=1:n-1 other robots do

if InCollisionPerimeter(pose;) then
state; = QueryRobotState(i);
AddToStates(state;);
rvos; = CalcRVO(state;);
AddToRVOs(rvos;);

end

end

end

if rvos /= empty() then
CalculateNew Velocity(rvos);

end

SendRobotState CCU();

end
Algorithm 1: The decentralized local motion planner
calculating a velocity to avoid inter-robot collisions.

utility matrix as follows:
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3) Assignment Vector: The utility matrix is then used
by the Hungarian algorithm [28] to produce an assignment
vector A with n elements. Each element a; represents the
assignment of task :

A:[alaaaa"'van}v (3)

where the value of a; is the robot ID which is assigned the
task, e.g. a2 = 5 indicates assigning task 2 to robot 5.

D. Decentralized Robot Motion Planner

The proposed decentralized local planner utilizes the ad-
vantages of a distributed multi-robot system and eliminates
the responsibility of the CCU as a motion planning unit. This
approach increases the robustness of the system against any
environmental or robot population change, while reducing
computational demand for the CCU.

The local motion planner determines the motion for the
robots to move toward the target poses, while ensuring
inter-robot collision avoidance through the integration of
RVO. For each robot, a user-defined collision perimeter
is established that triggers the execution of the collision
avoidance algorithm if another robot crosses it. The local
planner also introduces a priority system for all robots within
a collision perimeter, which is achieved using a weighted
version of RVO. A robot is considered to be at the highest
priority level if:



« It has the shortest distance to the target pose; and
o That distance is shorter than the distance to the closest
robot within the collision perimeter.

Other robots within the collision perimeter are considered
to be at the same lower priority. This allows the prioritized
robot to reach its target without performing any collision
avoidance, since the other robots would take all responsibility
in avoiding that robot. The RVO for the priority robot
becomes the VO in this scenario, since it is treated as a
moving object, not a robot. An overview of the local motion
planner algorithm is detailed in Algorithm 1.

E. Reciprocal Velocity Obstacle

Reciprocal Velocity Obstacle (RVO) is a decoupled, local
reactive collision avoidance algorithm that supports coordi-
nation between robots by embedding shared responsibility to
avoid each other. RVO was developed from Velocity Obstacle
(VO), which models a potential collision between a robot
and a moving object. A drawback of VO is that it does
not take into account the autonomy of the obstacle, such
as two robots using identical decentralized motion planners
in the same multi-robot system. RVO, instead, solves this
particular problem of VO by introducing a responsibility
sharing system which assumes that each robot takes some
responsibility in avoiding each other.

Fig. 3: Reciprocal Velocity Obstacle translates the collision
cone by the average velocity vector between A and B.
This process is conducted simultaneously by both robots,
assuming a shared responsibility to avoid each other.

RVO has a property that can be used to enhance the level
of coordination between each robot member in the system.
The position of an RVO cone is defined as 0.5(v4 + vp)
or (1 — af)va + apvp, with afy = 0.5 as the weighted
parameter and v4,vp representing the current velocity of
A and B, respectively. Consequently, altering a3 will shift
the RVO by the sum of the weighted velocities of both A
and B. With as = 1, the position of the RVO becomes
0+ vp, which is equivalent to the VO of A and B. VO only
assumes the responsibility of avoiding inter-robot collision
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Fig. 4: An initialization of a simulation run with a group
robots perform drilling at a set of randomly generated targets.

held by A, meaning that it takes B no effort to avoid inter-
robot collision with A. This property is utilized to create the
mentioned weighted version of RVO, which is integrated into
the decentralized motion planner to leverage a higher level
of coordination in the proposed multi-robot system.

IV. SIMULATION SETUP

The simulation of the proposed system is set up in
Mathworks MATLAB, using the internal Mobile Robot Sim-
ulation Toolbox and Peter Corke’s Robotic Toolbox [29]
for visualization and simulation purposes. The simulations
present a mining case study focusing on drilling and blasting
operations, where a known number of drilling points is given
initially at each target pose.

For the simulations, the operation parameters for the task
matrix include the number of holes to drill w, the drilling
positions D = [z1,41,- .-, Tm,Ym), and depth of the holes
Z =|z1,...,2m). Any elements in the operation parameters
which are not filled due to variations are set to 0. The
simulation is setup in an open space scenario where the
task target poses and the initial robot poses are initialized
randomly. The minimum distance between each pose is
constrained to be > 4 x radius of the robot (R;) to prevent an
unsolvable initialization, such as when robots are randomly
spawned to be in a mutually exclusive race condition.

