
Improving Primal Heuristics for Mixed Integer
Programming Problems based on Problem

Reduction: A Learning-based Approach
Lingying Huang*, Xiaomeng Chen*, Wei Huo*, Jiazheng Wang, Fan Zhang, Bo Bai, Ling Shi

Abstract—In this paper, we propose a Bi-layer Prediction-
based Reduction Branch (BP-RB) framework to speed up the
process of finding a high-quality feasible solution for Mixed
Integer Programming (MIP) problems. A graph convolutional
network (GCN) is employed to predict binary variables’ values.
After that, a subset of binary variables is fixed to the predicted
value by a greedy method conditioned on the predicted proba-
bilities. By exploring the logical consequences, a learning-based
problem reduction method is proposed, significantly reducing
the variable and constraint sizes. With the reductive sub-MIP
problem, the second layer GCN framework is employed to
update the prediction for the remaining binary variables’ values
and to determine the selection of variables which are then used
for branching to generate the Branch and Bound (B&B) tree.
Numerical examples show that our BP-RB framework speeds
up the primal heuristic and finds the feasible solution with high
quality.

I. INTRODUCTION

Large-scale combinatorial optimization plays a vital role
in real-world problem applications, e.g. social network anal-
ysis [1], open-pit block mining [2] and scheduling medical
resident training [3]. Owing to the large search space and
NP-hardness, such problems can be extremely challenging
to solve. Nevertheless, there exist exact solvers which are
guaranteed to seek an optimal solution for combinatorial
optimization problems and branch-and-bound (B&B) is one
of them. The B&B framework is commonly adopted to solve
Mixed Integer Programming (MIP), a general formulation
of combinatorial optimization problems, and produces global
optimality. In practical scenarios, it is common to repeatedly
optimize homogeneous MIP instances with similar model and
solution structure. Hence, it is motivated to adopt machine
learning (ML) methods for tuning B&B automatically for
a class of MIP instances. For example, ML has been used

*These authors contributed equally to this work. L. Huang, X.
Chen, W. Huo, and L. Shi are with the Department of Electronic
Engineering, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong, e-mails: lhuangaq@connect.ust.hk,
xiaomeng.chen@connect.ust.hk, whuoaa@connect.ust.hk, eesling@ust.hk.
J. Wang, F. Zhan, and B. Bai are with the Theory Lab,
Huawei Hong Kong Research Centre, Hong Kong SAR, China,
emails: wang.jiazheng@huawei.com, zhang.fan2@huawei.com,
baibo8@huawei.com.

This paper has been accepted for the publication of ICARCV 2022.

to improve variable [4], [5], node [6] and cut [7] selection
strategies.

Inside solvers, there are two prominent sides, primal side
and dual side. The primal side represents the seek for
good feasible solutions while the dual side refers to the
quest to prove optimality. Though a proof of optimality is
an important trait of exact solvers, obtaining high-quality
feasible solutions fast is also crucial, especially with a time
limit. In real-world settings, the user will expect good feasible
solutions found earlier instead of an optimal solution found
many hours later. In order to ensure good primal perfor-
mance, primal heuristics are equipped in modern solvers. For
instance, an open-source MIP solver SCIP [8] adopts many of
heuristics [9], including heuristics designed by experts [10],
heuristics induced by mathematical theory [11] and meta-
heuristics [12]. Extensive studies of the computational cost
of different primal heuristics and their impact on MIP solving
procedure can be found in [13], [14].

Since most primal heuristics can be computationally ex-
pensive, in the last decades, a number of works apply ML to
automatically construct better primal heuristic via exploring
similar structure among MIP instances, for the purpose of
finding good feasible solutions quickly. Khalil et al. [15]
proposed a learning-based strategy to dynamically decided
whether to run a primal heuristic at a certain node of the
B&B tree. Chmiela et al. [16] designed a problem-specific
schedule of heuristics by learning from data describing the
performance of primal heuristics. More related to our work,
Shen et al. [17] trained a graph convolutional network(GCN)
to predict the optimal solution of an unseen instance and
then designed a novel primal heuristic, called Probabilistic
Branching technique with guided Depth-first Search (PB-
DFS) which is a B&B configuration based on a predicted
solution to guide the search space of the B&B method.

