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Abstract— Preventing water pipe leaks and breaks has high
priority for water utilities. It is a critical task for the utility
to reduce water loss through leaks and breaks detection in
water mains. The failure prediction and data analytics research
have been conducted for an Australian water utility over
the last few years to enhance the prediction of leaks and
breaks detection in water mains. Intelligent sensing at sensitive
locations with current research aids in prioritising investigation
and prevention of potential breaks and leaks in water mains.
The purpose of this work is to integrate the predictive analytics
and intelligent sensing applications to identify high risk mains
prior to failures. Predictive analytics and minimum night flow
(MNF) analysis have been utilised to prioritise risky zones over
the whole water network, and then risky pipes are identified
to optimise sensors deployment. The sensing data is being
collected for analysis and validation, and a machine learning
model is being built based on the analysis results. This work
is currently under progress and the planned outcomes will
help the utility reduce water loss, improve leak detection, and
enhance customer satisfaction by automating the process of leak
detection using a data driven approach with smart sensors.

I. INTRODUCTION

To ensure a high-quality supply of potable water to utility
customers, it takes any disruptions to customers supplies (e.g.
through pipe disruptions or impaired water quality) as high
priority. For urban water utilities, the cost of maintaining
aging water mains has become the major concern [3].

It would be highly beneficial for utilities to develop more
reliable and targeted smart sensing tools (including mobile
and fixed real-time sensors) to monitor risky areas to further
validate and more accurately predict leaks and breaks, using
reliable, easy to acquire data. Based on the breakthrough
success of acoustic and pressure transient sensors detecting
leaks in other industry areas [10], [5], these advances could
be adapted and enable the development of a universally appli-
cable “leak-before-break” model, which could significantly
benefit water utilities to preventatively manage their buried
critical water assets.

The emergence of Internet of Things (IoT) technology
has allowed more modern methods to monitor water net-
works [8], [6]. The use of IoT enables real-time monitoring
of an area by sensors for days or even several months.
By analysing the monitoring data, people can eventually
determine whether there are failures happening on the un-
derground pipes, and then dig out the pipes for further
inspection. Breakthrough acoustic techniques have been used
by other industry for the detection of leaks and have the
potential applications for the water industry. The sensors
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have been deployed in critical sections of the underground
network as a real-time sensor input. For example, water
utilities in Australia recently installed acoustic sensors for
leak detection to help reduce and detect water main leaks
and failures [1], [2]. Real time sensing of leaks over time
will provide learning data with multiple modalities to pick
up leaks and breaks prior to occurrence. Using machine
learning and multi-modal data analytics for each of the utility
study areas optimum site locations can be decided to get the
best value of the real-time sensing data. The validated leak
predictive model outputs, using real-time and mobile sensing
data, facilitate the categorisation and prioritisation of pipes,
which can be integrated with other developing condition
assessment techniques to select the cohort of pipes to be
replaced at their actual “end of life”.

This paper summarises the ongoing research work with
an Australian water utility for prioritising zone areas and
pipes to reduce pipe breaks and leaks using the advanced
data driven approach. The main contribution of this work
are threefold: 1) An ensemble model is utilised to learn
multi-source data for water pipe failure prediction; 2) Risky
zones and pipes have been identified for optimised sensors
deployment. In particular, methods for generating risk maps,
and MNF adjustment are proposed and utilised to generate
zone-level and pipe-level prioritisation lists; 3) Validations
are being conducted on deployed sensors and prioritised
pipes.The validation results demonstrate the effectiveness of
the proposed data driven approach for leak detection with
smart sensors.

The paper is organised as follows: Section II presents the
ensemble machine learning model for water pipe failure pre-
diction. Section III details zones prioritisation which includes
MNF analysis and rank aggregation. Section IV discusses
the leak detection and validation results, and Section V
concludes the paper.

II. WATER PIPE FAILURE PREDICTION

For the urban water utilities, the cost of maintaining water
mains has become the major concern. A collaborative work
has been carried out with an Australian water utility to apply
domain expertise and advanced machine learning techniques
to achieve a cost-effective solution for water pipe failure
prediction in the water network.