A simulation run is treated as a failed run when, given
k number of simulation time steps, one of the following
occurs: (a) the multi-robot system fails to complete all
tasks, including reaching the targets and executing drilling;
or (b) any robot collides with another robot. For all tests,
the number of simulation steps is set as & = 20000. The
simulations are conducted to explore the following factors:

o Given a fixed map size, how does the robot population

present affect the performance of the overall system (in
terms of success rate and total time taken);

o How does the map size affect the performance of the

overall system (in terms of success rate); and

o Given a failed simulation run, what is the most likely

cause of failure (whether through an unsolvable scenario
or through inter-robot collision).
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Fig. 5: The results of the simulations showing the overall success rate and the percentage of failed simulation runs caused
by robot collisions for: (a) Scenario 1 under the effect of map size; (b) Scenario 2 under the effect of robot population; and
(c) the total simulation steps k taken to complete the simulations for Scenario 3.

Three main scenarios were simulated. In all simulations,
the number of drilling points for each target m = 3, the
radius of the robot R; = 0.25m, and the distance between
initialized poses were set to 5 x R;. The numbers used within
the context of this paper are for simulation purposes only.
In a real world scenario, the values such as the radius of the
robots or map size can be scaled up or changed accordingly.

In the first scenario, an equal number of robots and tasks
are initialized at random in a fixed map size of 8mx8m. The
simulations gradually increase the number of robots r and
tasks n from 6 — 18. In total, 700 simulation runs were
conducted with 100 runs for each set of robots and tasks.

In the second scenario, the size of the map is varied while
the robots and tasks are initialized using the same parameters
as in the first scenario. A total of 1050 runs were conducted
with 350 runs for each map size.

In the third scenario, the map size is fixed at 10mx10m
with a fixed number of tasks n = 20. The number of robots
is varied from 1 — 20. For this scenario, 300 runs were
conducted with 15 runs for each number of robots.

V. RESULTS

From Figure 5(a), it is evident that the overall performance
of the system decreases when the number of robot increases,
reaching its lowest success rate of approximately 0.65 with
18 robots. Moreover, the number of inter-robot collision
failure cases also reduces in relation to the size of the
robot population. From 5(a) 100% of all failure cases at
6 robots are due to inter-robot collisions, which drops to
approximately 77% at 16 robots. In contrast, Figure 5(b)
shows an increase in the performance of the system, based
on the size of the map. The mean success rate rises from 85%
at a map size of 8x8, and approaches 100% at the map size
of 12x12. Only one failure case is observed with the largest
map size, caused by an inter-robot collision. Figure 5(c)
shows an overview of the time taken to complete the tasks as

the number of robots increases. There is a sharp decrease in
the simulation time steps taken when the number of robots
rises from 1 to 6 robots. Then, the temporal improvements
plateau between 6 to 17 robots, before dropping slightly as
the number of robots approach the number of tasks.

VI. DISCUSSION

The results obtained from the simulations of the case
study scenario provide several insights about the overall
performance of the system.

Firstly, it is evident that the number of robots and the size
of the map affects the efficiency of the system. As the map
expands, the overall success rate increases accordingly, while
a larger robot population impedes the successful execution
of the tasks. This is a reasonable outcome since the chances
of inter-robot collisions will increase for the same map size.

Secondly, inter-robot collisions are evidently the major
reason for unsuccessful simulation runs. However, as more
robots are put into a common area, the likelihood that the
robots would run into an unsolvable case increases noticeably
(given that the number of tasks is equivalent to the number
of robots), from approximately 0% at 6 to 8 robots to nearly
23% of all failed simulations at 14 to 16 robots.This explains
why the percentage of failed runs caused by collision drop
in relation to the size of the robot population.

Finally, given the plateau in temporal improvements as the
number of robots increase, it is unlikely that a larger robot
population would result in optimal execution time. While
such value eventually reaches its minimum as the number
of robots approaches the number of tasks, the differences
between two adjacent time instances within the interval of
7 to 19 robots are not significant, compared to those within
1 to 6. Furthermore, from the aforementioned discussion,
the performance decreases in relation to the size of the
robot population. Therefore, a small to medium size multi-
robot system may outperform a large multi-robot system in



known map size (with the system size determined by the ratio
between the number of robots and the number of tasks). As
a result, it depends upon how the designers of a multi-robot
system weight their priorities of time, system efficiency and
budgetary constraints to decide the optimal number of robots
based on the given task information and their resources.

VII. CONCLUSIONS

In conclusion, this paper introduces a hybrid approach
to designing a multi-robot system for drilling and blasting
automation. The system is a combination of a Centralized
Control Unit, which monitors the behaviors of the system’s
robots and delegates tasks among them, with a decentral-
ized motion planner that ensures cooperative inter-collision
avoidance between the robots. Simulations were conducted
to validate the performance of the system under different
scenarios. The insights drawn from the collected simulation
data are summarized into three main points. Firstly, the major
cause of failure is inter-robot collision, while the chance
of occurring an unsolvable case increases slight with the
expansion of the robot population size. Secondly, a small-
medium sized multi-robot system may do as well, if not
outperform, a larger multi-robot system based upon the map
size. Finally, given a specific task, the designers of a multi-
robot system need to balance their priorities of time, system
efficiency, and budgetary constraints, to conclude the optimal
number of robots in the designed multi-robot system.
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