Nevertheless, the above learning-based primal heuristics
are usually limited to small instances. The huge dimensional-
ity of a large-scale MIP instance poses a significant challenge
to existing methods. In order to tackle the large-scale MIPs,
we equip the PB-DFS framework in [17] with a learning-
based prepossessing technique to build a Bi-layer Prediction-
based Reduction Branch (BP-RB) framework, which can find

ar
X

iv
:2

20
9.

13
21

7v
1

 [
m

at
h.

O
C

]
 2

7
Se

p
20

22

high-quality feasible solutions more quickly. In this paper,
we focus on Integer Programming with binary variables, but
it can also be adapted to other combinatorial optimization
problems. Our method works in three steps. First, a GCN is
trained for optimal variable solution prediction based on the
dataset formed by optimally solved small-scale MIPs. Then
for a new MIP instance, the trained GCN model can predict
for each variable its probability of taking value one or zero
in the optimal solution. Second, conditioned on the predicted
probabilities, we choose a subset of binary variables and then
fix them to their predicted value. Moreover, by exploring
the logical consequences of fixing binary variables, we can
identify the redundant constraint and fix more variables based
on conflict analysis. Thus, not only the number of decision
variables but also the size of coefficients in the constraint
matrix decreases, which leads to significant reduction of
the problem size. Finally, the remaining unfixed variables
define smaller ‘sub-MIP’ and the predicted probability for
the smaller sub-MIPs can be obtained by the trained GCN
model. By adopting PB-DFS, high-quality feasible solutions
can be quickly found for the sub-MIP. Combining the fixed
variables with the sub-MIP’s feasible solution, we can ob-
tain the feasible solution for the primal MIP instance. Our
contribution are summarized as follows:

1) We propose a bi-layer prediction-based branching
framework which produces a novel B&B configuration
to seek feasible solutions quickly for large-scale com-
binatorial optimization problems.

2) We propose a learning-based problem reduction
method which removes variables and constraints that
are not necessary in the MIP instance. Hence, the mem-
ory required to solve the instance can be significantly
reduced, speeding up the time to find quality primal
solutions.

3) We evaluate our method on four four representative
NP-hard problems. Extensive results show that our
proposed method (BP-RB) can spend less time finding
better primal solutions than traditional primal heuristics
and PB-DFS-GCN [17]. Moreover, we show that BP-
RB can generalize very well on different problem sizes.

II. PRELIMINARIES

A. MIP Problem
Consider an MIP problem following the general form:

min c>x

s.t. Ax ≤ b,
xj ∈ {0, 1},∀j ∈ B,
xj ∈ Z,∀j ∈ Q, xj ≥ 0,∀j ∈ P,

(1)

where x ∈ Rn denotes the decision variables and is par-
titioned into (B,Q,P), with B,Q,P being the index set if

binary, general integer and continuous variables, respectively.
We further assume that for j ∈ Q, there exist bounds xj , x̄j ∈
Z, such that xj ≤ xj ≤ x̄j . Otherwise, it is easy to prove
that problem (1) is either infeasible or unbounded below. Let
l represent the number of integers between xj , x̄j including
themselves and m = dlog2 le. Then solving xj is equivalent
to solve xj = bxj,m2m−1+bxj,m−12m−2+· · ·+bxj,1, where
bxj,p ∈ {0, 1}, for p = 1, . . . ,m. By the above analysis, any
general MIP problem is equivalent to solve an MIP problem
which contains binary variables and continuous variables.
The main task in our paper is to predict the probability that
a binary variable takes value 1 in the optimal solution.