A. Feature Engineering with Domain Knowledge

Pipe failure behaviours are highly related to its charac-
teristics such as materials, sizes, pressures, topography, soil
types, etc and various kinds of information are managed
from multiple sources. A high volume of historical data,



pipe attributes, and operational data have been recorded by
the water utility. Additionally, topographic information and
soil information have also been collected from public data
sources.

Feature engineering is fundamental to the application of
machine learning, and is both difficult and expensive. To have
a better understanding of multi-source data, interviewing
with domain experts from the water utility has been actively
performed. Domain experts explained their considerations of
factors that affect pipe failures. For example, the difference
of elevation between water mains could cause additional
water pressure. Considering factors such as the direction of
water flow and the distance to the water pump, the practical
pressure for each pipe or joint between pipes is much
complex, which is considered as one of the main factors
causing pipe failures. Based on the pipe data and elevation
data that we have collected, two topographic features have
been extracted: difference of ground level (DGL) and shape
type of connection (STC).

As shown in Fig. 1, DGL feature is the mean elevation
difference between the target pipe and pipes within the range
of 100 metre from the centre of this target pipe, where the
pipe which the feature is designed for is called target pipe.
The DGL of the target pipe for each pipe line can be obtained
by

DGLi=0 =

n∑
i=0

d(i,i+1)

100
DGL(i,i+1) (1)

where
∑n

i=0 d(i,i+1) = 100, and i = 0 indicates the target
pipe. d(i,i+1) is the horizontal distance between the central
positions of pipe i and pipe i + 1. DGL(i,i+1) is the
difference of elevation between the central positions of pipe
i and pipe i+ 1, where the elevation on the central position
of each pipe is obtained by averaging the ground level of all
nodes of this pipe. Then the DGL for the target pipe is the
mean value of all DGLi=0. This feature shows a positive
correlation with the failure rate.

Fig. 1: An example of extracting the topographic feature
DGL and its correlation with failure rate.

Another topographic feature, shape type of connection
(STC), is also designed in addition to DGL which only
considers the difference of elevation. In the elevation direc-
tion, commonly there are three shapes of pipe connection
as shown in Fig. 2. With the pipe layout information and
ground-level data, this feature can be easily extracted. This

feature shows a strong correlation with the pipe failure rate.

Fig. 2: Illustration of the feature STC and its correlation with
pipe failure rate.

B. Ensemble Learning & Feature Importance

Ensemble learning is an advanced machine learning
paradigm where multiple learners are trained to solve the
same problem. In contrast to ordinary machine learning
approaches which try to learn one hypothesis from training
data, ensemble methods try to construct a set of hypothe-
ses from multi-dimensional features and construct a strong
model. This model enables to handle high-dimensional data
for prediction. The underlying statistical principle employed
here is gradient boosting technique [4]. The boosting tech-
nique consists in fitting sequentially multiple tree-based base
learners in a very adaptive way: each model in the sequence
is fitted giving more importance to observations in the high-
dimensional features that were badly handled by the previous
models in the sequence. Finally, the ensemble model is built
based on a weighted sum of base learners.

A benefit of using gradient boosting is that after the
boosted trees are constructed, it is relatively straightforward
to retrieve importance scores for each attribute. Generally,
importance provides a score that indicates how useful or
valuable each feature was in the construction of the boosted
decision trees within the model. The more an attribute is
used to make key decisions with decision trees, the higher its
relative importance. This importance is calculated explicitly
for each attribute in the dataset, allowing attributes to be
ranked and compared to each other. Information Gain (IG)
determines which feature provides the maximum information
about the prediction. It is based on the concept of entropy
which is the degree of uncertainty, impurity or disorder. We
investigate the multi-dimensional features by employing IG
from the developed ensemble model. Based on the feature
importance from the developed model, key features can be
identified. Fig. 3 shows the top 5 features for the years of
2018 and 2019. In addition to pipe attributes, the variance
of ground levels is also a key feature that impacts the pipe
failures.

C. Model Evaluation

In order to evaluate the model, we have compared the
prediction results with actual ground truth data by calculat-
ing the percentage of detected failures with respect to the
percentage of prioritised pipes (when pipes are ranked in



Fig. 3: Top 5 features for the years of 2018 and 2019. (GL
Variance: Variance of ground levels).

descending order of the failure likelihoods). This is depicted
in Fig. 4, where more than 60% of failures can be detected
if the top 10% of the pipe are inspected. Results demonstrate
that our model is capable to provide valuable assistance to
forecast and plan water main renewals with more confidence
via predictive analytics.