B. Branch and Bound Algorithm

A widely-used method to produce exact solutions to MIP
problems is B&B algorithm. This method recursively builds
a search tree which assigns partial integer at each node, and
uses the information obtained at each node to eventually
reach an optimal solution [18]. Pseudocode for the generic
B&B is given in Algorithm 1, where D is denoted as a set of

Algorithm 1 Branch and Bound
1: Set L = D and initialize x̂;
2: while L 6= ∅ do
3: Select a subproblem SP from L to explore;
4: if a solution x̂′ ∈ {x ∈ S|c>x < c>x̂} can be found

then
5: Set x̂ = x̂′;
6: end if
7: if S cannot be pruned then
8: Partition S into S1,S2, . . . ,Sr;
9: Insert S1,S2, . . . ,Sr into L;

10: end if
11: Remove S from L;
12: end while
13: return x̂.

valid solutions to the problem. The problem P aims to find
an optimal solution x? ∈ arg minx∈D f(x). At each iteration,
B&B selects a new subset of the search space S ⊂ D for
exploration from a queue L of unexplored subsets. Then, if
a solution x̂′ ∈ S has a better objective value than x̂, the
incumbent solution is updated. On the other side, the subset
is pruned or fathomed if there is no solution in S with better
objective solution than x̂, i.e., c>x ≥ c>x̂, ∀x ∈ S.

C. Primal Heuristics

From the above description, it is obvious that finding a
good quality x̂ as early as possible would help to prune the
search tree. The optimality of the feasible solution and the
time took to find the feasible solution are two main criteria

to measure the quality of primal heuristics. Some common
primal heuristics are summarized by Berthold in [9] and the
comparison on the computational cost and impact on solving
procedure can be found in [13]. Here we briefly introduce
some classical primal heuristics which are compared with in
our simulation part.

Diving: Diving fixes variables of fractional LP-solution to
promising values and resolves LP iteratively [9, Algorithm
1].

Feasibility Pump [19]: Feasibility Pump first obtains
LP-relaxation optimal solution, then rounds the integral-
infeasible variable to the nearest integral. The procedure stops
if the integral feasible solution is LP-feasible. Otherwise,
an additional LP is solved in order to find a new LP-
feasible point which is a closest to the integral feasible
solution satisfying the constraint of the previous problem [9,
Algorithm 2].

Relaxation Enhanced Neighborhood Search: This
method creates a sub-MIP of the original MIP by changing
the bounds of integer variables [9, Algorithm 4].

Rounding: Rounding rounds the set of fractional variables
of some LP-feasible point to an integral value [9, Algorithm
6].

D. GCN based prediction scheme

GCN based prediction scheme [17] predicts the probability
that a binary value takes value 1 in the optimal solution.
Through treating the value prediction problem as a binary
classification problem, a dedicated graph convolutional neural
network is adopted to output the probability. To model the
correlations between variables from a certain type of MIP, we
represent a MIP instance as a bipartite graph, containing the
objective function coefficients c, constraint coefficient matrix
A and right-hand-side (RHS) coefficients b. Two sets of ver-
tices are contained in the bipartite graph. One of them is the
set of decision variable and the other is the set of constraint
vertices, see Figure 1. There exists an edge between a variable
vertex and a constraint vertex if the corresponding variable
has a nonzero coefficient in the constraint, i.e., the number
of edges represents the number of non-zeros in the constraint
matrix. Note that the defined bipartite graph not only captures
the relation between variables and constraints, but contains
the detailed coefficients in its structure as well. Particularly,
the entries in objective coefficients c, the entries in constraint
coefficients b and the non-zero entries of the constraint
matrix are included as scalar features of the corresponding
variable vertices, constraint vertices and edges, respectively.
Besides the coefficients features, both vertices and nodes
include multi-dimensional feature vectors which are extracted
from the MIP, providing more information for the learning

procedure. We use the code provided by Shen et al. [17] to
compute the same set of features using SCIP.

The training dataset consists of multiple optimally-solved
MIP instances from the same problem distribution and the
optimal solution corresponding to each instances. One deci-
sion variable xi from a solved MIP instance is regarded as
a training example and the label yi of xi is obtained from
the solution value of xi in the optimal solution. Given the
collected features, labels and the bipartite graphs, we can
then train GCN. The cross-entropy loss function between the
predicted value ŷi of decision variables and their optimal
value yi is used to train the model, which is defined as

min − 1

n

n∑
i=1

(yi × log(ŷi) + (1− yi)× log(1− ŷi)). (2)

The above GCN model ensures that the network can be
applicable to MIPs of different problem sizes from the same
problem distribution using the same set of parameters. That’s
to say, once trained on a certain type of problem dataset,
the model can output the the probability pi that a binary
variable takes value 1 in the optimal solution for an unseen
instance from the same problem type. The array of predicted
probabilities is referred as the probability vector. Based on
the predicted probability, x̂i, the predicted value of variable
xi, equals to 1 if pi ≥ 0.5. Otherwise, x̂i = 0.

III. MAIN RESULTS

A. Learning-based Problem Reduction

In this subsection, we propose a novel problem reduction
method based on the predicted probability vector. The pro-
posed problem reduction method aims to transform the large-
scale problem into a smaller one so that the MIP can be
solved quickly and yield high quality solution at the same
time by fixing variables and removing constraints in the
problem instance.

Fixing variable based on predicted probability from
GCN

We sort the binary variable xi in non-increasing order of
max(pi, 1 − pi) and choose the first η|B| variables as the
subset F , where 0 < η < 1 is a predefined value. Then, the
variables with indices in F are fixed to their predicted values.
After fixing the variables, we have an additional constant
term in the objective function. Moreover, the i−th constraint
becomes ∑

j∈F
aij x̂j +

∑
s∈S

aisxs ≤ bi, (3)

where S = B \ F denotes the unfixed variables set.
Removing constraints

Fig. 1. Bipartite graph representation of a MIP instance.

If ∑
j∈F

aij x̂j +
∑
s∈S

max{ais, 0} ≤ bi, (4)

then obviously the i-th constraint is redundant and we can
remove it.

Fixing more variable based on logical constraints
Define S+i = {j|aij > 0} and S−i = {j|aij < 0}.

Consider a binary variable xk, k ∈ S+i , we can fix the
variable xk to 0 if

aik +
∑
s∈S−

i

ais +
∑
j∈F

aij x̂j > bi. (5)

Next, consider a binary variable xk, k ∈ S−i , we can fix
the variable xk to 1 if∑

s∈S−
i \{k}

ais +
∑
j∈F

aij x̂j > bi. (6)

B. Bi-layer Prediction-based Reduction Branch

In this subsection, we introduce our primal heuristic
method. We first use GCN to predict the optimal binary
solution. Then we define the score of variable xj as

zi = max{pi, 1− pi}. (7)

We can view this score as how certain the prediction is from
the GCN model. As observed from subsection III-A, the score
should be changed when some variables are fixed.

Instead of calculating the updated score every time when
fixing a variable, which would consume plenty of compu-
tational complexity, we propose a Bi-layer Prediction-based
Reduction Branch (BP-RB). Pseudocode for the generic B&B
is given in Algorithm 2.

The main idea is fixing the variables with high certainty.
By logical constraints and other problem reduction methods
described in Section III-A, more variables can be fixed and

Algorithm 2 Bi-layer Prediction-based Reduction Branch
(BP-RB) Algorithm

1: Apply the first time GCN to predict zi, i ∈ B;
2: Set threshold η;
3: Sort zi in a descending manner, record the corresponding

variable index, I ← {i1, . . . , i|B|};
4: Set F ← ∅;
5: while j < η|B| do
6: Set x̂ij ← [pij];
7: Let F ← F ∪ {ij};
8: end while
9: Let S ← B \ F ;

10: Use learning-based problem to fix variables and remove
constraints (Section III-A), and obtain the sub-MIP prob-
lem where its binary variables belongs to i ∈ B′;

11: Apply the second time GCN to predict new score zi,
i ∈ B′;

12: Generate branch and bound tree based on zi as described
in Algorithm 3;

13: Run Depth-first Search till time limit or an optimal
solution obtained, and record the optimal solution found
so far as x̂;

14: return x̂.

some constraints can be relaxed, which will lead to a sub-MIP
problem with fewer integer variables and fewer constraints.
As a result, the computational cost reduces significantly. In
addition, the second time GCN can be viewed as taking into
account the influence of the score by fixing other variables.