The developed pipe failure prediction model is able to
produce failure likelihoods for the levels of pipes as well as
zones. In order to achieve more reliable results, minimum
night flow (MNF) analysis can be leveraged for zones
prioritisation which will be discussed in Section III.

Fig. 4: Model evaluation based on historical data of different
years.

III. MNF ANALYSIS & ZONES PRIORITISATION

In this section we present our work on prioritising zones
using minimum night flow (MNF) analysis and rank aggre-
gation.

A. Minimun Night Flow

Minimum night flow (MNF) for a pressure zone is defined
as the water flow measured at night time. The motivation for
choosing night time is that the amount of water consumption
is minimal over the whole day. However, customers such as
industrial and commercial units might still consume the water
either at the standard consumption rate or at a slightly higher
consumption rate during the nigh time. Hence a constant
flow (or flow with slight variation) must be recorded for
each day. If the recorded MNF for consecutive days deviates
substantially from its historical records, it might be either
due to occurrence of leak or valve is accidentally left open
which is allowing water flow between neighbouring pressure
zones. Besides, the MNF also helps in narrowing down
pressure zones for Active Leak Detection (ALD). Therefore,
its monitoring is a quick way to estimate the unreported leaks

in pressure zones. An example of MNF monitoring is shown
in Fig. 5
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Fig. 5: An example of observed MNF

Although the monitoring of MNF is very beneficial in
estimating unmetred water loss or identifying pressure zones
where water-leak might be occurring. It is highly suscep-
tible to system errors such as malfunctioning of water-
consumption meter. Therefore, one needs to sieve zones
where MNF is reliable(i.e., not showing large fluctuations
throughout the data period). Once zones with reliable MNF
recordings are identified, it still requires further processing
to eradicate the influence of non-residential consumption.

The collected MNF dataset consists of the observations
from more than 300 pressure zones recorded from 2018 to
2019. Moreover, the MNF for each pressure zone is labelled
either as reliable or not reliable by the water utility where
the reliability is determined by observing fluctuations in
the MNF. A zone with frequent fluctuations in the MNF
observations is assumed to be unreliable as its MNF might be
influenced by noises such as mis-calibrations in the apparatus
or formula utilised to calculate the MNF observations. These
observed MNF values for each pressure zone further need
to be processed in order to estimate the reliable value for
each day. In this regard, the observed MNF value for the
whole period of time is added (the sign of the observed MNF
is accounted while performing addition) and normalised
by the number of connections in each zone. The obtained
value is now converted into Megalitres per hour and then
normalised over the whole year. This value now signifies
litres/connections/hour (L/C/H), which can be utilised to
conduct the MNF adjustment task.

B. MNF Adjustment

Customer consumption data is mainly used for MNF
analysis and adjustment. Each customer connected to the
network has a separate water metre that is read approxi-
mately every three months. The acquired dataset includes the
historical water consumption for each pressure zone. This
data has been interpolated to produce yearly estimates of
the water used by each pressure zone. There are mainly
two types of customers: residential and non-residential.
Each type is further divided into several sub-types. For
example, residential customers are further categorised into
“single dwelling”, “flats and mixed developments”, etc. Non-
residential customers include “commercial”, “industrial”, and
“agricultural”, etc. Most residential customers normally use
much less water at night, so non-residential customers con-
sumption needs been further analysed. Based on our analysis,



non-residential consumption accounts for slightly more than
one quarter of the total water consumption over the year of
2019.