It is worth noting that |B′| < |S| due to the learning-
based problem reduction method proposed in Section III-A.
Therefore, the total number of branching variables to gen-
erate the branch tree is less than that in PB-DFS method
[17]. Additionally, in the second time GCN, the number of

Algorithm 3 Generate B & B Tree based on z
1: Sort z in a descending manner, record the corresponding

variable index, I ← {i1, . . . , in};
2: Generate the root node which represents the reduced

problem, the node queue index N ← {0};
3: for j=1:n do . Generate branching tree according to the

descending variable index
4: Set the right node as fixing the variable to xij =

1− [pij];
5: Add the right node to the node queue index N ←
N ∪ {j};

6: Add constraint xij = [pij];
7: end for
8: Add node queue index N ← N ∪ {n+ 1}.

constraints is also reduced, thus it also saves the time to solve
a single node subproblem.

The depth-first search method will pop out the sub-problem
from the node queue to solve until time limit or an optimal
solution obtained. Note that from algorithm 3, this algorithm
at most will check the feasibility condition of two LP problem
and solve n = |B′| sub-MIP problem. Moreover, by the
depth-first search method, the p-th solved sub-MIP problem
contains p integral variable to fix.

Different from simple diving method, this BP-RB algo-
rithm will explore the node most likely to contain the optimal
solution first. Therefore, if the iteration time is limited, it is
more likely to find a better feasible solution (with smaller
optimality gap) compared with simple diving method. By the
above analysis, this method is preferable especially to find a
primal heuristic solution in large-scale MIP problems.

IV. EXPERIMENTAL EVALUATIONS

In this section, we set up an experimental procedure fol-
lowed by Shen et al. [17] to evaluate the performance of our
proposed method. First, we describe the experiment setup.
Then, we illustrate the effectiveness of the proposed BP-
RB by comparing it with different classical primal heuristics.
Moreover, we demonstrate the efficiency of BP-RB against
the full-fledged SCIP solver (SCIP-DEF), pure problem-
reduction methods using the SCIP solver (ML-Split) pro-
posed by Ding et al. [20], and PB-DFS equipped with the
GCN model (PB-DFS-GCN) in Shen et al. [17]. Further,
we show the effect of different fixed proportions on the
performance of BP-RB.

A. Setup

1) Test Problems: We demonstrate the efficiency of our
method by solving four classical combinatorial problems:
Vertex Cover problem (VC), Maximum Independent Set

problem (MIS), Dominant Set problem (DS), and Com-
binatorial Auction problem (CA). For each problem, we
generate small-scale instances to train the GCN. Large-scale
instances are used to evaluate the generalization of different
approaches. Specifically, VC, MIS, and DS are generated
based on Erdős-Rényi random graphs [21] with affinity 4.
The large-scale instances are formed with 3000 variables.
CA instances are generated by an arbitrary relationship
procedure. The large-scale instances are generated with 1500
variables and around 560 constraints.

2) Training: After generating instances for each problem
type, we extract 57 statistical features of variables for each
instance [17]. Each feature is normalized and put into the
GCN model for which the number of layers is set to 20,
and the dimension of the hidden vector of a binary variable
is set to 32. For a problem, we use 1000 optimally-solved
small-scale instances to train the GCN.

3) Evaluation of Solution Methods: We compare the per-
formance of our BP-RB algorithm with traditional primal
heuristic methods and PB-DFS-GCN by Shen et al. [17] on
large-scale problem instances.

First, we compare BP-RB with traditional primal heuristics
without requiring a feasible solution on large-scale problem
instances. Specifically, four heuristics are chosen as base-
lines: Relaxation Enhanced Neighborhood Search (RENS),
Feasibility Pump (FSP), Diving, and Roundings.

Second, BP-RB is compared with a full-fledged SCIP
solver in which all heuristics are enabled, SCIP solver with
only problem reduction, and SCIP solver with only PB-DFS-
GCN.

For all the above comparisons, 40% variables are fixed in
BP-RB before features of sub-MIP problems are put into the
GCN. Further, we compare the performance of BP-RB under
different portions of fixed variables.

4) Experimental Environment: All experiments are con-
ducted on a cluster of 64 Intel 3.40 GHz CPUs and 16GB
RAM. Our method is implemented via C-api provided by
SCIP, version 6.0.1. The GCN is implemented by the Ten-
sorflow package.

B. Evaluation Results for Finding Primal Solutions

Comparisons of our method with effective heuristic meth-
ods in SCIP solver are illustrated in Table I. Note that the
PB-DFS-GCN approach is applied only at the root node. It
stops running once finding the first feasible. Our method first
reduces the number of variables and constraints in an original
problem to yield a subproblem, and then capitalize on PD-
DFS at the root node to seek the first feasible solution. For
each type of MIP problem, we run 30 different instances
for a heuristic, and each run terminates with a cutoff time
of 50 seconds. # Instances no feasible solution shows the

number of instances that the corresponding heuristic does not
find any feasible solution. Heuristics that does not find any
primal feasible solution for all 30 instances is omitted in the
table. Results in other columns are geometric mean shifted
by one averaged over solved instances. Here, we not only
consider the best solutions but also look at the best heuristic
solution objective found by a heuristic. For best heuristic
solution time, best solution time, and heuristic total time,
their time is the summation of problem reduction time and
PB-DFS-GCN running time.

As shown in Table I, overall, BP-RB can spend less
time finding better primal solutions than traditional primal
heuristics and PB-DFS-GCN not only on VC, DS, MIS but
also on CA which is a kind of problem not formulated on
graphs. Note that PB-DFS-GCN [17] is less competitive on
CA in terms of both objective solution and running time,
but BP-RB performs better due to problem reduction and
probability adjustment in subproblems. These results show
that BP-RB can generalize very well on problem size and
problems not related to graphs.

We further compare BP-RB with the use of full-fledge
SCIP, SCIP equipped with only problem reduction, and SCIP
with only PB-DFS-GCN. Here, we do not limit the running
time, but let each heuristic help the SCIP to solve opti-
mization problems. The detailed solving statistics results are
given in Table II. We observe that our method significantly
outperforms other methods on VC, MIS, and CA. Finding a
good primal feasible solution early helps BP-RB solve large-
scale MIP problems faster.

Moreover, comparisons of the performance of the proposed
BP-RB under different portions of fixed variables are given in
Table III. We can observe that the best threshold is different
for different types of problems. For example, VC performs
best when we fix 40% variables to reduce the problem, while
MIS performs best when 60% variables are fixed. Further,
there is a trade-off between the quality of primal feasible
solution and the time to find the primal feasible solution.
For instance, for DS problems, increasing the number of
fixed variables significantly reduces the best heuristic solution
time, but leads the best heuristic solution far away from the
optimal solution.

V. CONCLUSIONS

In this paper, we propose a Bi-layer Prediction-based
Reduction Branch (BP-RB) framework in order to accelerate
the process of finding a high-quality feasible solution. A
graph constitutional network (GCN) is employed to predict
the binary variables’ values. The GCN framework has gen-
eralization of different variable dimensions, which makes it
possible to train the network with small-scale problems. In
addition, conditioned on the predicted probabilities, a subset

of binary variables are fixed to the predicted value by greedy
method. By exploring the logical consequences, a learning-
based problem reduction method is proposed. This method
significantly reduces the variable and constraint size. With
the produced reductive sub-MIP problem, the second layer
GCN framework is employed to update the prediction for the
leaving binary variables’ values which serves as the variable
selection for branching criterion. Numerical examples show
that our BP-RB framework speeds up the primal heuristic
with high quality. We also show the comparison on the
objective quality and time between different fixed portion.
However, the optimal fixed portion changes for different
problems. We will look for an adaptive fixing portion for
different problems considering the time and quality constraint
in future work.