The observed MNF values are influenced by both the
residential consumption and non-residential consumption.
While the residential consumption is assumed to be minimal
at night, no such assumption can be drawn for non-residential
consumption. Besides, the consumption cycle from non-
residential consumers is dependent on their nature such as
a poultry farm might consume more water in the daytime
compared to RSL clubs which consume more water at night.
Also, since the number of non-residential consumers and
their types are unequal within the pressure zones, one cannot
deduct a constant factor from each pressure zone to alleviate
their influence. Therefore, estimation and eradication of non-
residential water consumption from observed MNF becomes
non-trivial. In this regard, we begin with summarising non-
residential consumers according to their type and water
consumption demand where the obtained frequencies of non-
residential water consumption dictates that the paramount
non-residential water consumption is due to commercial,
industrial, and government institution and others consumers.
This knowledge helps us in narrowing the type of non-
residential consumers which might be affecting the MNF
observations. One is still required to validate which of
the consumption types are indeed influencing the observed
MNF. To obtain such an insight we calculate the correlation
between each consumption type and observed MNF. The
motivation behind calculating correlation is that it will serve
as an indicator to quantify the cumulative influence of non-
residential consumption types on pressure zones. Positive
correlation values indicate the strength of non-residential
consumption type on MNF observations. Hence, we can
select non-residential types with high correlation coefficients
to model the non-residential usage in the observed MNF.
We performed correlation analysis with the reliable pressure
zones and five non-residential fields as show in Fig. 6.

Fig. 6: Correlation between MNF and consumption rates.

It can be seen that commercial (Commer Rate) and indus-
trial (Indust Rate) consumers highly influence the observed
MNF values. Hence, these two types can be utilised to
estimate the non-residential consumption or usage in the
observed MNF. We now describe the leakage modelling
utilised for MNF adjustment. The motivation is to alleviate
the influence of non-residential consumption from MNF.
In other words, we want to estimate the non-residential
consumption in the MNF denoted as QNRES and deduct this
value from the recorded value of MNF denoted as QMNF .
This withdrawal gives us an estimate of the true value of
MNF denoted as L(zone@tMNF ) , which is utilised to identify
pressure zones with water leakage. Technically, the deduction
of non-residential consumption from recorded MNF is as in
Eq. 2.

L(zone@tMNF ) = QMNF −QNRES (2)

where L is the water loss of zone at the MNF time, QMNF

is the MNF, and QNRES denotes non-residential usage at
the MNF time.

To estimate QNRES we utilised a simple linear regression
model without the intercept term as in Eq. 3. The motivation
for excluding the intercept term is to force the regression
error to be non-zero as the value of this error is a measure
of the strength of our regression estimate. In other words,
we want mean of error term to be equal to the mean
of the observed MNF with only residential consumption.
This constraint will enforce the adjusted term to reflect the
residential consumption as shown in Fig. 7.

QNRES = βCOM × COMRatio + βIND × INDRatio (3)

Fig. 7: MNF Adjustment Results.

The adjustment result in Fig. 7 demonstrates that the
mean of adjusted MNF with our regression scheme is able
to estimate the residential consumption of pressure zones
with negligible non-residential consumption. The zones are
ordered in ascending order of non-residential consumption
and illustrate that the two values overlaps with negligible
difference between the observed and adjusted means.



C. Zones Prioritisation

In order to prioritise zones/areas for sensors deployment,
risky zones need to be prioritised. Since the MNF has been
adjusted based on our model, the zones can be ranked.
Furthermore, zones prioritisation can also be obtained based
on the pipe failure failure prediction. Specifically, risk score
of the pressure zone is aggregated by summing up all failure
likelihoods of the pipes in that zone. Finally, the analysis at
zone level can be aggregated by utilising failure prediction
and adjusted MNF to achieve more reliable outcomes.

We rank the pressure zones based on their aggregated risk
scores in descending order. The pressure zone with maximum
risk probability is allocated rank 1 and the second maximum
risk probability zone is allocated rank 2 and so on. Similarly,
we rank all pressure zones based on the adjusted MNF values
in descending order. These two rankings of pressure zones
are then aggregated with various rank aggregation schemes
such as Borda-Count (L2 norm, Geometric Mean, etc.) and
Markov-Chain based methods [7]. The rank aggregation
schema is illustrated in Fig. 8 and the rank aggregation
results are shown in Fig. 9.

Fig. 8: Rank aggregation for zones prioritisation.

Fig. 9: Rank aggregation scores with different ranking
schemes.

The rank aggregation results suggests that in general
Kendall-tau distance as a metric is better than SpearMan’s
distance for our rank aggregation task. Moreover, the Borda-
Count scheme with rank aggregation as average achieves
the best aggregation among both the distance metrics. These
aggregation results lead to prioritised zones, which guides
the water utility to deploy sensors in top ranked zones.