REFERENCES

[1] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and M. M. A. Patwary,
“Fast maximum clique algorithms for large graphs,” in Proceedings of
the 23rd International Conference on World Wide Web, pp. 365–366,
2014.

[2] E. Jélvez, N. Morales, P. Nancel-Penard, J. Peypouquet, and P. Reyes,
“Aggregation heuristic for the open-pit block scheduling problem,”
European Journal of Operational Research, vol. 249, no. 3, pp. 1169–
1177, 2016.

[3] C.-H. Brech, A. Ernst, and R. Kolisch, “Scheduling medical residents’
training at university hospitals,” European Journal of Operational
Research, vol. 274, no. 1, pp. 253–266, 2019.

[4] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina,
“Learning to branch in mixed integer programming,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.

[5] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, et al.,
“Solving mixed integer programs using neural networks,” arXiv
preprint arXiv:2012.13349, 2020.

[6] H. He, H. Daume III, and J. M. Eisner, “Learning to search in branch
and bound algorithms,” Advances in neural information processing
systems, vol. 27, pp. 3293–3301, 2014.

[7] R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani,
“Scoring positive semidefinite cutting planes for quadratic optimiza-
tion via trained neural networks,” preprint: http://www.optimization-
online.org/DB_ HTML/2018/11/6943.html, 2019.

[8] T. Achterberg, “SCIP: solving constraint integer programs,” Mathemat-
ical Programming Computation, vol. 1, no. 1, pp. 1–41, 2009.

[9] T. Berthold, “Primal heuristics for mixed integer programs,” 2006.
[10] T. Achterberg, T. Berthold, and G. Hendel, “Rounding and propagation

heuristics for mixed integer programming,” in Operations research
proceedings 2011, pp. 71–76, Springer, 2012.

[11] T. Berthold, “Rens,” Mathematical Programming Computation, vol. 6,
no. 1, pp. 33–54, 2014.

[12] E. Aarts, E. H. Aarts, and J. K. Lenstra, Local search in combinatorial
optimization. Princeton University Press, 2003.

[13] T. Berthold, “A computational study of primal heuristics inside an
MI(NL)P solver,” Journal of Global Optimization, vol. 70, no. 1,
pp. 189–206, 2018.

[14] A. Lodi, “The heuristic (dark) side of MIP solvers,” in Hybrid
metaheuristics, pp. 273–284, Springer, 2013.

[15] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao,
“Learning to run heuristics in tree search.,” in IJCAI, pp. 659–666,
2017.

[16] A. Chmiela, E. B. Khalil, A. Gleixner, A. Lodi, and S. Pokutta,
“Learning to schedule heuristics in branch-and-bound,” arXiv preprint
arXiv:2103.10294, 2021.

TABLE I
COMPARISON OF BP-RB WITH PRIMAL HEURISTICS AND PB-DFS-GCN

Problem Heuristic
Best Heuristic

Solution
Objective

Best Heuristic
Solution Time

Best Solution
Objective

Best
Solution

Time

Instances no
feasible
solution

Heuristic
Total Time

VC (Min.)

Roundings 1813.3 32.0 1774.0 38.6 0 6.6
Feaspump 2137.3 2.5 1767.6 43.0 17 1.7

PB-DFS-GCN 1628.2 8.4 1628.2 8.4 0 8.4
BP-RB 1627.8 0.7 1626.8 0.9 0 0.7

DS (Min.)

Roundings 622.5 21.1 622.5 21.2 0 0.5
Feaspump 325.1 8.3 325.1 8.3 0 0.8

PB-DFS-GCN 318.4 18.9 318.4 18.9 0 18.9
BP-RB 319.8 5.2 319.3 9.8 0 5.2

MIS (Max.)

Roundings 995.6 36.0 1113.6 37.2 0 7.2
Feaspump 845.1 2.8 1022.6 12.3 1 1.9

Diving 829.6 46.0 1228.1 42.7 22 0.1
PB-DFS-GCN 1369.0 8.4 1369.0 8.4 0 8.5

BP-RB 1367.4 2.2 1367.7 2.2 0 2.2

CA (Max.)

RENS 3425.9 6.3 3674.3 35.5 0 3.9
Roundings 3206.0 36.2 3688.8 32.4 0 0.3

Diving 3481.6 10.3 3698.2 36.6 0 0.7
PB-DFS-GCN 3341.5 10.5 3664.9 37.6 0 10.6

BP-RB 3368.7 2.0 3718.3 13.6 0 2.0

TABLE II
BP-RB COMPARED WITH SCIP-DEF, ML-SPLIT AND BP-RB

Problem Method

Best
Solution
Objec-

tive

Best
Solution

Time

Optimally
Gap (%)

VC (Min.)

SCIP-DEF 1634.4 508.3 3.8
ML-Split 1630.8 120.2 3.6

PB-DFS-GCN 1628.2 3.7 3.3
BP-RB 1626.8 0.9 0.0

DS (Min.)

SCIP-DEF 315.3 388.9 2.9
ML-Split 316.3 274.8 3.2

PB-DFS-GCN 315.7 243.4 2.9
BP-RB 315.2 537.6 2.3

MIS (Max.)

SCIP-DEF 1362.4 591.4 4.8
ML-Split 1359.3 121.9 5.1

PB-DFS-GCN 1369.0 3.7 4.2
BP-RB 1367.7 2.2 0.0

CA (Max.)

SCIP-DEF 3825.6 794.4 11.3
ML-Split 3825.8 685.8 11.7

PB-DFS-GCN 3825.6 794.4 11.3
BP-RB 3896.8 621.8 7.3

[17] Y. Shen, Y. Sun, A. Eberhard, and X. Li, “Learning primal heuristics
for mixed integer programs,” in 2021 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8, IEEE, 2021.

[18] A. Land and A. Doig, “An automatic method of solving discrete
programming problems,” Econometrica, vol. 28, no. 3, pp. 497–520,
1960.

[19] L. Bertacco, M. Fischetti, and A. Lodi, “A feasibility pump heuristic for
general mixed-integer problems,” Discrete Optimization, vol. 4, no. 1,
pp. 63–76, 2007.

TABLE III
COMPARISON OF DIFFERENT NUMBER OF FIXED VARIABLES

Problem Fixed
Portion

Best
Heuristic
Solution
Objective

Best
Heuristic
Solution

Time

Best
Solution
Objective

VC (Min.)

20% 1628.5 0.9 1627.3
40% 1627.8 0.7 1626.8
60% 1633.0 0.9 1633.0
80% 1634.1 1.0 1634.1

DS (Min.)

20% 318.8 5.6 318.5
40% 319.8 5.2 319.3
60% 322.3 3.0 320.9
80% 330.6 0.7 323.4

MIS (Max.)

20% 1367.7 2.14 1370.1
40% 1367.4 2.2 1367.7
60% 1366.4 3.23 1366.6
80% 1340.9 3.9 1340.9

CA (Max.)

20% 3325.9 2.4 3708.3
40% 3368.7 2.0 3718.3
60% 3416.5 1.1 3854.7
80% 3411.06 0.3 3780.66

[20] J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, and L. Song,
“Accelerating primal solution findings for mixed integer programs
based on solution prediction,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, pp. 1452–1459, 2020.

[21] P. Erdös and A. Rényi, “On the evolution of random graphs,” in The
structure and dynamics of networks, pp. 38–82, Princeton University
Press, 2011.

	I Introduction
	II Preliminaries
	II-A MIP Problem
	II-B Branch and Bound Algorithm
	II-C Primal Heuristics
	II-D GCN based prediction scheme

	III Main Results
	III-A Learning-based Problem Reduction
	III-B Bi-layer Prediction-based Reduction Branch

	IV Experimental Evaluations
	IV-A Setup
	IV-A1 Test Problems
	IV-A2 Training
	IV-A3 Evaluation of Solution Methods
	IV-A4 Experimental Environment

	IV-B Evaluation Results for Finding Primal Solutions

	V Conclusions
	References