IV. LEAK DETECTION & VALIDATION
With the prioritised pipes and zones, sensors have been

deployed. This section shows the validation results of pipe

prioritisation against the detected leaks.

A. Acoustic Monitoring for Leak Detection

There many sensing options for leak detection. Static
acoustic sensors are one option as a permanent or semi-
permanent solution for leak detection. These sensors are
attached onto a pipeline surface for sensing real information
about pipeline resources [9]. For our work, different sensor
models have been deployed in different zones. Fig. 10 shows
one type of the deployed sensors. Each static acoustic sensor
model has its own data recording capabilities. However they
have been configured to make ambient noise recordings
between 2 am and 4 am, during which water usage is often
low. Under such a setting, environmental noise from traffic
and water usage are reduced to an extend that recorded sensor
data across multiple days can be compared for changes.

Fig. 10: A Von Roll acoustic sensor

Leak alerts are raised from interpreted acoustic sensor data
for further investigation by water utility crews. Specifically
leak alerts are raised automatically by proprietary interpreta-
tion systems via a threshold based approach. Generally, sim-
ple noise level thresholds, proven to lead to large percentage
of false positive leak alerts, are used by the interpretation
systems to determine if a leak has occurred. By taking the
advantage of acoustic monitoring, we can evaluate and then
improve our machine-learning driven models for leak and
break prediction.

B. Pipes Prioritisation & Validation Results

We trained our machine learning model using the pipe
failure records till the end of 2019. The failure records
include various failure types, including leaks, breaks, main-
to-metre failures. We then applied the model to generate
prioritised pipes in Zone A, B and C of the utility’s water
network. The pipes are ranked as per their probabilities
of future failures. For the validation, the location of the
prioritised pipes are compared with the locations of the
detected leaks which will be described in Section IV-B.

In the first half of 2020, a total of 20 leaks have been
detected by the acoustic sensors. Amongst those detected
leaks, 19 have been confirmed as true positives. When
examining the locations of those true positives, we found
that 15 of them are overlapped with the prioritised pipes,
resulting in a total matching rate of 75%. It demonstrates
the effectiveness of data-drive solution for leak prediction.
Details of the validation statistics are presented in Table I.



Fig. 11: Validation maps for Zone A, B and C (from left to right). Blue lines indicate prioritised pipes, red dots are deployed
sensors, and red dots with yellow crosses are true positive alarms.

TABLE I: The validation statistics

Zone #sensors #detected leaks #confirmed leaks #overlaps
A 40 17 17 13
B 25 1 1 1
C 23 2 1 1

Note that Zone A is in metropolitan area, whilst Zone B
and C are in rural areas. Thus it is expected that the pipe
network in Zone A have a higher coverage density than those
in B and C. Also there are more sensors deployed in Zone A
than Zone B and C. As such sensors in Zone A are expected
to have better coverage on the pipe network than those in B
and C. That could be one reason for Zone A to contain the
most detected leaks. Relatively low coverage in Zone B and
C results in lower leak detection numbers.

The validation results for all zones are plotted in Fig. 11.
As shown in the figure, prioritised pipes are depicted in light
blue, while deployed sensors are illustrated in red dots, and
red dots with yellow crosses mean true positive alarms. We
count the overlaps by checking if the true positive alarms are
overlapped with the prioritised pipes on each zone.

V. CONCLUSIONS

As leaks and breaks becomes susceptible in ageing water
mains. Its maintenance has become a major concern for
water utilities across globe, where with detecting leaks
has achieved substantial breakthrough through utilisation
of sensing and analytic technology. In this paper we have
presented our data driven approach for leak detection with
smart sensors. The approach encapsulate procedures for
water pipe failure prediction, minimum night flow (MNF)
analysis, and zones prioritisation by consolidating failure
records and adjusted MNF. We have also validated our
leak detection approach with acoustic monitoring data. The

validation results show that our approach has achieved a
matching rate of 75% by overlapping confirmed leaks with
our prioritised pipes.

In the future we will implement a Web portal that sources
sensor data from acoustic models for signal consolidation.
More zones will be set up as test beds for pipe leak and break
prediction. We will also investigate more sensor models in
the new test beds.
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